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A NOTE ON SOLUTIONS

OF THE CUBOID FACTOR EQUATIONS.

Ruslan Sharipov

Abstract. A rational perfect cuboid is a rectangular parallelepiped whose edges
and face diagonals are given by rational numbers and whose space diagonal is equal
to unity. It is described by a system of four quadratic equations with respect to six
variables. The cuboid factor equations were derived from these four equations by
symmetrization procedure. They constitute a system of eight polynomial equations.
Recently two sets of formulas were derived providing two solutions for the cuboid
factor equations. These two solutions are studied in the present paper. They are
proved to coincide with each other up to a change of parameters in them.

1. Introduction.

Finding a rational perfect cuboid is equivalent to finding a perfect cuboid with
all integer edges and diagonals, which is an old unsolved problem known since 1719.
The history of cuboid studies can be followed through the references [1–44]. Here
are the equations describing perfect cuboids:

x2

1
+ x2

2
+ x2

3
− L2 = 0, x2

2
+ x2

3
− d2

1
= 0,

(1.1)
x2

3 + x2

1 − d2

2 = 0, x2

1 + x2

2 − d2

3 = 0.

The variables x1, x2, x3 in (1.1) represent edges of a cuboid, the variables d1, d2, d3
are its face diagonals, and L is its space diagonal. In the case of a rational perfect
cuboid we set L = 1.

Let’s denote through p0, p1, p2, p3 the left hand sides of the cuboid equations
(1.1), i. e. let’s introduce the following notations:

p0 = x2

1 + x2

2 + x2

3 − L2, p1 = x2

2 + x2

3 − d2

1 ,
(1.2)

p2 = x2

3
+ x2

1
− d2

2
, p3 = x2

1
+ x2

2
− d2

3
.

Using the polynomials (1.2), the following eight equations are written:

p0 = 0,
3

∑

i=1

p i = 0,

(1.3)
3

∑

i=1

di p i = 0,

3
∑

i=1

xi p i = 0,
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3
∑

i=1

d2

i
p i = 0,

3
∑

i=1

x2

i
p i = 0,

(1.4)
3

∑

i=1

xi di p i = 0,
3

∑

i=1

x2

i
d2

i
p i = 0.

The equations (1.3) and (1.4) are called the cuboid factor equations. They were
derived as a result of a symmetry approach to the original cuboid equations (1.1)
initiated in [45] (see also [46–48]).

It is easy to see that each solution of the original cuboid equations (1.1) is a
solution for the factor equations (1.3) and (1.4). Generally speaking, the converse
is not true. However, in [47] the following theorem was proved.

Theorem 1.1. Each integer or rational solution of the factor equations (1.3) and
(1.4) such that x1 > 0, x2 > 0, x3 > 0, d1 > 0, d2 > 0, and d3 > 0 is an integer or

rational solution for the equations (1.1).

Due to the theorem 1.1 the factor equations (1.3) and (1.4) are equivalent to the
equations (1.1) in studying perfect cuboids. But in this paper, saying a solution of
the factor equations we assume any integer or rational solution, i. e. even such that
some of the inequalities x1 > 0, x2 > 0, x3 > 0, d1 > 0, d2 > 0, d3 > 0 or all of
them are not fulfilled.

Note that the left hand sides of the factor equations are multisimmetric poly-
nomials in x1, x2, x3 and d1, d2, d3, i. e. they are invariant with respect to the S3

permutation group acting upon x1, x2, x3, d1, d2, d3, and L as follows:

σ(xi) = xσi, σ(di) = dσi, σ(L) = L.

For the theory of multisymmetric polynomials the reader is referred to [49–69].
According to this theory, each multisymmetric polynomial is expressed through the
following nine elementary multisymmetric polynomials:

x1 + x2 + x3 = E10,

x1 x2 + x2 x3 + x3 x1 = E20,

x1 x2 x3 = E30,

(1.5)

d1 + d2 + d3 = E01,

d1 d2 + d2 d3 + d3 d1 = E02,

d1 d2 d3 = E03,

(1.6)

x1 x2 d3 + x2 x3 d1 + x3 x1 d2 = E21,

x1 d2 + d1 x2 + x2 d3 + d2 x3 + x3 d1 + d3 x1 = E11,

x1 d2 d3 + x2 d3 d1 + x3 d1 d2 = E12.

(1.7)

Expressing the left hand sides of the factor equations (1.3) and (1.4) through the
polynomials (1.5), (1.6) and (1.7), one gets polynomial equations with respect to the
variables E10, E20, E30, E01, E02, E03, E21, E11, E12, and L (see (3.1) through (3.7)
in [48]). These equations were complemented with fourteen identities expressing the
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algebraic dependence of the elementary multisymmetric polynomials (1.5), (1.6),
and (1.7) (see (3.8) in [48]). As a result a system of twenty two polynomial equations
was obtained. In [48] this huge system of twenty two polynomial equations was
reduced to the following single polynomial equation for E10, E01, E11, and L:

(2E11)
2 + (E2

01 + L2 − E2

10)
2 − 8E2

01 L
2 = 0. (1.8)

The other variables E20, E30, E02, E03, E21, E12 are expressed as rational functions
of E10, E01, E11, and L (see formulas (4.1), (4.3), (5.1), (5.2), (4.6), (4.7) in [48]).

The equation (1.8) was solved by John Ramsden in [70]. In the case of a rational
perfect cuboid, where L = 1, omitting some inessential special cases, the general
solution of the equation (1.8) is given by the formulas

E11 = −
b (c2 + 2− 4 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.9)

E10 = −
b2 c2 + 2 b2 − 3 b2 c − c

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
, (1.10)

E01 = −
b (c2 + 2− 2 c)

b2 c2 + 2 b2 − 3 b2 c+ c− b c2 + 2 b
. (1.11)

Below are the formulas for E12, E21, E03, E30, E02, E20 in (1.5), (1.6), and (1.7):

E12 = (16 b6 + 32 b5 − 6 c5 b2 + 2 c5 b− 62 b5 c6 + 62 b6 c6 + 16 b4−

− 180 b6 c5 − c7 b3 + 18 b5 c7 − 12 b6 c7 − 2 b5 c8 + b6 c8 + 248 b5 c2 +

+248 b6 c2 − 96 b6 c+ 321 b6 c4 − 180 b5 c3 − 144 b5 c− 360 b6 c3 +

+ b4 c8 + 8 b4 c6 − 6 b4 c7 + 18 b4 c5 + 7 b3 c6 + 90 b5 c5 − 14 b3 c5 +

+17 b2 c4 + 32 b4 c2 + 28 b3 c3 − 28 b3 c2 − 4 b c3 + 8 b3 c− 57 b4 c4 +

+36 b4 c3 − 12 b2 c3 − 48 b4 c− c4) (b2 c4 − 6 b2 c3 + 13 b2 c2 −

− 12 b2 c+ 4 b2 + c2)−1 (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.12)

E21 =
b

2
(5 c6 b− 2 c6 b2 + 52 c5 b2 − 16 c5 b− 2 c7 b2 + 2 b4 c8 −

− 26 b4 c7 − 426 b4 c5 − 61 b3 c6 + 100 b3 c5 + 14 c7 b3 − c8 b3 − 20 b c2−

− 8 b2 c2 − 16 b2 c− 128 b2 c4 − 200 b3 c3 + 244 b3 c2 + 32 b c3+

+768 b4 c4 − 852 b4 c3 + 568 b4 c2 + 104 b2 c3 − 208 b4 c+ 8 c4+

+16 b3 − 112 b3 c+ 142 b4 c6 + 32 b4 − 2 c5) (b2 c4 − 6 b2 c3 + 13 b2 c2 −

−12 b2 c− 4 c3 + 4 b2 + c2)−1 (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.13)

E03 =
b

2
(b2 c4 − 5 b2 c3 + 10 b2 c2 − 10 b2 c+ 4 b2 + 2 b c+ 2 c2−

− b c3) (2 b2 c4 − 12 b2 c3 + 26 b2 c2 − 24 b2 c+ 8 b2 − c4 b+ 3 b c3−

− 6 b c+ 4 b+ c3 − 2 c2 + 2 c) (b2 c4 − 6 b2 c3 + 13 b2 c2 −

−12 b2 c+ 4 b2 + c2)−1 (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(1.14)
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E30 = c b2 (1− c) (c− 2) (b c2 − 4 b c+ 2 + 4 b) (2 b c2 − c2 − 4 b c+

+2 b) (b2 c4 − 6 b2 c3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−1 ×

× (b c− 1− b)−2 (−c+ b c− 2 b)−2,

(1.15)

E02 =
1

2
(28 b2 c2 − 16 b2 c− 2 c2 − 4 b2 − b2 c4 + 4 b3 c4 − 12 b3 c3 +

+4 b c3 + 24 b3 c− 8 b c− 2 b4 c4 + 12 b4 c3 − 26 b4 c2 − 8 b2 c3 +

+24 b4 c− 16 b3 − 8 b4) (b c− 1− b)−2 (b c− c− 2 b)−2,

(1.16)

E20 =
b

2
(b c2 − 2 c− 2 b) (2 b c2 − c2 − 6 b c+ 2 + 4 b)×

× (b c− 1− b)−2 (b c− c− 2 b)−2.

(1.17)

The formulas (1.12), (1.13), (1.14), (1.15), (1.16), (1.17) were derived in [71] by
substituting (1.9), (1.10), and (1.11) along with L = 1 into the corresponding
formulas from [48].

Thus, the right hand sides of the equalities (1.5), (1.6), and (1.7) turned out to
be expressed through two arbitrary rational parameters b and c. The next step was
to resolve these equalities with respect to x1, x2, x3, d1, d2, d3. For this purpose
in [71] the following two cubic equations were written:

x3 − E10 x
2 + E20 x− E30 = 0, (1.18)

d3 − E01 d
2 + E02 d− E03 = 0. (1.19)

Note that the left hand sides of the equalities (1.5) are regular symmetric poly-
nomials of the variables x1, x2, x3 (see [72]). Similarly, the left hand sides of the
equalities (1.6) are regular symmetric polynomials of the variables d1, d2, d3. For
this reason x1, x2, x3 can be found as roots of the cubic equation (1.18). Similarly,
d1, d2, d3 are roots of the second cubic equation (1.19). Relying on these facts, in
[71] the following two inverse problems were formulated.

Problem 1.1. Find all pairs of rational numbers b and c for which the cubic

equations (1.18) and (1.19) with the coefficients given by the formulas (1.10), (1.11),
(1.14), (1.15), (1.16), (1.17) possess positive rational roots x1, x2, x3, d1, d2, d3
obeying the auxiliary polynomial equations (1.7) whose right hand sides are given

by the formulas (1.9), (1.12), and (1.13).

Problem 1.2. Find at least one pair of rational numbers b and c for which the

cubic equations (1.18) and (1.19) with the coefficients given by the formulas (1.10),
(1.11), (1.14), (1.15), (1.16), (1.17) possess positive rational roots x1, x2, x3, d1,

d2, d3 obeying the auxiliary polynomial equations (1.7) whose right hand sides are

given by the formulas (1.9), (1.12), and (1.13).

Due to the theorem 1.1 the inverse problems 1.1 and 1.2 are equivalent to finding
all rational perfect cuboids and to finding at least one rational perfect cuboid re-
spectively. Singularities of the inverse problems 1.1 and 1.2 due to the denominators
in the formulas (1.9) through (1.17) were studied in [73]. Some special cases where
the equations (1.5), (1.6), (1.7) are solvable with respect to the cuboid variables
x1, x2, x3 and d1, d2, d3 were found in [74]. However, none of these special cases
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have produced a perfect cuboid since the inequalities

x1 > 0, x2 > 0, x3 > 0,
(1.20)

d1 > 0, d2 > 0, d3 > 0

required for solving the problems 1.1 and 1.2 are not fulfilled in these special cases.
Again, neglecting the inequalities (1.20), an approach to solving the equations

(1.5), (1.6), (1.7) was found in [75]. It exploits the following lemma.

Lemma 1.1. A reduced cubic equation y3 + y2 +D = 0 has three rational roots if

and only if there is a rational number w satisfying the sextic equation

D (w2 + 3)3 + 4 (w − 1)2 (1 + w)2 = 0. (1.21)

In this case the roots of the cubic equation y3+y2+D = 0 are given by the formulas

y1 = −
2 (w + 1)

w2 + 3
, y2 =

2 (w − 1)

w2 + 3
, y3 =

1− w2

w2 + 3
. (1.22)

Based on the lemma 1.1 and on the cubic equations (1.18) and (1.19), in [75]
two sextic equations of the form (1.21) were derived:

D1 (w
2

1
+ 3)3 + 4 (w1 − 1)2 (1 + w1)

2 = 0, (1.23)

D2 (w
2

2
+ 3)3 + 4 (w2 − 1)2 (1 + w2)

2 = 0. (1.24)

The D-parameters D1 and D2 of the sextic equations (1.23) and (1.24) depend on
the same two rational numbers b and c as E11, E10, E01, E12, E21, E03, E30, E02,
E20 in the formulas (1.9) through (1.17). They are given by the formulas

D1 = −
2

27
(7812 b4 c4 − 216 b2 c4 − 52 b2 c3 + 1764 b3 c4 − 1200 b4 c3 −

− 1848 b4 c2 + 720 b4 c− 36 c4 b− 1512 b3 c3 − 36 c8 b3 + 288 b3 c2 −

− 108 c6 b2 + 380 c5 b2 + 378 c7 b3 − 231 c8 b4 − 300 c7 b4 + 3906 c6 b4 −

−13 c7 b2 − 8904 c5 b4 − 882 c6 b3 + 18 c6 b− 1319 b6 c8 + 20952 b5 c3 −

− 11952 b5 c2 + 2592 b5 c− 48372 b6 c4 + 31620 b6 c3 − 10552 b6 c2 +

+ 816 b6 c+ 1494 b5 c8 − 5238 b5 c7 − 4 c5 + 7905 b6 c7 − 24186 b6 c6 +

+288 b6 + 43740 b6 c5 + 7686 b5 c6 + 576 b7 + 128 b8 − 15372 b5 c4 −

− 1080 b7 c8 − 3546 b7 c6 + 51 c9 b6 + 400 b8 c8 − 162 c9 b5 + 8640 b7 c2 −

− 3456 b7 c+ 2808 b7 c7 − 1560 b8 c7 + 3940 b8 c6 + 216 c9 b7 − 960 b8 c−

− 6240 b8 c3 + 9 c10 b6 + 7880 b8 c4 + 4 c10 b8 − 6732 b8 c5 + 45 c9 b4 +

+3200 b8 c2 − 11232 b7 c3 + 7092 b7 c4 − 18 c10 b7 − 60 c9 b8)2 (2 c2 +

+2 b4 c4 − 12 b4 c3 + 26 b4 c2 − 24 b4 c+ 8 b4 − 6 b3 c4 + 18 b3 c3 −

− 36 b3 c+ 24 b3 + 3 b2 c4 + 8 b2 c3 − 36 b2 c2 + 16 b2 c+ 12 b2 − 6 b c3+

+12 b c)−3 (b2 c4 − 6 b2 c−3 + 13 b2 c2 − 12 b2 c+ 4 b2 + c2)−2,

(1.25)
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D2 = −
2 b2

27
(832 b2 c2 − 1440 b2 c4 − 840 b2 c3 + 4788 b3 c4 + 396 b c3+

+720 b3 c+ 808 b4 c4 + 3032 b4 c3 − 2576 b4 c2 − 96 b4 c+ 448 b4−

− 504 c4 b − 4176 b3 c3 − 9 c8 b3 + 72 b3 c2 − 720 c6 b2 + 2288 c5 b2 +

+1044 c7 b3 − 322 c8 b4 + 758 c7 b4 + 404 c6 b4 − 210 c7 b2 − 2464 c5 b4 −

− 2394 c6 b3 + 72 c4 + 252 c6 b+ 3168 b6 c8 + 441 c9 b5 − 7056 b5 c+

+57960 b6 c4 − 47232 b6 c3 + 25344 b6 c2 − 8064 b6 c− 1809 b5 c8 +

+14472 b5 c2 + 3951 b5 c7 − 72 c5 + 36 c6 − 11808 b6 c7 + 1440 b5+

+28980 b6 c6 − 49032 b6 c5 − 4410 b5 c6 + 8820 b5 c4 − 15804 b5 c3 +

+1152 b6 − 504 c9 b6 − 45 c9 b3 − 6 c9 b4 + 104 c8 b2 + 36 c10 b6 +

+14 c10 b4 − 45 c10 b5 − 99 c7 b)2 (6 b4 c4 − 36 b4 c3 + 78 b4 c2 − 72 b4 c+

+24 b4 − 12 b3 c4 + 36 b3 c3 − 72 b3 c+ 48 b3 + 5 b2 c4 + 16 b2 c3 −

− 68 b2 c2 + 32 b2 c+ 20 b2 − 12 b c3 + 24 b c+ 6 c2)−3 (b2 c4 − 6 b2 c3 +

+13 b2 c2 − 12 b2 c+ 4 b2 + c2)−2.

(1.26)

Along with (1.25) and (1.26), in [75] twelve rational functions were derived:

x1 = x1(b, c, w1), x2 = x2(b, c, w1), x3 = x3(b, c, w1),
(1.27)

d1 = d1(b, c, w1), d2 = d2(b, c, w1), d3 = d3(b, c, w1),

x1 = x1(b, c, w2), x2 = x2(b, c, w2), x3 = x3(b, c, w2),
(1.28)

d1 = d1(b, c, w2), d2 = d2(b, c, w2), d3 = d3(b, c, w2).

The explicit formulas for (1.27) and (1.28) are very huge. Therefore we provide
them in the ancillary files Solutions 1.txt and Solutions 2.txt attached to this
arXiv submission. The main result of [75] is formulated in the following theorems.

Theorem 1.2. If (b, c, w1) is a triple of rational numbers solving the equation

(1.23), where D1 is given by (1.25), and belonging to the domain of the rational

functions (1.27), then the values of these functions provide a rational solution for

the equations (1.5), (1.6), (1.7) and for the cuboid factor equations (1.3), (1.4).

Theorem 1.3. If (b, c, w2) is a triple of rational numbers solving the equation

(1.24), where D2 is given by (1.26), and belonging to the domain of the rational

functions (1.28), then the values of these functions provide a rational solution for

the equations (1.5), (1.6), (1.7) and for the cuboid factor equations (1.3), (1.4).

The main goal of the present paper is to prove that the sets of solutions to
the equations (1.5), (1.6), (1.7) and to the cuboid factor equations (1.3) and (1.4)
provided by the theorems 1.2 and 1.3 do essentially coincide.

2. Some prerequisites.

Let’s consider a general cubic equation with the coefficients A0, A1, A2, A3:

A3 x
3 +A2 x

2 +A1 x+A0 = 0. (2.1)
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Under some certain restrictions for its coefficients, the cubic equation (2.1) can be
transformed to its reduced form y3 + y2 +D = 0, where D is given by the formula

D = −
(9A1A2 A3 − 27A0A

2
3 − 2A3

2)
2

27 (A2

2
− 3A1 A3)3

. (2.2)

Applying the lemma 1.1 to the reduced form of the equation (2.1), one gets the
formulas (1.22) for y1, y2, y3. Then the backward transformation of y1, y2, y3 to
the roots of the equation (2.1) yields the formulas

x1 =
1

18
((2A3

2
− 9A1 A2 A3 + 27A0A

2

3
)w2 + (18A2A1 A3 − 6A3

2
)w−

− 9A1A2 A3 + 81A0A
2

3
)A−1

3
(A2

2
− 3A1 A3)

−1 (1 + w)−1,

(2.3)

x2 =
1

18
((2A3

2
− 9A1 A2 A3 + 27A0A

2

3
)w2 − (18A2A1 A3 − 6A3

2
)w−

− 9A1A2 A3 + 81A0A
2

3
)A−1

3
(A2

2
− 3A1 A3)

−1 (1 − w)−1,

(2.4)

x3 =
1

9
((A3

2
− 27A0 A

2

3
)w2 + 36A1A2 A3 − 81A0A

2

3
− 9A3

2
)×

×A−1

3
(A2

2
− 3A1 A3)

−1 (1 − w)−1 (1 + w)−1.

(2.5)

As a result one can formulate the following lemma for the equation (2.1).

Lemma 2.1. Assume that the numbers A0, A1, A2, A3 obey the inequalities

A3 6= 0,
A1

A3

−
A2

2

3A2
3

6= 0,
A0

A3

−
A1 A2

3A2
3

+
2A3

2

27A3
3

6= 0. (2.6 )

Then the general cubic polynomial (2.1) with the rational coefficients A0, A1, A2,

A3 has three rational roots if and only if there is a rational number w satisfying the

sextic equation (2.1) where D is given by the formula (2.2). In this case the roots

of the cubic equation (2.1) are given by the formulas (2.3), (2.4), (2.5).

The detailed proofs of the lemmas 1.1 and 2.1 can be found in [75].
Now, assume that we have a cubic equation with three rational roots x1, x2, x3.

Then this cubic equation can be written as follows:

(x− x1)(x− x2)(x− x3) = 0 (2.7)

Expanding the left hand side of the equation (2.7), we find

A3 = 1, A1 = x1 x2 + x2 x3 + x3 x1,
(2.8)

A0 = −x1 x2 x3, A2 = −(x1 + x2 + x3).

The condition A3 6= 0 from (2.6) is fulfilled for the polynomial (2.7) since A3 = 1
in (2.8). The second condition (2.6) for the polynomial (2.7) is written as

x2

1
+ x2

2
+ x2

3
− x2 x3 − x1 x3 − x1 x2 6= 0. (2.9)

The third condition (2.6) is the most interesting of all three. Applying (2.8) to it,



8 RUSLAN SHARIPOV

we find that for the polynomial (2.7) this condition is written as follows:

(2 x1 − x2 − x3) (2 x2 − x3 − x1) (2 x3 − x1 − x2) 6= 0. (2.10)

The condition (2.10) can be written as three conditions

u1 = 2 x1 − x2 − x3 6= 0,

u2 = 2 x2 − x3 − x1 6= 0, (2.11)

u3 = 2 x3 − x1 − x2 6= 0.

It is not obvious, but the condition (2.9) can be written as

(2 x1 − x2 − x3)
2 + (2 x2 − x3 − x1)

2 + (2 x3 − x1 − x2)
2 6= 0.

Therefore it is clear that the conditions (2.11) imply both (2.9) and (2.10).
Now let’s substitute (2.8) into (2.2). Then we find that the D-parameter of the

sextic equation (1.21) corresponding to the cubic equation (2.7) is written as

D = −
8 (u1 u2 u3)

2

(u2

1
+ u2

2
+ u2

3
)3

(2.12)

The denominator of (2.12) is nonzero due to (2.11). Substituting (2.12) into the
sextic equation, we find that it factors explicitly

D (w − w̃1) (w − w̃2) (w − w̃3) (w − w̃4) (w − w̃5) (w − w̃6) = 0, (2.13)

where D is given by (2.12) and w̃1, w̃2, w̃3 w̃4 w̃5, w̃6 are given by the formulas

w̃1 =
u1 − u2

u3

, w̃2 = −
u1 − u2

u3

,

w̃3 =
u2 − u3

u1

, w̃4 = −
u2 − u3

u1

, (2.14)

w̃5 =
u3 − u1

u2

, w̃6 = −
u3 − u1

u2

.

The numbers u1, u2, u3 in (2.12) and (2.14) are determined by the formulas (2.11).
The quantities w̃1, w̃2, w̃3, w̃4, w̃5, w̃6 in (2.13) are roots of the sextic equation

(1.21). Therefore, substituting (2.8) into (2.3), (2.4), (2.5) and substituting one of
the quantities (2.14) for w into these formulas, we express x1, x2, x3 through x1,
x2, x3, but up to some permutation of them. Here are the permutations associated
with the quantities w̃1, w̃2, w̃3, w̃4, w̃5, w̃6 from (2.14):

w̃1 : (x1, x2, x3) 7→ (x1, x2, x3), w̃2 : (x1, x2, x3) 7→ (x2, x1, x3),

w̃3 : (x1, x2, x3) 7→ (x2, x3, x1), w̃4 : (x1, x2, x3) 7→ (x3, x2, x1), (2.15)

w̃5 : (x1, x2, x3) 7→ (x3, x1, x2), w̃6 : (x1, x2, x3) 7→ (x1, x2, x3).

As we see in (2.15), the first quantity w̃1 from (2.14) plays the role of the identical
permutation belonging to the permutation group S3 and being its unit element.
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3. Conversion formulas.

Let’s choose the first formula (2.14). It expresses a root of the sextic equation
(1.21) through the roots of the associated cubic equation (2.1) given by the formulas
(2.3), (2.4), (2.5). We write this formula as follows:

w =
3 (x1 − x2)

2 x3 − x1 − x2

. (3.1)

The formula (3.1) is inverse to the formulas (2.3), (2.4), and (2.5). Indeed, applying
the formulas (2.8) to (2.3), (2.4), and (2.5), we obtain

x1 =
1

18

(

(x1 + x2 − 2 x3) (x2 + x3 − 2 x1) (x3 + x1 − 2 x2)w
2 +

+6 (x3 + x2 + x1) (x
2

1
+ x2

2
+ x2

3
− x2 x3 − x1 x3 − x1 x2)w+

+9 x1 x
2

2
+ 9 x1 x

2

3
+ 9 x2 x

2

3
+ 9 x2 x

2

1
+ 9 x3 x

2

1
+ 9 x3 x

2

2
−

− 54 x1 x2 x3

)

(x2

1 + x2

2 + x2

3 − x1 x2 − x2 x3 − x3 x1)
−1 (1 + w)−1,

(3.2)

x2 =
1

18

(

(x1 + x2 − 2 x3) (x2 + x3 − 2 x1) (x3 + x1 − 2 x2)w
2 −

− 6 (x3 + x2 + x1) (x
2

1
+ x2

2
+ x2

3
− x2 x3 − x1 x3 − x1 x2)w+

+9 x1 x
2

2
+ 9 x1 x

2

3
+ 9 x2 x

2

3
+ 9 x2 x

2

1
+ 9 x3 x

2

1
+ 9 x3 x

2

2
−

− 54 x1 x2 x3

)

(x2

1 + x2

2 + x2

3 − x1 x2 − x2 x3 − x3 x1)
−1 (1− w)−1,

(3.3)

x3 =
1

9

(

(21 x1 x2 x3 + 3 x1 x
2

2
+ 3 x1 x

2

3
+ 3 x2 x

2

3
+ 3 x2 x

2

1
+ 3 x3 x

2

1
+

+3 x3 x
2

2
− x3

1
− x3

2
− x3

3
)w2 − 9 x1 x

2

2
− 9 x1 x

2

3
− 9 x2 x

2

3
− 9 x2 x

2

1
−

− 9 x3 x
2

1
− 9 x3 x

2

2
+ 27 x1 x2 x3 + 9 x3

1
+ 9 x3

2
+ 9 x3

3

)

×

× (x2

1
+ x2

2
+ x2

3
− x1 x2 − x2 x3 − x3 x1)

−1 (1− w)−1 (1 + w)−1.

(3.4)

Substituting (3.2), (3.3), (3.4) into (3.1), we get the identity w = w. Conversely,
substituting (3.1) into (3.2), (3.3), (3.4), we get three identities x1 = x1, x2 = x2,
and x3 = x3. This result proves the following theorem.

Theorem 3.1. Let x1, x2, x3 be three roots of a general cubic equation (2.1) such
that the conditions (2.6) are fulfilled. Then the formula (3.1) yields a solution w

of the associated sextic equation (1.21) whose D-parameter is given by the formula

(2.2). In this case the roots x1, x2, x3 are backward expressed through w by means

of the formulas (2.3), (2.4), and (2.5).

Let’s return to the formulas (1.27), (1.28) and let’s recall that the functions
x1(b, c, w1), x2(b, c, w1), x3(b, c, w1) from (1.27) were produced in [75] by applying
the formulas (2.3), (2.4), (2.5) to the cubic equation (1.18). Therefore, setting
w = w1 and substituting these functions for x1, x2, x3 into (3.1), we get the identity
w1 = w1. However, we have the other three functions x1(b, c, w2), x2(b, c, w2),
x3(b, c, w2) in (1.28). They represent the same three roots x1, x2, x3 of the same
cubic equation (1.18). Substituting them into (3.1), we get the same quantity w1.
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But now w1 turns out to be expressed through w2, i. e. we get the formula

w1 =
3 x1(b, c, w2)− 3 x2(b, c, w2)

2 x3(b, c, w2)− x1(b, c, w2)− x2(b, c, w2)
, (3.5)

which is not an identity. The formula (3.5) is the first conversion formula. It
expresses w1 through b, c, and w2, i. e. (3.5) yields a function w1 = w1(b, c, w2).
If we substitute this function into the argument w1 of the functions x1(b, c, w1),
x2(b, c, w1), x3(b, c, w1) from (1.27), then, according to the theorem 3.1, we get
back three roots x1(b, c, w2), x2(b, c, w2), x3(b, c, w2) used in (3.5). This means that
we have the following relationships based on the formula (3.5):

x1(b, c, w1(b, c, w2)) = x1(b, c, w2),

x2(b, c, w1(b, c, w2)) = x2(b, c, w2), (3.6)

x3(b, c, w1(b, c, w2)) = x3(b, c, w2).

Note that (1.19) is another cubic equation. It is associated with the other sextic
equation (1.24) and it has its own formula like (3.1):

w =
3 (d1 − d2)

2 d3 − d1 − d2
. (3.7)

The functions d1(b, c, w2), d2(b, c, w2), d3(b, c, w2) were produced in [75] by applying
the formulas (2.3), (2.4), (2.5) to the cubic equation (1.19). Therefore, setting
w = w2 and substituting these functions for d1, d2, d3 into (3.7), we get the identity
w2 = w2. However, there are the other three functions d1(b, c, w1), d2(b, c, w1),
d3(b, c, w1) in (1.27). They represent the same three roots d1, d2, d3 of the same
cubic equation (1.19). Substituting them into (3.7), we get the same quantity w2.
But now w2 turns out to be expressed through w1, i. e. we get the formula

w2 =
3 d1(b, c, w1)− 3 d2(b, c, w1)

2 d3(b, c, w1)− d1(b, c, w1)− d2(b, c, w1)
, (3.8)

which is not an identity. The formula (3.8) is the second conversion formula. It
expresses w2 through b, c, and w1, i. e. (3.8) yields a function w2 = w1(b, c, w1).
If we substitute this function into the argument w2 of the functions d1(b, c, w2),
x2(b, c, w2), x3(b, c, w2) from (1.28), then, according to the theorem 3.1, we get
back three roots d1(b, c, w1), d2(b, c, w1), d3(b, c, w1) used in (3.8). This means that
we have the following relationships based on the formula (3.8):

d1(b, c, w2(b, c, w1)) = d1(b, c, w1),

d2(b, c, w2(b, c, w1)) = d2(b, c, w1), (3.9)

d3(b, c, w2(b, c, w1)) = d3(b, c, w1).

The formulas (3.5) and (3.8) provide two transformations w1 = w1(b, c, w2) and
w2 = w2(b, c, w1). Our next step is to prove that these transformations are inverse
to each other. For this purpose let’s recall that the functions (1.27) obey the
relationships (1.5), (1.6), (1.7) whose right hand sides are given by the formulas
(1.9) through (1.17). The same is true for the functions (1.28). In particular, we
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have the following three relationships for the functions (1.28):

x1(b, c, w2)x2(b, c, w2) d3(b, c, w2) + x2(b, c, w2)x3(b, c, w2)×

× d1(b, c, w2) + x3(b, c, w2)x1(b, c, w2) d2(b, c, w2) = E21(b, c),

x1(b, c, w2) d2(b, c, w2) + d1(b, c, w2)x2(b, c, w2) + x2(b, c, w2)×

× d3(b, c, w2) + d2(b, c, w2)x3(b, c, w2) + x3(b, c, w2)×

× d1(b, c, w2) + d3(b, c, w2)x1(b, c, w2) = E11(b, c),

d1(b, c, w2) + d2(b, c, w2) + d3(b, c, w2) = E01(b, c).

(3.10)

Let’s apply the formulas (3.6) to (3.10). This yields

x1(b, c, w1)x2(b, c, w1) d3 + x2(b, c, w1)x3(b, c, w1) d1 +

+ x3(b, c, w1)x1(b, c, w1) d2 = E21(b, c),

x1(b, c, w1) d2 + d1 x2(b, c, w1) + x2(b, c, w1) d3 +

+ d2 x3(b, c, w1) + x3(b, c, w1) d1 + d3 x1(b, c, w1) = E11(b, c),

d1 + d2 + d3 = E01(b, c),

(3.11)

where w1 = w1(b, c, w2) and di = di(b, c, w2). The equalities (3.11) are linear with
respect to d1, d2, d3. They constitute that very system of linear equations which
was used in deriving the functions di = di(b, c, w1) (see (3.5) in [75]). This yields

d1(b, c, w1(b, c, w2)) = d1(b, c, w2),

d2(b, c, w1(b, c, w2)) = d2(b, c, w2), (3.12)

d3(b, c, w1(b, c, w2)) = d3(b, c, w2).

Apart from (3.10) one can extract other three equations from (1.5), (1.6), (1.7)
and write them as equalities for the functions (1.27), i. g. we can write

x1(b, c, w1) + x2(b, c, w1) + x3(b, c, w1) = E10(b, c),

x1(b, c, w1) d2(b, c, w1) + d1(b, c, w1)x2(b, c, w1) + x2(b, c, w1)×

× d3(b, c, w1) + d2(b, c, w1)x3(b, c, w1) + x3(b, c, w1)×

× d1(b, c, w1) + d3(b, c, w1)x1(b, c, w1) = E11(b, c),

x1(b, c, w1) d2(b, c, w1) d3(b, c, w1) + x2(b, c, w1) d3(b, c, w1)×

× d1(b, c, w1) + x3(b, c, w1) d1(b, c, w1) d2(b, c, w1) = E12(b, c).

(3.13)

Like in the case of (3.10), applying (3.9) to (3.13), we get

x1 + x2 + x3 = E10(b, c),

x1 d2(b, c, w2) + d1(b, c, w2)x2 + x2 d3(b, c, w2)+

+ d2(b, c, w2)x3 + x3 d1(b, c, w2) + d3(b, c, w2)x1 = E11(b, c),

x1 d2(b, c, w2) d3(b, c, w2) + x2 d3(b, c, w2) d1(b, c, w2)+

+ x3 d1(b, c, w2) d2(b, c, w2) = E12(b, c),

(3.14)
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where w2 = w2(b, c, w1) and xi = xi(b, c, w1). The equalities (3.14) are linear with
respect to x1, x2, x3. They constitute that very system of linear equations which
was used in deriving the functions xi = xi(b, c, w2) (see (4.5) in [75]). This yields

x1(b, c, w2(b, c, w1)) = x1(b, c, w1),

x2(b, c, w2(b, c, w1)) = x2(b, c, w1), (3.15)

x3(b, c, w2(b, c, w1)) = x3(b, c, w1).

The relationships (3.15) are similar to (3.6) and the relationships (3.12) are similar
to (3.9). But these four groups of relationships do not coincide with each other.

Now let’s consider the composite function w2(b, c, w1(b, c, w2)). Then, applying
the formula (3.8) to this function, we derive

w2(b, c, w1(b, c, w2)) =
(

3 d1(b, c, w1(b, c, w2))− 3 d2(b, c, w1(b, c, w2))
)

×

×
(

2 d3(b, c, w1(b, c, w2))− d1(b, c, w1(b, c, w2))− d2(b, c, w1(b, c, w2))
)

−1
.

If we take into account (3.12), then the above formula can be written as

w2(b, c, w1(b, c, w2)) =
3 d1(b, c, w2)− 3 d2(b, c, w2)

2 d3(b, c, w2)− d1(b, c, w2)− d2(b, c, w2)
. (3.16)

The right hand side of the formula (3.16) can be produced by substituting the
functions d1(b, c, w2), d2(b, c, w2), d3(b, c, w2) from (1.28) for d1, d2, d3 into the
formula (3.7). The formula (3.7) is a version of the formula (3.1) for w = w2,
while d1(b, c, w2), d2(b, c, w2), d3(b, c, w2) are the roots of the cubic equation (1.19)
produced by means of the formulas (2.3), (2.4), (2.5) with w = w2 applied to the
cubic equation (1.19). Therefore, the theorem 3.1 in this case means that the right
hand side of (3.16) is equal to w2. Thus, we have derived the formula

w2(b, c, w1(b, c, w2)) = w2. (3.17)

The formula w1(b, c, w2(b, c, w1)) = w1 is derived similarly. For this purpose we
consider the function w1(b, c, w2(b, c, w1)) and apply the formula (3.5) to it:

w1(b, c, w2(b, c, w1)) =
(

3 x1(b, c, w2(b, c, w1))− 3 x2(b, c, w2(b, c, w1))
)

×

×
(

2 x3(b, c, w2(b, c, w1))− x1(b, c, w2(b, c, w1))− x2(b, c, w2(b, c, w1))
)

−1
.

Using the relationships (3.15), the above formula is transformed to

w1(b, c, w2(b, c, w1)) =
3 x1(b, c, w1)− 3 x2(b, c, w1)

2 x3(b, c, w1)− x1(b, c, w1)− x2(b, c, w1)
. (3.18)

The right hand side of the formula (3.18) can be produced by substituting the
functions x1(b, c, w1), x2(b, c, w1), x3(b, c, w1) from (1.27) for x1, x2, x3 into the
formula (3.1), where w = w1, while x1(b, c, w2), x2(b, c, w2), x3(b, c, w2) are the
roots of the cubic equation (1.18) produced by means of the formulas (2.3), (2.4),
(2.5) with w = w1 applied to the cubic equation (1.18). Therefore, the theorem 3.1



A NOTE ON SOLUTIONS OF THE CUBOID FACTOR EQUATIONS. 13

in this case means that the right hand side of (3.18) is equal to w1. Thus, we have
derived the required formula for the composite function w1(b, c, w2(b, c, w1)):

w1(b, c, w2(b, c, w1)) = w1. (3.19)

The functions w1 = w1(b, c, w2) and w2 = w2(b, c, w1) are given by the formulas
(3.5) and (3.8). Using the explicit formulas for the functions (1.27) and (1.28) given
in the ancillary files Solutions 1.txt and Solutions 2.txt, the formulas (3.5)
and (3.8) are converted to explicit formulas for the functions w1 = w1(b, c, w2)
and w2 = w2(b, c, w1). These explicit formulas are placed in the ancillary file
Conversion formulas.txt attached to this arXiv submission.

Theoretically, we could prove the relationships (3.17) and (3.19) by direct calcu-
lations. However, the explicit formulas for the functions w1(b, c, w2) and w2(b, c, w1)
are so huge that they cannot be handled on my personal computer.

4. Conclusions.

The formulas (3.17) and (3.19) mean that the transformations given by the
conversion functions (3.5) and (3.8) are inverse to each other. Then the formulas
(3.6), (3.9), (3.12), and (3.15) mean that (1.27) and (1.28) are not two different
solutions of the cuboid factor equations (1.3) and (1.4), but two presentations of a
single solution. This fact is the main result of the present paper.
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4. Euler L., Vollständige Anleitung zur Algebra, 3 Theile, Kaiserliche Akademie der Wissenschaf-

ten, St. Petersburg, 1770-1771.
5. Pocklington H. C., Some Diophantine impossibilities, Proc. Cambridge Phil. Soc. 17 (1912),

108–121.

6. Dickson L. E, History of the theory of numbers, Vol. 2: Diophantine analysis, Dover, New
York, 2005.

7. Kraitchik M., On certain rational cuboids, Scripta Math. 11 (1945), 317–326.
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