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The Collatz conjecture and De Bruijn graphs
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Abstract

We study variants of the well-known Collatz graph, by considering the action of the 3n+ 1 function on congruence
classes. For moduli equal to powers of 2, these graphs are shown to be isomorphic to binary De Bruijn graphs. Unlike the
Collatz graph, these graphs are very structured, and have several interesting properties. We then look at a natural general-
ization of these finite graphs to the 2-adic integers, and show that the isomorphism between these infinite graphs is exactly
the conjugacy map previously studied by Bernstein and Lagarias. Finally, we show that for generalizations of the 3n+ 1
function, we get similar relations with 2-adic andp-adic De Bruijn graphs.

Keywords: 3n+1 problem, Collatz conjecture, De Bruijn graph, shift map, conjugacy, 2-adic integers.

1 Introduction
The 3n+1 or Collatz conjecture is a long-standing open problem in mathematics. Let the 3n+1 functionT be defined on
the integers by

T(n) =

{

(3n+1)/2 if n is odd,

n/2 if n is even.
(1)

The Collatz conjecture states that, starting from any positive integern, repeated application of the functionT will eventually
produce the number 1, after which it will end in the cycle{1,2}. This conjecture is true if and only if, on the positive integers,
there are no divergent paths (i.e., limk→∞ Tk(n)< ∞ for all positive integersn, whereT0(n) = n andTk+1(n) = T(Tk(n)) for
k ≥ 0) and there are no other cycles besides the trivial cycle{1,2} (i.e., there are no natural numbersn≥ 3 with Tk(n) = n
for somek≥ 1). Though easy to state, this problem seems very hard, if notimpossible to solve.

Because of its simple formulation, researchers from many different branches of mathematics have at one time or another
encountered this problem and have become fascinated by it. This has lead to hundreds of papers in the last few decades, with
each researcher using his own area of expertise to shed a new light on this problem. An excellent overview of many of these
papers was given by Lagarias [16, 17], while extensive surveys of previous work on this problem can be found in books by
Lagarias [15] and Wirsching [27].

Three of those branches of mathematics that have been used tostudy the Collatz conjecture are those of graph theory,
modular arithmetic and 2-adic integers. This paper aims to show connections between these three approaches.

We start in Section 2 with studying modular Collatz graphs, i.e., finite graphs that capture the behaviour of the 3n+1
function on congruence classes of integers. It turns out that there is an intimate relation to binary De Bruijn graphs when the
modulus is a power of 2. Letting this modulus grow to infinity,in Section 3 we are led to studying these problems on the
2-adic integers. This leads to a natural generalization of the binary De Bruijn graphs to the 2-adic integers. In Section4 we
look at the structure of this infinite graph, and we try to describe how various Collatz graphs are embedded in it. In Section 5
we briefly indicate possible generalizations.

2 Binary Collatz graphs and binary De Bruijn graphs
One particular approach to the 3n+1 problem that caught our attention is using directed graphsto visualize the action, and
in particular iteration, of the functionT. We denote a directed graph byG = (V,E), whereV is the set of vertices, andE
is the set of directed edges. Since we will not be dealing withundirected graphs, we will refer to directed graphs simply as
graphs. Consider the graphC(N+) = (V,E) with verticesV =N+ and edgesE = {n→ T(n) : n∈V}. This graph is known
in the literature as the Collatz graph [2, 13, 24, 27], and allows for a simple visual explanation of the 3n+1 problem to a
broad audience [26].

Since the Collatz graph has infinitely many vertices and looks very chaotic, we introduce a new family of related, finite
graphs. Given some modulusm, we define themodular Collatz graph with modulus mas the graphG= (V,E) with vertices
V = {0,1, . . . ,m−1}, and a directed edge runs froma to b if there exist some numbersa1,b1 ∈ Z, with a1 ≡ a (mod m) and
b1 ≡ b (mod m), such thatT(a1) = b1. For instance, takingm= 3 leads to the graph on three vertices in Figure 1.

As can be seen from this graph, once we ‘leave’ the set 3Z we will never return, as there are no edges going into the
vertex 0. The only way not to leave this set is to haveTk(n)≡ 0 (mod 6) for all n, which impliesn= 0. Hence proving that

∗Department of Mathematics and Computer Science, EindhovenUniversity of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail:
{t.m.m.laarhoven,b.m.m.d.weger}@tue.nl

1

http://arxiv.org/abs/1209.3495v1


0LL
// 2 YY

((
1hh

Figure 1: The modular Collatz graph with modulusm= 3.
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Figure 2: The binary Collatz graphsC(2) with modulus 4 (left) andC(3) with modulus 8 (right).

all positive integersn≡±1 (mod 3) iterate to 1 is sufficient to prove the Collatz conjecture. Although this conclusion may
seem trivial, and similar but stronger results have been derived by the Monkses [23,24], it shows that studying these graphs
may be useful.

Upon further inspection, it turns out that in general, thesegraphs do not look particularly nice or structured. But when
we take the modulusm to be some power of 2, these graphs do have a nice structure. From now on we will therefore focus on
what we callbinary modular Collatz graphs, or simplybinary Collatz graphs. We writeC(k) for the modular Collatz graph
with modulusm= 2k, and we refer to this graph as thebinary Collatz graph of dimension k. For convenience, we writeTk
for forward iteration in the graphC(k), i.e.,Tk(n) is the set of verticesv in the graphC(k) that are connected ton by an edge
n→ v. This relation can be explicitly written as1

Tk(n) =

{

{(3n+1)/2,(3n+1)/2+2k−1} if n is odd,

{n/2,n/2+2k−1} if n is even.
(2)

For k = 2,3 we get the graphsC(2) andC(3) shown in Figure 2. These can also be found in a recent paper of Monks et
al. [24, Figures 7.1, 7.2].

Looking at these graphs, we can immediately see a lot of structure. Both graphs have several symmetries, every vertex
has two incoming and two outgoing edges, and reversing the direction of each edge leads to a graph isomorphic to the original
graph. In the graphC(2) we have also labeled each edge with the corresponding congruence class modulo 8, e.g., the edge
from 2 to 3 has a label 6, because the numbersa≡ 2 (mod 4) satisfyingT(a) ≡ 3 (mod 4) are exactly all numbersa≡ 6
(mod 8). With this labeling, we can see a connection betweenC(2) andC(3): the latter can be formed by taking the so-called
line graphof the former, associating edges inC(2) to vertices inC(3) and connected edges inC(2) to edges inC(3).

Seeing these beautiful graphs, one may wonder what is known about these graphs, and the title of this paper gives most
of it away. Given an alphabetΣ = {0,1, . . . , p−1} of size p and a wordlengthk, the p-ary De Bruijn graph of dimension
k [5] is defined as the graphB(p,k) = (V,E) with vertex setV = Σk, and an edge runs from the worda0a1 · · ·ak−1 to the word
b0b1 · · ·bk−1 if and only if ai+1 = bi for i = 0, . . . ,k−2. Thus, an edge runs from one word to another if the lastk−1 symbols
of the first word overlap with the firstk−1 symbols of the second word. Whenp= 2 we also refer to these graphs asbinary
De Bruijn graphs. Besides viewing the vertices as words of a fixed length over some finite alphabet, it is also convenient to
associate numbers between 0 andpk −1 to the vertices. For this we identify wordsb0b1 · · ·bk−1 with numbers∑k−1

i=0 bi pi .
Figure 3 shows the two different labelings of the binary De Bruijn graphB(2,3) of dimension 3. For the remainder of this
paper, we will choose to label the vertices with these numbers rather than with words over a finite alphabet.

We write σp,k for forward iteration in thep-ary De Bruijn graph of dimensionk. In terms of finite words overΣ, this
corresponds toσp,k(b0b1 · · ·bk−1) = {b1b2 · · ·bk−1x : x ∈ Σ}. For now we will focus on the casep= 2, when the relation
σ2,k can be described in terms of numbers as

σ2,k(n) =

{

{(n−1)/2,(n−1)/2+2k−1} if n is odd,

{n/2,n/2+2k−1} if n is even.
(3)

Since this relation shifts the bits to the left and appends a new bit, we will refer to this relation as the(binary) shift relation.
De Bruijn graphs are closely related to, and mostly studied for, findingDe Bruijn sequences: cyclic sequences of symbols

over a finite alphabet containing each sequence of lengthk exactly once as a subsequence. For instance, a De Bruijn sequence
for k = 3 is given by 00010111(00). These sequences correspond precisely to Hamiltonian paths in De Bruijn graphs. The

above sequence corresponds to the path starting at 000, and following the path 000
1
→ 001

0
→ 010

1
→ 101

1
→ 011

1
→ 111

(0)
→

110
(0)
→ 100, visiting each vertex of the graph exactly once, hence containing each sequence of length 3 as a subsequence

exactly once. Since De Bruijn graphs are Hamiltonian, such De Bruijn sequences exist for any value ofp andk, and can be
constructed from a Hamiltonian path in a De Bruijn graph.2

1In this expression, numbers should be calculated modulo 2k, as all vertices correspond to congruence classes modulo 2k.
2Due to the exponential size of the De Bruijn graphs, this method of finding De Bruijn sequences is not very efficient. In Section 4 we will see a more

practical method for generating these sequences.
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Figure 3: The binary De Bruijn graph of dimension 3, with binary (left) and numeric (right) labels on vertices.
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Figure 4: The graphsC(4) (left) andB(2,4) (right), and the corresponding isomorphismΦ4 = (1,5)(2,10)(9,13).

Comparing Figures 2 and 3, it is clear that the graphB(2,3) has exactly the same structure as the binary Collatz graph
C(3). In fact, for any value ofk, the graphsC(k) andB(2,k) have exactly the same structure. This can be seen as follows.
Let us use the notation(xi(n)) for the 0−1 sequence defined byxi(n) ≡ T i(n) (mod 2), for i ∈ N, as in [13]. For example,
since the orbit ofn= 3 under iteratingT is (3,5,8,4,2,1,2,1,2, . . .), the sequence(xi(n)) is this orbit taken modulo 2, i.e.,
(1,1,0,0,0,1,0,1,0, . . .). Then it is immediate thatxi(T(n)) ≡ T i(T(n)) = T i+1(n) ≡ xi+1(n) (mod 2), i.e., applyingT
to n means shifting the sequence(xi(n)) one position to the left. The firstk terms of(xi(n)) depend only on the value of
n (mod 2k), andxk+1(n) andxk+1(n+ 2k) always are different, as shown in [13, Equation (2.9)]. So ifwe consider the
(iterated) action ofT on a congruence class of somen (mod 2k), then we find that the firstk elements of(xi(n)) are identical
for all numbers in this congruence class, and that the firstk elements of(xi(T(n))) are those of(xi(n)) shifted by one to the
left, with at the end added a 0 or 1, both occuring equally often. But this shows exactly that one forward iteration in the
binary Collatz graph of dimensionk can be described as the shift relation on the bit sequences oflengthk, i.e., as the forward
iteration on the binary De Bruijn graph of dimensionk.

To summarize our result, we introduce the functionΦk : {0, . . . ,2k−1} → {0, . . . ,2k−1}, defined by

Φk(n) =
k−1

∑
i=0

xi(n)2
i . (4)

Then we have the following statement.

Theorem 2.1. For any k≥ 1, the functionΦk is an isomorphism between C(k) and B(2,k).

For the binary Collatz graphs, we introduced the notationTk to indicate forward iteration in the graph, and for binary De
Bruijn graphs we wroteσ2,k for walking along edges in these graphs. SinceΦk is an isomorphism between the two graphs,
we can describe the relation betweenTk andσ(2,k) via Φk by

Tk ≡ Φ−1
k ◦σ2,k ◦Φk, (5)

whereΦ−1
k ({a,b}) = {Φ−1

k (a),Φ−1
k (b)}. This is whyΦk may be called a(k-dimensional) conjugacy map.

While the relation between De Bruijn graphs and the Collatz conjecture does not appear in the literature, these bijections
Φk have been explicitly studied before by Bernstein and Lagarias [3, 4, 13], but in a context different from graph isomor-
phisms. In [13, Table 2] these bijections were explicitly given as permutations on numbers between 0 and 2k −1, e.g., for
k= 3 we get the permutationΦ3 ≡ (1,5) cf. Figures 2, 3, and fork= 4 we get the permutationΦ4 ≡ (1,5)(2,10)(9,13) cf.
Figure 4.

Since the graphsC(k) andB(2,k) are isomorphic, they share several properties. As mentioned before, the line graph of a
k-dimensional binary Collatz graph is isomorphic to the(k+1)-dimensional binary Collatz graph, and the transpose graph
of C(k), obtained by reversing the direction of each edge, is again isomorphic toC(k). One other remarkable property is that
after exactlyk steps in these graphs, there is exactly one way to end up at anyvertex in the graph (including the vertex itself).
This can be expressed in terms of the adjacency matrix of the graph,Ak, by (Ak

k)i, j = 1 for all indicesi, j . This was previously
noted by Feix et al. [7], and Feix and Rouet [8]. Since every vertex has two outgoing edges, it follows that(Aℓ

k)i, j = 2ℓ−k

for ℓ≥ k. In particular, this value does not depend oni or j . Thus, if we start at any vertex in the graph, and takek or more
random steps in the graph, we can be anywhere with equal probability. So if we only know thek least significant bits of a

3



numbern, then we know absolutely nothing aboutTk(n). This also gives some intuition why the 3n+1 problem is so hard:
unless we know exactly what number we started out with, during each iteration we lose one bit of information about the
resulting number.

We are ultimately looking for more insight into the 3n+1 problem, but these graphs are not quite the same as the Collatz
graph. The vertices are congruence classes rather than numbers, and the graphs are finite. Still, there are relations between
these binary Collatz graphs and the regular Collatz graph. For instance, if we simply restrict the Collatz graph to the vertex
set{0, . . . ,2k −1}, we get a subgraph ofC(k). Also, each edge in the Collatz graph corresponds to a sequence of edges in
the graphsC(k), e.g., the edge 5→ 8 in the Collatz graph corresponds to the edges 1→ 0 in C(1) andC(2), the edge 5→ 0
in C(3), and the edge 5→ 8 in the graphsC(k) for k≥ 4. By considering the sequence of graphsC(k), and taking only those
edges that appear in infinitely many of these graphs, we exactly get the Collatz graph on the natural numbers (including 0).

3 The 2-adic Collatz graph and the 2-adic De Bruijn graph
While considering finite Collatz graphs on congruence classes leads to nicely structured graphs, we would like to know more
about the infinite Collatz graph on the natural numbers. Therefore it would be interesting to consider extensions of these
binary Collatz graphs and binary De Bruijn graphs to larger (infinite) vertex sets, by in some way lettingk go to infinity.
Then vertices may actually correspond to numbers rather than residue classes.

Although it is not exactly clear what “limk→∞C(k)” means, we can naturally find an answer to this question by taking
a detour along the De Bruijn graphs. First, we can easily extend the concept of De Bruijn graphs to infinite sequences of
symbols over a finite alphabet. We define theinfinite binary De Bruijn graphby the graphG= (V,E), where the vertex set is
defined byV = {b0b1 · · · : bi ∈ {0,1}}, and an edge runs from a vertexa0a1 · · · to a vertexb0b1 · · · if and only if ai+1 = bi ,
for eachi ∈ N. Similar to the previous section, to these infinite sequences we may associate numbers, by considering the
set of 2-adic integersZ2 [11]. We will identify sequencesb0b1 · · · with 2-adic integers∑∞

i=0 bi2i . With this labeling of the
vertices, we will also refer to the infinite binary De Bruijn graph as the 2-adic De Bruijn graph, or B(Z2). Note that in this
graph, each vertex has only one outgoing edge. So while the shift relation σ2,k for finite binary De Bruijn graphs, mapping
verticesm to its set of neighbors, is not a proper function, forward iteration in the 2-adic De Bruijn graph can be seen as a
proper function fromZ2 toZ2. We denote this function byσ2, and it satisfies

σ(n) =

{

(n−1)/2 if n is odd,

n/2 if n is even.
(6)

In terms of binary sequences, this functionσ2 simply removes the first bit of a number and shifts the ‘remaining’ bits one
position to the left. This function is therefore known in theliterature as theshift map[1, 3,4,12,22].

Before going back to the 3n+1 problem, consider the limit of the isomorphismsΦk, for k → ∞. Using the definition
Φk(n) = ∑k−1

i=0 xi(n)2i , we can just letk tend to infinity to obtainΦ(n) = ∑∞
i=0 xi(n)2i . In Z2, this is a convergent series, and

for anyn∈Z2, Φ(n) is a well-defined 2-adic integer. By investigatingΦ−1(B(Z2)) it then becomes clear what “limk→∞C(k)”
should be, asΦ−1(B(Z2)) corresponds exactly to the Collatz graph extended to the 2-adic integers. The extension of the
3n+1 functionT to the 2-adic integers was previously studied in [1,3,4,12,14,21,22,27]. We will refer to this graph, with
vertex setZ2 and edge set{n→ T(n) : n∈ Z2}, as the 2-adic Collatz graph, and denote it byC(Z2). The following theorem
is immediate.

Theorem 3.1. The graphs C(Z2) and B(Z2) are isomorphic, and the functionΦ : Z2 → Z2, defined by

Φ(n) =
∞

∑
i=0

xi(n)2
i , (7)

is an isomorphism from C(Z2) to B(Z2).

The functionΦ is known in the literature as theconjugacy map[3, 4,12,13,15,22,27], and it clearly satisfies

T ≡ Φ−1 ◦σ ◦Φ. (8)

For values ofn for which the behaviour of iterates ofn is completely known, one can easily computeΦ(n). For instance,
Φ(1) = 101010. . .=−1/3, Φ(5) =−13/3, and all numbers ending in the cycle{1,2} correspond to rational numbers in the
2-adic De Bruijn graph with denominator 3. The Collatz conjecture is equivalent to the statementΦ(N+)⊆

1
3Z\Z [13].

4 Structure inside the 2-adic Collatz graph
Let us now further investigate the graphC(Z2). First, the graphC(Z2) is not connected, and contains uncountably many
components. It contains two types of components: cyclic components, corresponding to cycles of the functionT; and
divergent components, which do not contain a cycle, but extend infinitely far in both directions.

The subgraph ofC(Z2) containing all divergent components, which we will denote by Cdiv(Z2), is arguably the least
interesting part of the graph. Although it contains uncountably many components, they are all pairwise isomorphic, andthe
vertices in each of these graphs are all indistinguishable,in the sense that the forward mapping is an automorphism. Figure 5
shows one of these components, containing an irrational 2-adic integerα = 10110· · · , and the corresponding component in
B(Z2).

Note that theoretically, it is possible that a divergent component arises from somerational 2-adic integer, i.e., a rational
number with an odd denominator. It has been conjectured [13,Periodicity Conjecture] that all rational 2-adic integersare
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Figure 5: A divergent component inC(Z2) with an irrational numberα = 10110. . . (left), and the corresponding component inB(Z2) with the irrational
numberΦ(α) = β = 10010. . . (right). Note that the first five bits ofβ follow from Φ5(10110) = 10010, or equivalently,Φ5(13) = 9.

part of a cyclic component, which can be formulated asΦ(Z2∩Q) = Z2∩Q. But so far, we only know for certain that cyclic
components must arise from rational numbers, i.e.,Φ(Z2∩Q)⊇ Z2∩Q [3, Corollary 1].

The other part of the graph, formed by the 2-adic integers that end in a cycle, has different properties. The number of
components is only countably infinite, since we can enumerate all possible cycles to find all components. For instance, there

are two components with a cycle of length 1 (containing the cycles 0
0
→ 0 and−1

1
→−1), and there is exactly one component

with a cycle of length 2, shown in Figure 6. The Collatz conjecture states that this latter component contains the entire
Collatz graph on the positive integers as a subgraph.

Writing Mk for the number of components inC(Z2) with a cycle of lengthk, by counting words of lengthk and computing
their cyclic orders, it follows that

2k = ∑
d|k

d Md. (9)

Applying Möbius inversion to the above, we obtain a direct formula forMk as

Mk =
1
k ∑

d|k

µ(d)2k/d =
1
n

2n+O(2n/2). (10)

The sequence(Mk)k≥1 = (1,2,1,2,3,6, . . .) has been encountered before in the context of the Collatz conjecture [14], but has
also been studied in different contexts [28] and is known as Moreau’s necklace-counting function [25]. What this function
M is actually counting is the number of Lyndon words of lengthk: strings of lengthk that are inequivalent modulo cyclic
rotations, and with period equal tok [18]. Somewhat surprisingly, a connection between Lyndon words and De Bruijn
sequences has been made before in the literature [9, 10]: onemay obtain a De Bruijn sequence of orderk by appropriately
concatenating Lyndon words of length some divisord of k. For instance, fork = 4, the Lyndon words of lengthsd|k are
given by 0,1,01,0001,0011,0111. By extending these words to words of length 4, we may order them lexicographically as
0(000),0001,0011,01(01),0111,1(111). Concatenating the Lyndon words in this order, we get the sequence

0|0001|0011|01|0111|1, (11)

which is indeed a De Bruijn sequence of order 4, corresponding to a Hamiltonian path in the graphB(2,4). This algorithm
is known in the literature as the FKM algorithm, after its authors Fredricksen, Kessler and Maiorana [9,10].

Another fascinating property of the cyclic part of the 2-adic Collatz graph, is the fact that there is a one-to-one correspon-
dence between cycles inC(Z2), and integer cycles of the family of 3n+b functionsT(3,b) defined by

T(3,b)(n) =

{

(3n+b)/2 if n is odd,

n/2 if n is even,
(12)

for oddb coprime to 3. More precisely, if there is a rational cycle inC(Z2) with all numbers having denominatorb, then this
cycle corresponds exactly to an integer cycle of the 3n+b problem. This follows from the fact thatT(n/b) = T(3,b)(n)/b.
This correspondence was previously noted by Lagarias [14].So together, the 3n+b problems on integers are very structured,
as we know that every cycle (Lyndon word) corresponds to exactly one valueb, and finding theb associated to a given
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Figure 6: The components corresponding to the cycle(01), in C(Z2) (left) and inB(Z2) (right). The Collatz conjecture states that the component on the left
contains all positive integers.
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the large graph can be partitioned into these smaller graphs. Dotted lines correspond to graph inclusions.

Lyndon word is also not so hard. But when we try to find all cycles associated to a valueb, we get stuck. Note that solving
this problem would solve the Collatz conjecture, and much more.

Going back to the complete 2-adic Collatz graphC(Z2), we saw that we may divide the graph in two parts: a cyclic part,
and a divergent part. Furthermore, we know that all cycles must correspond to rational numbers, but we do not know whether
all rational numbers also correspond to cycles. So theoretically, we have three different types of components: cyclic,rational
components; divergent, rational components; and divergent, irrational components. We will denote these parts of the graph
with Ccyc(Z2∩Q),Cdiv(Z2∩Q), andC(Z2\Q) respectively. Each of these parts of the graph corresponds to a part ofB(Z2),
under the mapΦ.

The complete structure ofC(Z2) and its image underΦ in B(Z2) are summarized in Figure 7. The periodicity conjecture
[13] states that the middle part,Cdiv(Z2∩Q), is empty. If this is true, then the picture somewhat simplifies, as then we would
getΦC(Z2∩Q) = B(Z2∩Q) andΦC(Z2\Q) = B(Z2\Q).

The challenge of the Collatz conjecture now can be seen as a study in more detail of the embedding ofC(N+) into
C(Z2). The idea is thatC(N+) is a rather chaotic object, which lies somehow inside the beautifully structured objectC(Z2).
The latter graph is isomorphic via the conjugacy mapΦ to B(Z2), which indeed has a rich and well understood structure.
Similarly other interesting subgraphs ofC(Z2) can viaΦ be embedded intoB(Z2).

5 Generalizations and the p-adic De Bruijn graphs

5.1 an+b problems and the 2-adic De Bruijn graph
In the previous section we briefly mentioned a generalization of the 3n+1 functionT to 3n+b functionsT(3,b). A frequently
considered further generalization of these functions is the family ofan+b functions[1,3,4,12,14,21,22,27]. For odda,b∈Z,
we define thean+b functionT(a,b) by

T(a,b)(n) =

{

(an+b)/2 if n is odd,

n/2 if n is even.
(13)

For a = 3, we expect that no divergent paths exist, since with equal ‘probability’, we either multiply a number by 1/2 or
(roughly) by 3/2. So on average, the numbers increase by a factor

√

3/4< 1. Fora≥ 5, this heuristic suggests a different
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behaviour. For instance, for the 5n+1 problem and the 7n+1 problem, we expect most paths to diverge [6,15].
Although in this sense, thean+b problems behave differently from the 3n+1 problem, the story described above related

to De Bruijn graphs applies to all of these problems as well. DefiningC(a,b)(·) similarly as the Collatz graphsC(·) but for

thean+b functionT(a,b), and definingx(a,b)i (n) analogously toxi(n), we obtain the following result.

Theorem 5.1. For any k≥ 1, the graphs C(a,b)(k) and B(2,k) are isomorphic, and the functionΦ(a,b)
k : {0, . . . ,2k −1} →

{0, . . . ,2k−1}, defined by

Φ(a,b)
k (n) =

k−1

∑
i=0

x(a,b)i (n)2i , (14)

is an isomorphism between C(a,b)(k) and B(2,k). Furthermore, the graphs C(a,b)(Z2) and B(Z2) are isomorphic, and the
an+b conjugacy mapΦ(a,b) : Z2 → Z2, defined by

Φ(a,b)(n) =
∞

∑
i=0

x(a,b)i (n)2i , (15)

is an isomorphism from C(a,b)(Z2) to B(Z2), satisfying

T(a,b) ≡ (Φ(a,b))−1 ◦σ2 ◦Φ(a,b). (16)

For example, for the 5n+1 problem andk= 3, we get the isomorphismΦ(5,1)
3 ≡ (1,3)(2,6)(5,7).

It is of interest to observe that for anyan+ b problem, the binary modular graphs that appear are always isomorphic
to the same binary De Bruijn graphs. Only the labeling of the graphs depends on the choice ofa andb. In other words,
the binary and 2-adic De Bruijn graphs themselves do not contain much information anymore about the generalized Collatz
problems. The wanted information is contained in the isomorphisms (the labelings of the graph edges, the conjugacy maps),
which are different for eacha,b, and not well understood at all. That these maps really are different can be seen by noticing
that the conjugacy map for the 3n+1 function mapsC(N+) into (most probably) one cyclic connected component inB(Z2),
while for the 5n+1 function the image ofC(5,1)(N+) under its conjugacy map ends up in at least 3 cyclic components, but
(most probably) in infinitely many components, most of whichare divergent. WhileCdiv(Z2∩Q) is conjectured to be empty,
(C(5,1))div(Z2∩Q) is conjectured to have infinitely many distinct components.This may be seen as an illustration of the
profound difficulty of the Collatz conjecture and its siblings.

Note that fora= 1 andb=−1, the isomorphismΦ(1,−1) is extremely well understood, sinceT(1,−1) ≡ σ2 andΦ(1,−1) ≡
id, the identity map. So one could also writeB(2,k) =C(1,−1)(k) andB(Z2) =C(1,−1)(Z2).

5.2 p-ary functions and the p-adic De Bruijn graphs
A further generalization of the functionT was considered in, e.g., [7, 8, 19–21, 27]. For some appropriately chosen integers
ai andbi , let f be defined by

f (n) =



















(a0n+b0)/p if n≡ 0 (mod p),

(a1n+b1)/p if n≡ 1 (mod p),

. . . . . .

(ap−1n+bp−1)/p if n≡ p−1 (mod p).

(17)

For instance, a problem Lagarias attributes to Collatz [13]concerns the functionf0 defined by

f0(n) =











2n/3 if n≡ 0 (mod 3),

(4n−1)/3 if n≡ 1 (mod 3),

(4n+1)/3 if n≡ 2 (mod 3).

(18)

Iterating these functions leads to similar behaviour as thean+b problems. In this case, when considering graphs on congru-
ence classes modulopk, we find a relation withp-ary andp-adic De Bruijn graphs as follows.

Theorem 5.2. For any k≥ 1, the graphs C( f )(p,k) and B(p,k) are isomorphic, and the functionΦ( f )
p,k : {0, . . . , pk −1} →

{0, . . . , pk−1}, defined by

Φ( f )
p,k(n) =

k−1

∑
i=0

x( f )
i (n)pi , (19)

is an isomorphism between C( f )(p,k) and B(p,k). Furthermore, the graphs C( f )(Zp) and B(Zp) are isomorphic, and the

functionΦ( f )
p : Zp → Zp, defined by

Φ( f )
p (n) =

∞

∑
i=0

x( f )
i (n)pi , (20)

is an isomorphism from C( f )(Zp) to B(Zp), satisfying

f ≡ (Φ( f )
p )−1 ◦σp ◦Φ( f )

p . (21)

As an example, Figure 8 shows the 2-dimensional ternary graph corresponding to the functionf0 in Equation (18), and
the corresponding ternary De Bruijn graph.
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Figure 8: The ternary modular graph of dimension 2 corresponding to the functionf0 in (18) and the ternary De Bruijn graph of dimension 2,B(3,2). The

corresponding isomorphismΦ( f0)
3,2 of order 7 is given by the permutationΦ( f0)

3,2 ≡ (1,4,5,7,3,2,6).
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