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ON THE HADAMARD PRODUCT OF HOPF MONOIDS

MARCELO AGUIAR AND SWAPNEEL MAHAJAN

Dedicated to the memory of Jean-Louis Loday

Abstract. Combinatorial structures which compose and decompose give rise to Hopf
monoids in Joyal’s category of species. The Hadamard product of two Hopf monoids
is another Hopf monoid. We prove two main results regarding freeness of Hadamard
products. The first one states that if one factor is connected and the other is free as
a monoid, their Hadamard product is free (and connected). The second provides an
explicit basis for the Hadamard product when both factors are free.

The first main result is obtained by showing the existence of a one-parameter de-
formation of the comonoid structure and appealing to a rigidity result of Loday and
Ronco which applies when the parameter is set to zero. To obtain the second result,
we introduce an operation on species which is intertwined by the free monoid functor
with the Hadamard product. As an application of the first result, we deduce that
the dimension sequence of a connected Hopf monoid satisfies the following condition:
except for the first, all coefficients of the reciprocal of its generating function are
nonpositive.
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Introduction

Combinatorial structures are often equipped with operations which allow to combine
two given structures of a given type into a third and vice versa. This leads to the con-
struction of algebraic structures, particularly that of graded Hopf algebras. When the
former are formalized through the notion of species, which keeps track of the underly-
ing ground set of the combinatorial structure, it is possible to construct finer algebraic
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2 M. AGUIAR AND S. MAHAJAN

structures than the latter. This leads to Hopf monoids in the category of species. The
basic theory of these objects is laid out in [4, Part II], along with the discussion of several
examples. Section 1 reviews basic material concerning species and Hopf monoids.

Free monoids are the subject of Section 2. Just as the tensor algebra of a vector
space carries a canonical structure of Hopf algebra, the free monoid on a positive species
carries one of Hopf monoid. In fact, this structure admits a one parameter deformation,
meaningful even when the parameter q is set to zero. The deformation only concerns
the comonoid structure; the monoid structure stays fixed throughout. A rigidity result
(Theorem 2.2) applies when q = 0 and makes this case of particular importance. It
states that a connected 0-Hopf monoid is necessarily free as a monoid. This is a version
of a result for Hopf algebras of Loday and Ronco [8, Theorem 2.6].

Section 3 contains our two main results; they concern freeness under Hadamard
products. The Hadamard product is a basic operation on species which reflects into
the familiar Hadamard product of the dimension sequences. While there is also a
version of this operation for graded (co)algebras, the case of species is distinguished
by the fact that the Hadamard product of two Hopf monoids is another Hopf monoid
(Proposition 3.1). In fact, the Hadamard product of a p-Hopf monoid h and a q-Hopf
monoid k is a pq-Hopf monoid h×k. Combining this result with rigidity for connected
0-Hopf monoids we obtain our first main result (Theorem 3.2). It states that if h is
connected and k is free as a monoid, then h × k is free as a monoid. A number of
freeness results in the literature (for certain Hopf monoids as well as Hopf algebras) are
consequences of this fact. The second main result (Theorem 3.8) provides an explicit
basis for the Hadamard product when both factors are free monoids. To this end, we
introduce an operation on species which intertwines with the Hadamard product via
the free monoid functor.

The previous results entail enumerative implications on the dimension sequence of
a Hopf monoid. These are explored in Section 4. They can be conveniently formu-
lated in terms of the Boolean transform of a sequence (or power series), since the type
generating function of a positive species p is the Boolean transform of that of the free
monoid on p. We deduce that the Boolean transform of the dimension sequence of a
connected Hopf monoid is nonnegative (Theorem 4.4). This turns out to be stronger
than several previously known conditions on the dimension sequence of a connected
Hopf monoid. We provide examples of sequences with nonnegative Boolean transform
which do not arise as the dimension sequence of any connected Hopf monoid, showing
that the converse of Theorem 4.4 does not hold (Proposition 4.9).

Appendix A contains additional information on Boolean transforms; in particular,
Proposition A.3 provides an explicit formula for the Boolean transform of the Hadamard
product of two sequences (in terms of the transforms of the factors). This implies that
the set of real sequences with nonnegative Boolean transform is closed under Hadamard
products.

1. Species and Hopf monoids

We briefly review Joyal’s notion of species [5, 6] and of Hopf monoid in the category
of species. For more details on the latter, see [4], particularly Chapters 1, 8 and 9.
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1.1. Species and the Cauchy product. Let set× denote the category whose objects
are finite sets and whose morphisms are bijections. Let k be a field and let Vec denote
the category whose objects are vector spaces over k and whose morphisms are linear
maps.

A (vector) species is a functor

set× −→ Vec.

Given a species p, its value on a finite set I is denoted by p[I]. A morphism between
species p and q is a natural transformation between the functors p and q. Let Sp

denote the category of species.
Given a set I and subsets S and T of I, the notation I = S ⊔ T indicates that

I = S ∪ T and S ∩ T = ∅.

We say in this case that the ordered pair (S, T ) is a decomposition of I.
Given species p and q, their Cauchy product is the species p · q defined on a finite

set I by

(1.1) (p · q)[I] :=
⊕

I=S⊔T

p[S]⊗ q[T ].

The direct sum is over all decompositions (S, T ) of I, or equivalently over all subsets S
of I. On a bijection σ : I → J , (p · q)[σ] is defined to be the direct sum of the maps

p[S]⊗ q[T ]
p[σ|S ]⊗p[σ|T ]
−−−−−−−−→ p[σ(S)]⊗ q[σ(T )]

over all decompositions (S, T ) of I, where σ|S denotes the restriction of σ to S.
The operation (1.1) turns Sp into a monoidal category. The unit object is the species

1 defined by

1[I] :=

{

k if I is empty,

0 otherwise.

Let q ∈ k be a fixed scalar, possibly zero. Consider the natural transformation

βq : p · q → q · p

which on a finite set I is the direct sum of the maps

p[S]⊗ q[T ] → q[T ]⊗ p[S], x⊗ y 7→ q|S||T |y ⊗ x

over all decompositions (S, T ) of I. The notation |S| stands for the cardinality of the
set S.

If q is nonzero, then βq is a (strong) braiding for the monoidal category (Sp, ·). In
this case, the inverse braiding is βq−1 , and βq is a symmetry if and only if q = ±1. The
natural transformation β0 is a lax braiding for (Sp, ·).

1.2. Hopf monoids in species. We consider monoids and comonoids in the monoidal
category (Sp, ·) and bimonoids and Hopf monoids in the braided monoidal category
(Sp, ·, βq). We refer to the latter as q-bimonoids and q-Hopf monoids. When q = 1, we
speak simply of bimonoids and Hopf monoids.
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The structure of a monoid p consists of morphisms of species µ : p · p → p and
ι : 1 → p subject to the familiar associative and unital axioms. In view of (1.1), the
product µ consists of a collection of linear maps

µS,T : p[S]⊗ p[T ] → p[I],

one for each finite set I and each decomposition (S, T ) of I. The unit ι reduces to a
linear map

ι∅ : k → p[∅].

Similarly, the structure of a comonoid q consists of linear maps

∆S,T : q[I] → q[S]⊗ q[T ] and ǫ∅ : q[∅] → k.

Let I = S ⊔ T = S ′ ⊔ T ′ be two decompositions of a finite set. The compatibility
axiom for q-Hopf monoids states that the diagram

(1.2)

h[A]⊗ h[B]⊗ h[C]⊗ h[D]
id⊗βq⊗id

// h[A]⊗ h[C]⊗ h[B]⊗ h[D]

µA,C⊗µB,D

��

h[S]⊗ h[T ]
µS,T

//

∆A,B⊗∆C,D

OO

h[I]
∆S′,T ′

// h[S ′]⊗ h[T ′]

commutes, where A = S ∩ S ′, B = S ∩ T ′, C = T ∩ S ′, D = T ∩ T ′. For more details,
see [4, Sections 8.2 and 8.3].

1.3. Connected species and Hopf monoids. A species p is connected if dimk p[∅] =
1. In a connected monoid, the map ι∅ is an isomorphism k ∼= p[∅], and the resulting
maps

p[I] ∼= p[I]⊗ p[∅]
µI,∅
−−→ p[I] and p[I] ∼= p[∅]⊗ p[I]

µ∅,I
−−→ p[I]

are identities. Thus, to provide a monoid structure on a connected species it suffices
to specify the maps µS,T when S and T are nonempty. A similar remark applies to
connected comonoids.

Choosing S = S ′ and T = T ′ in (1.2) one obtains that for a connected q-bimonoid h

the composite

h[S]⊗ h[T ]
µS,T

−−→ h[I]
∆S,T

−−−→ h[S]⊗ h[T ]

is the identity.
A connected q-bimonoid is automatically a q-Hopf monoid; see [4, Sections 8.4

and 9.1]. The antipode of a Hopf monoid will not concern us in this paper.

1.4. The Hopf monoid of linear orders. The q-Hopf monoid Lq is defined as follows.
The vector space Lq[I] has for basis the set of linear orders on the finite set I. The
product and coproduct are defined by concatenation and restriction, respectively:

µS,T : Lq[S]⊗ Lq[T ] → Lq[I] ∆S,T : Lq[I] → Lq[S]⊗ Lq[T ]

l1 ⊗ l2 7→ l1 · l2 l 7→ qschS,T (l) l|S ⊗ l|T .
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Here l1 · l2 is the linear order on I whose restrictions to S and T are l1 and l2 and
in which the elements of S precede the elements of T , and l|S is the restriction of the
linear order l on I to the subset S. The Schubert cocycle is

(1.3) schS,T (l) := |{(i, j) ∈ S × T | i > j according to l}|.

We write L instead of L1. Note that the monoid structure of Lq is independent of
q. Thus, L = Lq as monoids. The comonoid L is cocommutative, but, for q 6= 1, Lq is
not.

2. The free monoid on a positive species

We review the explicit construction of the free monoid on a positive species, follow-
ing [4, Section 11.2]. The free monoid carries a canonical structure of q-Hopf monoid.
The case q = 0 is of particular interest for our purposes, in view of the fact that any
connected 0-Hopf monoid is free (Theorem 2.2 below).

2.1. Set compositions. A composition of a finite set I is an ordered sequence F =
(I1, . . . , Ik) of disjoint nonempty subsets of I such that

I =

k
⋃

i=1

Ii.

The subsets Ii are the blocks of F . We write F � I to indicate that F is a composition
of I.

There is only one composition of the empty set (with no blocks).
Given I = S ⊔ T and compositions F = (S1, . . . , Sj) of S and G = (T1, . . . , Tk) of T ,

their concatenation

F ·G := (S1, . . . , Sj, T1, . . . , Tk)

is a composition of I.
Given S ⊆ I and a composition F = (I1, . . . , Ik) of I, we say that S is F -admissible

if for each i = 1, . . . , k, either

Ii ⊆ S or Ii ∩ S = ∅.

In this case, we let i1 < · · · < ij be the subsequence of 1 < · · · < k consisting of those
indices i for which Ii ⊆ S, and define the restriction of F to S by

F |S = (Ii1, . . . , Iij ).

It is a composition of S.
Given I = S ⊔ T and a composition F = (I1, . . . , Ik) of I, let

(2.1) schS,T (F ) := |{(i, j) ∈ S × T | i appears in a strictly later block of F than j}|.

Alternatively,

schS,T (F ) =
∑

1≤i<j≤k

|Ii ∩ T | |Ij ∩ S|.

Still in the preceding situation, note that S is F -admissible if and only if T is. Thus
F |S and F |T are defined simultaneously.
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If the blocks of F � I are singletons, then F amounts to a linear order on I. Con-
catenation and restriction of set compositions reduce in this case to the corresponding
operations for linear orders (Section 1.4). In addition, (2.1) reduces to (1.3).

The set of compositions of I is a partial order under refinement : we set F ≤ G if each
block of F is obtained by merging a number of adjacent blocks of G. The composition
(I) is the unique minimum element, and linear orders are the maximal elements.

Set compositions of I are in bijection with flags of subsets of I via

(I1, . . . , Ik) 7→ (∅ ⊂ I1 ⊂ I1 ∪ I2 ⊂ · · · ⊂ I1 ∪ · · · ∪ Ik = I).

Refinement of compositions corresponds to inclusion of flags. In this manner the poset
of set compositions is a lower set of the Boolean poset 22

I

, and hence a meet-semilattice.
The meet operation and concatenation interact as follows:

(2.2) (F · F ′) ∧ (G ·G′) = (F ∧G) · (F ′ ∧G′),

where F,G � S and F ′, G′
� T , I = S ⊔ T .

Remark. Set compositions of I are in bijection with faces of the braid arrangement in
R

I . Refinement of compositions corresponds to inclusion of faces, meet to intersection,
linear orders to chambers, and (I) to the central face. When S and T are nonempty,
the statistic schS,T (F ) counts the number of hyperplanes that separate the face (S, T )
from F . For more details, see [4, Chapter 10].

2.2. The free monoid. A species q is positive if q[∅] = 0.
Given a positive species q and a composition F = (I1, . . . , Ik) of I, write

(2.3) q(F ) := q[I1]⊗ · · · ⊗ q[Ik].

We define a new species T (q) by

T (q)[I] :=
⊕

F�I

q(F ).

A bijection σ : I → J transports a composition F = (I1, . . . , Ik) of I into a composition
σ(F ) :=

(

σ(I1), . . . , σ(Ik)
)

of J . The map T (q)[σ] : T (q)[I] → T (q)[J ] is the direct
sum of the maps

q(F ) = q[I1]⊗ · · · ⊗ q[Ik]
q[σ|I1 ]⊗···⊗q[σ|Ik ]−−−−−−−−−−→ q[σ(I1)]⊗ · · · ⊗ q[σ(Ik)] = q

(

σ(F )
)

.

When F is the unique composition of ∅, we have q(F ) = k. Thus, the species T (q)
is connected.

Every nonempty I admits a unique composition with one block; namely, F = (I).
In this case, q(F ) = q[I]. This yields an embedding q[I] →֒ T (q)[I] and thus an
embedding of species

ηq : q →֒ T (q).

On the empty set, ηq is (necessarily) zero.
Given I = S⊔T and compositions F � S andG � T , we have a canonical isomorphism

q(F )⊗ q(G) ∼= q(F ·G)
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obtained by concatenating the factors in (2.3). The sum of these over all F � S and
G � T yields a map

µS,T : T (q)[S]⊗ T (q)[T ] → T (q)[I].

This turns T (q) into a monoid. In fact, T (q) is the free monoid on the positive species
q, in view of the following result (a slight reformulation of [4, Theorem 11.4]).

Theorem 2.1. Let p be a monoid, q a positive species, and ζ : q → p a morphism of
species. Then there exists a unique morphism of monoids ζ̂ : T (q) → p such that

T (q)
ζ̂

// p

q

ζ

99
r
r
r
r
r
r
r
r
r
r
r
r
r

ηq

OO

commutes.

The map ζ̂ is as follows. On the empty set, it is the unit map of p:

T (q)[∅] = k
ι∅
−→ p[∅].

On a nonempty set I, it is the sum of the maps

q(F ) = q[I1]⊗ · · · ⊗ q[Ik]
ζI1⊗···⊗ζIk−−−−−−→ p[I1]⊗ · · · ⊗ p[Ik]

µI1,...,Ik−−−−−→ p[I],

where µI1,...,Ik denotes an iteration of the product of p (well-defined by associativity).

When there is given an isomorphism of monoids p ∼= T (q), we say that the positive
species q is a basis of the (free) monoid p.

Remark. The free monoid T (q) on an arbitrary species q exists [4, Example B.29]. One
has that T (q)[∅] is the free associative unital algebra on the vector space q[∅]. Thus,
T (q) is connected if and only if q is positive. We only consider this case in this paper.

2.3. The free monoid as a Hopf monoid. Let q ∈ k and q a positive species. The
species T (q) admits a canonical q-Hopf monoid structure, which we denote by Tq(q),
as follows.

As monoids, Tq(q) = T (q). In particular, Tq(q) and T (q) are the same species. The
comonoid structure depends on q. Given I = S ⊔ T , the coproduct

∆S,T : Tq(q)[I] → Tq(q)[S]⊗ Tq(q)[T ]

is the sum of the maps

q(F ) → q(F |S)⊗ q(F |T )

x1 ⊗ · · · ⊗ xk 7→

{

qschS,T (F )(xi1 ⊗ · · · ⊗ xij )⊗ (xi′
1
⊗ · · · ⊗ xi′

k
) if S is F -admissible,

0 otherwise.

Here F = (I1, . . . , Ik) and xi ∈ q[Ii] for each i. In the admissible case, we have written
F |S = (Ii1 , . . . , Iij) and F |T = (Ii′

1
, . . . , Ii′

k
).

The preceding turns Tq(q) into a q-bimonoid. Since it is connected, it is a q-Hopf
monoid.
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2.4. Freeness of the Hopf monoid of linear orders. Let X be the species defined
by

X[I] :=

{

k if I is a singleton,

0 otherwise.

It is positive. Note that

(2.4) X(F ) ∼=

{

k if all blocks of F are singletons,

0 otherwise.

Since a set composition of I into singletons amounts to a linear order on I, we have
T (X)[I] ∼= L[I] for all finite sets I. This gives rise to a canonical isomorphism of species

T (X) ∼= L.

Moreover, the closing remarks in Section 2.1 imply that this is an isomorphism of q-Hopf
monoids

Tq(X) ∼= Lq.

In particular, L is the free monoid on the species X.

2.5. Loday-Ronco freeness for 0-Hopf monoids. The 0-Hopf monoid T0(q) has the
same underlying species and the same product as the Hopf monoid T (q) (Section 2.2).
We now discuss the coproduct, by setting q = 0 in the description of Section 2.3. Fix
a decomposition I = S ⊔ T . The compositions F � I that contribute to ∆S,T are those
for which S is F -admissible and in addition schS,T (F ) = 0. This happens if and only if

F = F |S · F |T .

When S, T 6= ∅, the preceding is in turn equivalent to

(2.5) (S, T ) ≤ F.

Therefore, the coproduct ∆S,T of T0(q) is the direct sum over all F � I of the above
form of the maps

q(F ) → q(F |S)⊗ q(F |T )

x1 ⊗ · · · ⊗ xk 7→ (x1 ⊗ · · · ⊗ xj)⊗ (xj+1 ⊗ · · · ⊗ xk).

Here F = (I1, . . . , Ik), S = I1 ∪ · · · ∪ Ij , and T = Ij+1 ∪ · · · ∪ Ik.

Theorem 2.2. Let h be a connected 0-Hopf monoid. Then there exist a positive species
q and an isomorphism of 0-Hopf monoids

h ∼= T0(q).

The species q can be obtained as the primitive part of h.
There is a parallel result for connected graded 0-Hopf algebras which is due to Loday

and Ronco [8, Theorem 2.6]. An adaptation of their proof yields the result for connected
0-Hopf monoids; the complete details are given in [4, Theorem 11.49].

Remark. Theorem 2.2 states that any connected 0-Hopf monoid is free as a monoid. It
is also true that it is cofree as a comonoid; in addition, if q is finite-dimensional, then
the 0-Hopf monoid T0(q) is self-dual. See [4, Section 11.10.3] for more details.
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3. Freeness under Hadamard products

The Hadamard product of two Hopf monoids is another Hopf monoid. We review
this construction and we prove in Theorem 3.2 that if one of the Hopf monoids is free
as a monoid, then the Hadamard product is also free as a monoid (provided the other
Hopf monoid is connected). We introduce an operation on positive species which allows
us to describe a basis for the Hadamard product of two free monoids in terms of bases
of the factors (Theorem 3.8).

3.1. The Hadamard product of Hopf monoids. The Hadamard product of two
species p and q is the species p× q defined on a finite set I by

(p× q)[I] := p[I]⊗ q[I],

and on bijections similarly.
If p and q are connected, then so is p× q.

Proposition 3.1. Let p, q ∈ k be arbitrary scalars. If h is a p-bimonoid and k is a
q-bimonoid, then h× k is a pq-bimonoid.

The proof is given in [4, Corollary 9.6]. The corresponding statement for Hopf mon-
oids holds as well.

The product of h× k is defined by

(h× k)[S]⊗ (h× k)[T ]
µS,T

// (h× k)[I]

(h[S]⊗ k[S])⊗ (h[T ]⊗ k[T ]) ∼=
// (h[S]⊗ h[T ])⊗ (k[S]⊗ k[T ])

µS,T⊗µS,T

// h[I]⊗ k[I]

where the first map on the bottom simply switches the middle tensor factors. The
coproduct is defined similarly.

In particular, if h and k are bimonoids (p = q = 1), then so is h× k.

Remark. There is a parallel between the notions of species on the one hand, and of
graded vector spaces on the other. This extends to a parallel between Hopf monoids in
species and graded Hopf algebras. These topics are studied in detail in [4, Part III].

The Hadamard product of graded vector spaces can be defined, but does not enjoy
the same formal properties of that for species. In particular, the Hadamard product
of two graded bialgebras carries natural algebra and coalgebra structures, but these
are not compatible in general; see [4, Remark 8.65]. For this reason, our main result
(Theorem 3.2 below) does not possess an analogue for graded bialgebras.

3.2. Freeness under Hadamard products. The following is our main result. Let p
and q ∈ k be arbitrary scalars.

Theorem 3.2. Let h be a connected p-Hopf monoid. Let k be a q-Hopf monoid that is
free as a monoid. Then h× k is a connected pq-Hopf monoid that is free as a monoid.

Proof. Since h and k are connected (the latter by freeness), so is h×k. We then know
from Proposition 3.1 that h× k is a connected pq-Hopf monoid. Now, as monoids, we
have

k ∼= Tq(q) = T0(q)
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for some positive species q. Hence, as monoids,

h× k ∼= h× T0(q).

But the latter is a 0-Hopf monoid by Proposition 3.1, and hence free as a monoid by
Theorem 2.2. �

Corollary 3.3. Let h be a connected p-Hopf monoid. Then h×Lq is free as a monoid.

Proof. This is a special case of Theorem 3.2, since as discussed in Section 2.4, Lq
∼=

Tq(X). �

Example 3.4. The Hopf monoid ILq of pairs of linear orders is studied in [4, Sec-
tion 12.3]. There is an isomorphism of q-Hopf monoids

ILq
∼= L∗ × Lq.

Corollary 3.3 implies that ILq is free as a monoid. This result was obtained by different
means in [4, Section 12.3]. It implies the fact that the Hopf algebra of permutations
of Malvenuto and Reutenauer [9] is free as an algebra, a result known from [10]. See
Section 3.3 below for more comments regarding connections between Hopf monoids and
Hopf algebras.

Example 3.5. The Hopf monoid scf(U) of superclass functions on unitriangular ma-
trices with entries in F2 is studied in [1]. There is an isomorphism of Hopf monoids

scf(U) ∼= Π× L,

where Π is the Hopf monoid of set partitions of [4, Section 12.6]. It follows that scf(U)
is free as a monoid. This result was obtained by different means in [1, Proposition 17].
It implies the fact that the Hopf algebra of symmetric functions in noncommuting
variables [12] is free as an algebra, a result known from [15].

3.3. Livernet freeness for certain Hopf algebras. It is possible to associate a
number of graded Hopf algebras to a given Hopf monoid h. This is the subject of [4,
Chapter 15]. In particular, there are two graded Hopf algebras K(h) and K(h) related
by a canonical surjective morphism

K(h) ։ K(h).

Moreover, for any Hopf monoid h, there is a canonical isomorphism of graded Hopf
algebras [4, Theorem 15.13]

K(L× h) ∼= K(h).

The functor K preserves a number of properties, including freeness: if h is free as a
monoid, then K(h) is free as an algebra [4, Proposition 18.7].

Combining these remarks with Corollary 3.3 we deduce that for any connected Hopf
monoid h, the algebra K(h) is free. This result is due to Livernet [7, Theorem 4.2.2].
A proof similar to the one above is given in [4, Section 16.1.7].

As an example, for h = IL we obtain that the Hopf algebra of pairs of permutations
is free as an algebra, a result known from [3, Theorem 7.5.4].
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3.4. The Hadamard product of free monoids. Given positive species p and q,
define a new positive species p ⋆ q by

(3.1) (p ⋆ q)[I] :=
⊕

F,G�I
F∧G=(I)

p(F )⊗ q(G).

The sum is over all pairs (F,G) of compositions of I such that F ∧ G = (I). We are
employing notation (2.3).

Lemma 3.6. For any composition H � I, there is a canonical isomorphism of vector
spaces

(3.2) (p ⋆ q)(H) ∼=
⊕

F,G�I
F∧G=H

p(F )⊗ q(G)

given by rearrangement of the tensor factors.

Proof. Let us say that a function f on set compositions with values on vector spaces is
multiplicative if f(H1 ·H2) ∼= f(H1)⊗ f(H2) for all H1 � I1, H2 � I2, I = I1 ⊔ I2. Such
functions are uniquely determined by their values on the compositions of the form (I).
The isomorphism (3.2) holds when H = (I) by definition (3.1). It thus suffices to check
that both sides are multiplicative.

The left hand side of (3.2) is multiplicative in view of (2.3).
If, for i = 1, 2, Fi, Gi � Ii are such that Fi ∧Gi = Hi, then

(F1 · F2) ∧ (G1 ·G2) = H1 ·H2

by (2.2). Moreover, if F,G � I1 ⊔ I2 are such that F ∧ G = H1 · H2, then F = F1 · F2

and G = G1 · G2 for unique Fi, Gi as above. This implies the multiplicativity of the
right hand side. �

We show that the operation (3.1) is associative.

Proposition 3.7. For any positive species p, q and r, there is a canonical isomorphism

(3.3) (p ⋆ q) ⋆ r ∼= p ⋆ (q ⋆ r).

Proof. Define

(p ⋆ q ⋆ r)[I] :=
⊕

F,G,H�I,
F∧G∧H=(I)

p(F )⊗ q(G)⊗ r(H).

We make use of the isomorphism (3.2) to build the following.
(

p ⋆ (q ⋆ r)
)

[I] =
⊕

F,K�I
F∧K=(I)

p(F )⊗ (q ⋆ r)(K)

∼=
⊕

F,K�I,
F∧K=(I)

⊕

G,H�I,
G∧H=K

p(F )⊗ q(G)⊗ r(H)

=
⊕

F,G,H�I,
F∧G∧H=(I)

p(F )⊗ q(G)⊗ r(H) = (p ⋆ q ⋆ r)[I]
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The space
(

(p ⋆ q) ⋆ r
)

[I] can be identified with (p ⋆ q ⋆ r)[I] in a similar manner. �

There is also an evident natural isomorphism

(3.4) p ⋆ q ∼= q ⋆ p.

Thus, ⋆ defines a (nonunital) symmetric monoidal structure on the category of positive
species.

Our present interest in the operation ⋆ stems from the following result, which provides
an explicit description for the basis of a Hadamard product of two free monoids in terms
of bases of the factors.

Theorem 3.8. For any positive species p and q, there is a natural isomorphism of
monoids

(3.5) T (p ⋆ q) ∼= T (p)× T (q).

Proof. We calculate using (3.2).

T (p ⋆ q)[I] =
⊕

H�I

(p ⋆ q)(H) ∼=
⊕

H�I

⊕

F,G�I
F∧G=H

p(F )⊗ q(G)

=
⊕

F,G�I

p(F )⊗ q(G) = T (p)[I]⊗ T (q)[I] =
(

T (p)× T (q)
)

[I].

The fact that this isomorphism preserves products follows from (2.2). �

Example 3.9. Since X is a basis for L, (3.5) implies that X ⋆X is a basis for L× L.
From (2.4) we obtain that

{(C,D) | C ∧D = (I)}.

is a linear basis for (X⋆X)[I]. (The linear orders C andD are viewed as set compositions
into singletons.) For related results, see [4, Section 12.3.6].

Recall that, for each scalar q ∈ k, any free monoid T (p) is endowed with a canonical
comonoid structure and the resulting q-Hopf monoid is denoted Tq(p) (Section 2.3). It
turns out that, when q = 0, (3.5) is in fact an isomorphism of 0-Hopf monoids, as we
now prove. The proof below also shows that (3.5) is not an isomorphism of comonoids
for q 6= 0.

Proposition 3.10. The map (3.5) is an isomorphism of 0-Hopf monoids

T0(p ⋆ q) ∼= T0(p)× T0(q).

Proof. In order to prove that coproducts are preserved it suffices to check that they
agree on the basis p ⋆ q of T (p ⋆ q) and on its image in T (p) × T (q). The image of
(p ⋆ q)[I] is the direct sum of the spaces p(F ) ⊗ q(G) over those F,G � I such that
F ∧ G = (I). Choose S, T 6= ∅ such that I = S ⊔ T . In view of the definition of the
coproduct on a free monoid (Section 2.3), the coproduct ∆S,T of Tq(p ⋆ q) is zero on
(p ⋆ q)[I]. (This holds for any q ∈ k.) On the other hand, from (2.5) we have that the
coproduct of T0(p)× T0(q) on p(F )⊗ q(G) is also zero, unless both

(S, T ) ≤ F and (S, T ) ≤ G.

Since this is forbidden by the assumption F ∧G = (I), the coproducts agree. �
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4. The dimension sequence of a connected Hopf monoid

We now derive a somewhat surprising application of Theorem 3.2. It states that
the reciprocal of the ordinary generating function of a connected Hopf monoid has
nonpositive (integer) coefficients (Theorem 4.4 below). We compare this result with
other previously known conditions satisfied by the dimension sequence of a connected
Hopf monoid.

4.1. Coinvariants. Let G be a group and V a kG-module. The space of coinvariants
VG is the quotient of V by the k-subspace spanned by the elements of the form

v − g · v

for v ∈ V , g ∈ G. If V is a free kG-module, then

dimk VG = rankkG V.

Let V and W be kG-modules. Let U1 be the space V ⊗W with diagonal G-action:

g · (v ⊗ w) := (g · v)⊗ (g · w).

Let U2 be the same space but with the following G-action:

g · (v ⊗ w) := v ⊗ (g · w).

The following is a well-known basic fact.

Lemma 4.1. If W is free as a kG-module, then U1
∼= U2. In particular,

dimk(U1)G = (dimk V )(dimk WG).

Proof. We may assume W = kG. In this case, the map

U1 → U2, v ⊗ g 7→ (g−1 · v)⊗ g

is an isomorphism of kG-modules. The second assertion follows because U2 is a free
module of rank equal to (dimk V )(rankkGW ). �

4.2. The type generating function. Let p be a species. We write p[n] for the space
p[{1, . . . , n}]. The symmetric group Sn acts on p[n] by

σ · x := p[σ](x)

for σ ∈ Sn, x ∈ p[n]. For example,

L[n] ∼= kSn

as kSn-modules.
From now on, we assume that all species p are finite-dimensional. This means that

for each n ≥ 0 the space p[n] is finite-dimensional. The type generating function of p
is the power series

Tp(x) :=
∑

n≥0

dimk p[n]Sn
xn.

For example,

TL(x) =
∑

n≥0

xn =
1

1− x
.



14 M. AGUIAR AND S. MAHAJAN

More generally, for any positive species q,

(4.1) TT (q)(x) =
1

1− Tq(x)
.

This follows by a direct calculation or from [5, Theorem 1.4.2.b].
Let p be a free monoid. It follows from (4.1) that

(4.2) 1−
1

Tp(x)
∈ N[[x]].

In other words, the reciprocal of the type generating function of a free monoid has
nonpositive integer coefficients (except for the first, which is 1).

4.3. Generating functions for Hadamard products. The type generating function
of a Hadamard product p× q is in general not determined by those of the factors. (It
is however determined by their cycle indices ; see [5, Proposition 2.1.7.b].)

The ordinary generating function of a species p is

Op(x) :=
∑

n≥0

dimk p[n] x
n.

The Hadamard product of power series is defined by

(

∑

n≥0

anx
n
)

×
(

∑

n≥0

bnx
n
)

:=
∑

n≥0

anbnx
n.

Proposition 4.2. Let p be an arbitrary species and q a species for which q[n] is a free
kSn-module for every n ≥ 0. Then

(4.3) Tp×q(x) = Op(x)× Tq(x).

Proof. In view of Lemma 4.1, we have

dimk

(

(p× q)[n]
)

Sn
= (dimk p[n])(dimk q[n]Sn)

from which the result follows. �

Since TL(x) is the unit for the Hadamard product of power series, we have from (4.3)
that

(4.4) Tp×L(x) = Op(x).

More generally, for any positive species q,

(4.5) Tp×T (q)(x) = Op(x)×
1

1− Tq(x)
.

This follows from (4.1) and (4.3); the kSn-module T (q)[n] is free by [4, Lemma B.18].
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4.4. The ordinary generating function of a connected Hopf monoid. Let h be
a connected q-Hopf monoid. By Corollary 3.3, h×L is a free monoid. Let q be a basis.
Thus, q is a positive species such that

h× L ∼= T (q)

as monoids.

Proposition 4.3. In the above situation,

(4.6) Oh(x) =
1

1− Tq(x)
.

Proof. We have, by (4.1) and (4.4),

Oh(x) = Th×L(x) = TT (q)(x) =
1

1− Tq(x)
. �

Theorem 4.4. Let h be a connected q-Hopf monoid. Then

(4.7) 1−
1

Oh(x)
∈ N[[x]].

Proof. From (4.6) we deduce

1−
1

Oh(x)
= Tq(x) ∈ N[[x]]. �

In the terminology of Section A below, Theorem 4.4 states that the Boolean trans-
form of the dimension sequence of a connected q-Hopf monoid is nonnegative; see (A.1).
Proposition 4.3 states more precisely that the Boolean transform of the ordinary gen-
erating function of h is the type generating function of q.

Example 4.5. We have

1−
1

∑

n≥0 n!x
n
= x+ x2 + 3x3 + 13x4 + 71x5 + 461x6 + · · · .

The Boolean transform bn of the dimension sequence of L admits the following descrip-
tion. Say that a linear order on the set [n] is decomposable if it is the concatenation of
a linear order on [i] and a linear order on [n] \ [i] for some i such that 1 ≤ i < n. Every
linear order is the concatenation of a unique sequence of indecomposable ones. It then
follows from (A.3) that bn is the number of indecomposable linear orders on [n]. The
sequence bn is [13, A003319].

Example 4.6. A partition X of the set [n] is atomic if [i] is not a union of blocks of
X for any i such that 1 ≤ i < n. The dimension sequence of the Hopf monoid Π is
the sequence of Bell numbers, and its Boolean transform counts the number of atomic
partitions of [n]. The latter is sequence [13, A074664].

Let an := dimk h[n]. The conditions imposed by (4.7) on the first terms of this
sequence are as follows.

a21 ≤ a2,

2a1a2 − a31 ≤ a3,

2a1a3 − 3a21a2 + a22 + a41 ≤ a4.
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Example 4.7. Suppose that the sequence starts with

a1 = 1, a2 = 2, and a3 = 3.

The third inequality above then implies a4 ≥ 5. It follows that the species e of elements
(for which dimk e[n] = n) does not carry a bimonoid structure. This result was obtained
by different means in [2, Example 3.5].

The calculation of Example 4.5 can be generalized to all free monoids in place of L.
To this end, let us say that a composition F of the set [n] is decomposable if F = F1 ·F2

for some F1 � [i], F2 � [n] \ [i], and some i such that 1 ≤ i < n.

Proposition 4.8. For any positive species p, the Boolean transform of the dimension
sequence of the Hopf monoid T (p) is given by

bn =
∑

F�[n]
F indecomposable

dimk p(F ).

Proof. We have from (3.5) that

T (p ⋆X) ∼= T (p)× T (X) ∼= T (p)× L.

Hence, by (4.6),

OT (p)(x) =
1

1− Tp⋆X(x)
.

Thus, Tp⋆X(x) is the Boolean transform of OT (p)(x), and hence bn = dimk

(

(p⋆X)[n]
)

Sn
.

From (2.4) and (3.1) we have that

(p ⋆X)[I] =
⊕

(F,C):F∧C=(I)

p(F )

where F varies over set compositions and C varies over linear orders on I. It follows
that (p ⋆X)[n] is a free kSn-module with Sn-coinvariants equal to the space

⊕

F�[n],F∧Cn=([n])

p(F )

where Cn denotes the canonical linear order on [n]. The result follows since F ∧ Cn =
([n]) if and only if F is indecomposable.

(Alternatively, we may prove this result by appealing to (A.3) as in Example 4.5.) �

Let h and k be connected Hopf monoids. The Boolean transform of the dimension
sequence of h×k can be explicitly described in terms of the Boolean transforms of the
dimension sequences of h and k; see Proposition A.3 below.

For example, let bn be the Boolean transform of the dimension sequence of IL (Ex-
ample 3.4). This is sequence [13, A113871] and its first few terms are 1, 3, 29, 499.
Recalling that IL ∼= L∗ × L and employing (A.5) we readily obtain that bn counts the
number of pairs (l, m) of linear orders on [n] such that α∧β = (n), where the sequence
of indecomposables of l has size α and that of m has size β.
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Remark. Theorem 4.4 states that if h is a connected q-Hopf monoid, then the Boolean
transform of Oh(x) is nonnegative. This was deduced by considering the Hadamard
product of h with L. One may also consider the Hadamard product of h with an
arbitrary free Hopf monoid. Then, using Theorem 3.2 together with (4.2) and (4.5),
one obtains that for any series A(x) ∈ N[[x]] with nonnegative Boolean transform, the
Hadamard product Oh(x) × A(x) also has nonnegative Boolean transform. However,
this does not impose any additional conditions on Oh(x), in view of Corollary A.4.

4.5. Non-attainable sequences. The question arises whether condition (4.7) char-
acterizes the dimension sequence of a connected Hopf monoid. In other words, given a
sequence of nonnegative integers bn, n ≥ 1, is there a connected q-Hopf monoid h such
that

(4.8) 1−
1

Oh(x)
=

∑

n≥1

bnx
n

holds? In other words, the question is whether bn is the Boolean transform of the
dimension sequence of a connected q-Hopf monoid. The answer is negative, as the
following result shows.

Proposition 4.9. Consider the sequence defined by

bn :=

{

1 if n = 2,

0 otherwise.

Then there is no connected q-bimonoid h for which (4.8) holds, regardless of q.

Proof. Suppose such h exists; let an be its dimension sequence. Then bn is the Boolean
transform of an, and (A.3) implies that

an :=

{

1 if n is even,

0 if n is odd.

Recall from Section 1.3 that for any decomposition I = S⊔T , the composite ∆S,TµS,T

is the identity. It follows in the present situation that µS,T and ∆S,T are inverse whenever
S and T are of even cardinality. Now let

I = {a, b, c, d}, S = {a, b}, T = {c, d}, S ′ = {a, c}, and T ′ = {b, d}

and consider the commutative diagram (1.2). The bottom horizontal composite in this
diagram is an isomorphism between one-dimensional vector spaces, while the composite
obtained by going up, across and down is the zero map. This is a contradiction. �

Let k be a positive integer and define, for n ≥ 1,

b(k)n :=

{

1 if n = k,

0 otherwise.

The inverse Boolean transform of b
(k)
n is

a(k)n :=

{

1 if n ≡ 0 mod k,

0 otherwise.
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An argument similar to that in Proposition 4.9 shows that, if k ≥ 2, there is no con-

nected q-Hopf monoid with dimension sequence a
(k)
n . (The exponential Hopf monoid [4,

Example 8.15] has dimension sequence a
(1)
n .)

4.6. Comparison with previously known conditions. The paper [2] provides vari-
ous sets of conditions that the dimension sequence an of a connected Hopf monoid must
satisfy. For instance, [2, Proposition 4.1] states that

(4.9) aiaj ≤ an

for n = i+ j and every i, j ≥ 1. In addition, the coefficients of the power series

(4.10)
1 +

∑

n≥1 anx
n

1 +
∑

n≥1
an
n!
xn

are nonnegative [2, Corollary 3.3], and [2, Equation (3.2)] states that

(4.11) a3 ≥ 3a2a1 − 2a31.

We proceed to compare these conditions with those imposed by Theorem 4.4.
The inequalities (4.9) are implied by Theorem 4.4, in view of Lemma A.2. An example

of a sequence that satisfies (4.9) but whose Boolean transform fails to be nonnegative
is the following:

an :=

{

n if n ≤ 4,

2n if n ≥ 5.

(The first terms of the Boolean transform are b1 = 1, b2 = 1, b3 = 0, b4 = −1.) Thus,
the conditions imposed by Theorem 4.4 are strictly stronger than (4.9).

Condition (4.10) is also implied by Theorem 4.4, in view of Lemma A.1 (with wn =
1
n!
).
On the other hand, condition (4.11) is not implied by Theorem 4.4. To see this, let

an be the sequence of Fibonacci numbers, defined by a0 = a1 = 1 and

an = an−1 + an−2

for n ≥ 2. The Boolean transform is nonnegative; indeed, it is simply given by

bn =

{

1 if n ≤ 2,

0 otherwise.

However, condition (4.11) is not satisfied.
The previous example shows that there is no connected Hopf monoid with dimensions

given by the Fibonacci sequence. It also provides another example for which the answer
to question (4.8) is negative.

Appendix A. The Boolean transform

We recall the Boolean transform of a sequence and discuss some consequences of its
nonnegativity. We provide an explicit formula for the Boolean transform of a Hadamard
product in terms of the transforms of the factors.
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A.1. Boolean transform and integer compositions. Let an, n ≥ 1, be a sequence
of scalars. Its Boolean transform is the sequence bn, n ≥ 1, defined by

(A.1)
∑

n≥1

bnx
n := 1−

1

1 +
∑

n≥1 anx
n
.

Equivalently, the sequence bn can be determined recursively from

(A.2) an −
n−1
∑

k=1

an−kbk − bn = 0.

We also refer to the power series
∑

n≥1 bnx
n as the Boolean transform of the power

series
∑

n≥1 anx
n.

Remark. In the literature on noncommutative probability [14], if an is the sequence of
moments (of a noncommutative random variable), then bn is the sequence of Boolean
cumulants. The Boolean transform is also called the B-transform [11].

A composition of a nonnegative integer n is a sequence α = (n1, . . . , nk) of positive
integers such that

n1 + · · ·+ nk = n.

We write α � n.
Given a sequence an and a composition α � n as above, we let

aα := an1
· · · ank

.

The sequence an can be recovered from its Boolean transform bn by

(A.3) an =
∑

α�n

bα.

Given compositions σ = (s1, . . . , sj) � s and τ = (t1, . . . , tk) � t, their concatenation

σ · τ := (s1, . . . , sj, t1, . . . , tk)

is a composition of s+ t.
The set of compositions of n is a Boolean lattice under refinement. The minimum

element is the composition (n) and the maximum is (1, . . . , 1). The meet operation and
concatenation interact as follows:

(A.4) (α · α′) ∧ (β · β ′) = (α ∧ β) · (α′ ∧ β ′),

where α, β � n and α′, β ′
� n′.

A.2. Consequences of nonnegativity of the Boolean transform. We say that a
real sequence an has nonnegative Boolean transform when all the terms bn of its Boolean
transform are nonnegative.

Lemma A.1. Let an be a real sequence with nonnegative Boolean transform. Let wn

be a weakly decreasing sequence such that w1 ≤ 1. Then the coefficients of the power
series

1−
1 +

∑

n≥1wnanx
n

1 +
∑

n≥1 anx
n

and
1 +

∑

n≥1 anx
n

1 +
∑

n≥1wnanxn

are nonnegative.
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Proof. Let C(x) :=
∑

n≥1 cnx
n denote the first power series above. Let bn be the

Boolean transform of an. In view of (A.1),

C(x) = 1−
(

1 +
∑

n≥1

wnanx
n
)(

1−
∑

n≥1

bnx
n
)

.

Hence, for n ≥ 1,

cn = −wnan +

n−1
∑

k=1

wn−kan−kbk + bn.

Combining with (A.2) we obtain

cn = −wn

(

n−1
∑

k=1

an−kbk + bn
)

+
n−1
∑

k=1

wn−kan−kbk + bn

=
n−1
∑

k=1

(wn−k − wn)an−kbk + (1− wn)bn.

The nonnegativity of bn implies that of an, by (A.3). Also, wn−k−wn ≥ 0 and 1−wn ≥ 0
by hypothesis. Hence cn ≥ 0.

The second power series in the statement is 1
1−C(x)

, so its sequence of nonconstant co-

efficients is the inverse Boolean transform of cn. The nonnegativity of these coefficients
follows from that of the cn, by (A.3). �

Lemma A.2. Let an be a real sequence with nonnegative Boolean transform. Then

asat ≤ an

for n = s+ t and every s, t ≥ 1.

Proof. According to (A.3), we have

asat =
(

∑

σ�s

bσ
)(

∑

τ�t

bτ
)

=
∑

σ�s
τ�t

bσ·τ ≤
∑

α�n

bα = an.

The inequality holds in view of the nonnegativity of the bn and the fact that each σ · τ
is a distinct composition of n. �

A.3. The Boolean transform and Hadamard products. Let an and bn be two
sequences, n ≥ 1, and let pn and qn denote their Boolean transforms. Consider the
Hadamard product anbn of the given sequences, and let rn denote its Boolean transform.
We provide an explicit formula for rn in terms of the sequences pn and qn.

Proposition A.3. With the notation as above,

(A.5) rn =
∑

α,β�n
α∧β=(n)

pαqβ.

Proof. Define, for each γ � n, a scalar

r̃γ :=
∑

α,β�n
α∧β=γ

pαqβ .
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Fix two compositions γ � n and γ′
� n′. Let n′′ := n + n′ and γ′′ := γ · γ′

� n′′. Let
α, β � n and α′, β ′

� n′ be compositions such that

γ = α ∧ β and γ′ = α′ ∧ β ′.

Let α′′ := α · α′ and β ′′ := β · β ′. Then, by (A.4),

α′′ ∧ β ′′ = (α · α′) ∧ (β · β ′) = (α ∧ β) · (α′ ∧ β ′) = γ · γ′ = γ′′.

Conversely, any pair of compositions α′′, β ′′
� n′′ such that α′′∧β ′′ = γ′′ arises as above

from unique α, α′, β and β ′. It follows that

r̃γ r̃γ′ =
∑

α,β�n,α′,β′
�n′

α∧β=γ, α′∧β′=γ′

pαqβpα′qβ′ =
∑

α′′,β′′
�n′′

α′′∧β′′=γ′′

pα′′qβ′′ = r̃γ′′ .

This implies that, for γ = (n1, . . . , nk),

r̃γ = r̃(n1) · · · r̃(nk).

On the other hand, from the definition of r̃ and (A.3) we have that
∑

γ�n

r̃γ =
∑

α,β�n

pαqβ = anbn.

The previous two equalities imply that the sequence anbn is the inverse Boolean
transform of the sequence r̃(n), in view of (A.3). Thus, r̃(n) is the Boolean transform of
anbn and the result follows. �

The first values of rn are as follows:

r1 = p1q1,

r2 = p2q2 + p2q
2
1 + p21q2,

r3 = p3q3 + 2p3q2q1 + 2p2p1q3 + 2p2p1q2q1 + p31q3 + p3q
3
1.

Corollary A.4. The set of real sequences with nonnegative Boolean transform is closed
under Hadamard products.

Proof. This follows at once from (A.5). �
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