
COUNTING INEQUIVALENT MONOTONE BOOLEAN

FUNCTIONS

TAMON STEPHEN AND TIMOTHY YUSUN

Abstract. Monotone Boolean functions (MBFs) are Boolean functions
f : {0, 1}n → {0, 1} satisfying the monotonicity condition x ≤ y ⇒
f(x) ≤ f(y) for any x, y ∈ {0, 1}n. The number of MBFs in n variables
is known as the nth Dedekind number. It is a longstanding compu-
tational challenge to determine these numbers exactly – these values
are only known for n at most 8. Two monotone Boolean functions are
inequivalent if one can be obtained from the other by renaming the vari-
ables. The number of inequivalent MBFs in n variables was known only
for up to n = 6. In this paper we propose a strategy to count inequiva-
lent MBF’s by breaking the calculation into parts based on the profiles
of these functions. As a result we are able to compute the number of
inequivalent MBFs in 7 variables. The number obtained is 490013148.

1. Introduction

A Boolean function on n variables (BF) is a function f : {0, 1}n → {0, 1}.
A monotone Boolean function (MBF) additionally satisfies the condition
x ≤ y ⇒ f(x) ≤ f(y), for any x, y ∈ {0, 1}n. We write x ≤ y if xi ≤ yi
for all i = 1, 2, . . . , n, and x < y if x ≤ y and xi < yi for some i. A BF is
monotone if and only if it can be written as a combination of conjunctions
and disjunctions only.

Since each input state in {0, 1}n has two possible output states, there are
a total of 22

n
Boolean functions on n variables. On the other hand, no exact

closed form is known for the number of monotone Boolean functions on n
variables. This number is usually denoted by D(n), which is also called the
nth Dedekind number. These numbers are named after Richard Dedekind
who defined them in [Ded97]. The first few values are given in Table 1,
taken from [Slo11]. Currently, only values of D(n) up to n = 8 are known.

Kisielewicz gives in [Kis88] a logical summation formula for D(n), however
performing the computation using his summation has the same complexity
as brute force enumeration of D(n). (See [Kor03], e.g.) There are some
asymptotic results concerning the behavior of D(n), one of the earliest of
which was a result of Kleitman in 1969, that log2D(n) ∼

(
n
bn/2c

)
[Kle69].

So far, the most accurate one is given by Korshunov in [Kor03], given in
Table 2.

2010 Mathematics Subject Classification. Primary 68W05; Secondary 06E30, 05A05.
Key words and phrases. Boolean functions, Dedekind numbers.

1

ar
X

iv
:1

20
9.

46
23

v1
 [

cs
.D

S]
 2

0
Se

p
20

12

2 TAMON STEPHEN AND TIMOTHY YUSUN

n D(n) Source
0 2

Dedekind, 1897
1 3
2 6
3 20
4 168
5 7 581 Church, 1940 [Chu40]
6 7 828 354 Ward, 1946 [War46]

7 2 414 682 040 998
Church, 1965 [Chu65]

(see also [BK76])

8 56 130 437 228 687 557 907 788
Wiedemann, 1991 [Wie91]

(see also [FMSS01])

Table 1. Known Values of D(n), A000372

D(n) ∼ 2(n
n/2) · exp

[(
n

n
2
−1
) (

2−n/2 + n22−n−5 − n2−n−4
)]
, for even n

D(n) ∼ 2(n
(n−1)/2)+1 · exp

[(
n

n−3
2

) (
2(−n−3)/2 − n22−n−5 − n2−n−3

)
+
(

n
n−1
2

) (
2(−n−1)/2 − n22−n−4

)]
, for odd n

Table 2. Korshunov’s Asymptotics

1.1. Inequivalent MBFs. We define an MBF f to be equivalent to another
MBF g if g can be obtained from f by a renaming of the variables. For
example, the function f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) is equivalent to
g(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3), since interchanging x1 and x2 sends f
to g. We write this as f ∼ g. For brevity, from here on we write xi ∧ xj as
xixj .

Let R(n) be the number of equivalence classes defined by “∼” among
monotone Boolean functions on n variables. As with D(n), no closed form is
known for R(n), and in fact only the values up to n = 6 have been computed.
These appear to have been obtained by the straightforward method of listing
all monotone Boolean functions on n variables and then sorting them into
equivalence classes. The known values from [Slo11] are shown in Table 3.

Example 1.1. The five functions in R(2) are: f = 0, f = 1, f = x1,
f = x1∨x2, and f = x1x2. The functions in D(2) are exactly these functions
plus f = x2, which is equivalent to f = x1.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 3

n R(n)
0 2
1 3
2 5
3 10
4 30
5 210
6 16 353

Table 3. Known Values of R(n), A003182

1.2. Terminology and Elementary Facts. Define a minimal term of an
MBF f to be an input x ∈ {0, 1}n such that f(x) = 1 and f(y) = 0 if
y < x. The minimal terms of a monotone Boolean function represent the
“smallest” sets where the function equals one – any input below x evaluates
to zero, and everything above evaluates to one by virtue of monotonicity.
For example, the function f(x1, x2, x3) = x1 ∨ x2x3 evaluates to one at
(1, 0, 0) and (0, 1, 1), as well as at all vectors above (1, 0, 0) and (0, 1, 1), and
evaluates to 0 at all other vectors. Indeed, each MBF can be written as a
disjunction of clauses, each representing one of its minimal terms.

MBFs can be classified according to the number of minimal terms they
have. Call Dk(n) the number of monotone Boolean functions on n variables
with k minimal terms. Kilibarda and Jovovic [KJ03] derive closed form
expressions forDk(n) for fixed k = 4, 5, . . . , 10, these sequences are sequences
A051112 to A051118 of [Slo11].

A truth table for a Boolean function is a row of zeros and ones which
encodes the outputs of the function corresponding to every possible input
state. To illustrate, the function on three variables f(x1, x2, x3) = x1∨x2x3
has minimal terms {{1}, {2, 3}}, and it has the following truth table:

variables set to 1 x1, x2, x3 x2, x3 x1, x3 x3 x1, x2 x2 x1 none
output states 1 1 1 0 1 0 1 0

Table 4. Truth table for the function f(x1, x2, x3) = x1 ∨ x2x3

Note that the input states on the top row are arranged in a reverse colex-
icographic (or colex) order on {0, 1}3, defined as x < y if x 6= y and xk < yk
where k = max{i : xi 6= yi}. Fixing this order, we write f as 11101010. In
general, any Boolean function on n variables can be written as a 0-1 string
of length 2n where each entry corresponds to an input state; we use this
convention throughout this paper. The choice for the ordering has the nice
property that the first 2n−1 of its entries all involve setting the variable xn
to 1, and the second half has inputs with xn = 0.

4 TAMON STEPHEN AND TIMOTHY YUSUN

The truth table form is the most compact way to represent general Boolean
functions. For monotone Boolean functions, both the truth table and the
minimal terms representation are useful for our purposes.

Example 1.2. The colexicographic order for two variables is {1, 2} > {2} >
{1} > {}. The functions in D(2), written in truth table form are {1111,
1110, 1100, 1010, 1000, 0000}.

1.3. Motivation. Monotone Boolean functions are interesting because many
mathematical objects can be represented by MBFs. For instance, there is a
one-to-one correspondence between MBFs in D(n) and antichains in the set

2[n], that is, pairwise incomparable subsets of the power set of {1, 2, . . . , n}.
Specifically, the set of minimal terms of an MBF in D(n) is an antichain in

2[n]. Since by Sperner’s Theorem, any antichain on the n-set can have at
most

(
n
bn/2c

)
elements, we have that any n-variable MBF can have at most(

n
bn/2c

)
minimal terms.

The one-to-one correspondence between n-variable MBFs and Sperner
hypergraphs is also well-known. In particular, each minimal term of an
MBF maps to a hyperedge in the corresponding hypergraph, and because of
pairwise incomparability, the hypergraph thus exhibits the Sperner property,
that is, no hyperedge contains another.

Some other fields in which monotone Boolean functions appear include
lattice theory [SSGC95], nonlinear signal processing [SSGC95], coding the-
ory [IKN07], computational learning theory [Shm], game theory [RP11], and
computational biology ([KG04],[HKS08]).

For a comprehensive discussion of Boolean functions, see the recently-
published book by Crama and Hammer [CH11].

2. Computational Strategies

2.1. Profiles of MBFs. It is natural to refine the classification of monotone
Boolean functions by number of minimal terms, and consider how many
elements are contained in each of these terms. We define the notion of a
profile formally as given in [Eng97], and introduce some notation:

Definition 2.1 (Profile of an MBF). Given an n-variable MBF f where
f 6≡ 1, the profile of f is a vector of length n (a1, a2, . . . , an), where the ith
entry is equal to the number of minimal terms of f which are i-sets.

Example 2.2. The MBF 11111100 has minimal terms {2}, {3}, and profile
(2, 0, 0), while the MBF 11111000 has minimal terms {1, 2}, {3}, and profile
(1, 1, 0).

Definition 2.3. Given profile vector (a1, a2, . . . , an), define (a1, a2, . . . , an)D
to be the number of monotone Boolean functions on n variables with pro-
file vector (a1, a2, . . . , an). Similarly define (a1, a2, . . . , an)R for inequivalent
monotone Boolean functions on n variables.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 5

Note that the number of variables n is implicit in the profile vector –
it is just the length of the vector. Some relations between the profiles are
described and proven in Lemma 2.4.

Lemma 2.4. Assume that all profile vectors pertain to MBFs on n variables,
unless otherwise stated.

(A): (0, 0, . . . , ai, . . . , 0)D = (0, 0, . . . ,
(
n
i

)
− ai, . . . , 0)D.

(B): If a1 > 0, then an = 0 and
(a1, a2, . . . , an−1, an)D = (a1 − 1, a2, . . . , an−1)Dn−1.

(C): (a1, a2, . . . , an−2, an−1, an)D = (an−1, an−2, . . . , a2, a1, an)D.

All these statements hold true when D is replaced by R.

Proof. The proof of each claim rests on the fact that there is a one-to-
one correspondence between functions of the first type and functions of the
second type, for the purposes of counting both D(n) and R(n).

(A): Given an MBF with exactly ai i-sets as minimal terms, we can derive
another MBF with minimal terms exactly the

(
n
i

)
− ai i-sets which were

not taken in the first MBF. Furthermore, the images of any two equivalent
functions under this correspondence will also be equivalent, under the same
permutation.

(B): If an n-variable MBF has a singleton set, say {n}, as a minimal
term, then we know that the rest of its minimal terms cannot contain the
element n. Hence an = 0. In addition, removing the term {n}, we are left
with an (n− 1)-variable MBF, with the profile (a1 − 1, a2, . . . , an−1).

(C): If an = 1, then {1, 2, . . . , n} is the only minimal term. This implies
that all the other ai’s are zero, and hence the claim follows trivially.

If an = 0, assume that the minimal terms of an MBF f with the given
profile are A1, A2, . . . , Ak. We know that none of the Ai’s are comparable,
so it should follow that none of the sets [n] − A1, [n] − A2, . . . , [n] − Ak

must be comparable as well. Hence the collection {[n] − Aj}1≤j≤k is the
set of minimal terms of an MBF g where the number of i-sets is equal
to the number of (n − i)-sets in f . This proves that the profile of g is
(an−1, an−2, . . . , a2, a1, an). �

Lemma 2.4 is very useful in reducing the amount of computation that
needs to be done to compute D(n) or R(n). For instance, when counting
R(7), instead of counting all (0, 0, k, 0, 0, 0, 0) for k = 1 to 35, we count
the profiles up to k = 17. Part (B) enables us to refer back to R(6) when
considering profiles with a nonzero entry in the first position. The most
useful is (C), which effectively cuts all computation time in half.

2.1.1. Generating Profiles. Sequence A007695 on the OEIS gives the number
of profile vectors for any n, and also outlines an algorithm that can be used to
compute this number [Slo11]. We modify this algorithm to actually output
the profiles that are being counted. We present this algorithm as Algorithm
1.

6 TAMON STEPHEN AND TIMOTHY YUSUN

Algorithm 1: Generating all profiles of MBFs on n variables.

Input: n
Output: P (n), the list of profiles of MBFs on n variables

initialize C := zeros
(
n+ 1,

(
n
bn/2c

)
+ 1
)

;

K := C, C(0, 0) = 1, C(0, 1) = 1, s = 2 ;

initialize P (n) := zeros (n+ 1, n) ;

set the first column of P (n) to the vector [0 1 2 · · · n]T ;

total := n+ 1 ;

for r = 1 to n do
d← s, k ← r, j ← 0, s← 0 ;

xmax =
(
n
r

)
;

for x = 0 to xmax do

10 if x ≥
(
k
r

)
then

k ← k + 1 ;

end

if x = 0 then
K(r, x) = 0;

else

16 K(r, x) = K(r − 1, x−
(
k−1
r

)
) +

(
k−1
r−1
)

;

end

18 while j < K(r, x) do
d← d− C(r − 1, j) ;

j ← j + 1 ;

end

C(r, x) = d;

s← s+ d;

end

if r 6= 1 then
26 recent = last C(r, 0)− C(r − 1, 0) rows of P (n) ;

for x = 1 to xmax do
28 candidates = rows of recent with (r − 1)-st entry at least

K(r, x). ;

Subtract K(r, x) from the (r − 1)-st column of candidates ;

Add x to the r-th column of candidates ;

Append candidates to P (n) ;

Update total ← total + size(candidates). ;

end

end

end

Output P (n). ;

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 7

Algorithm 1 uses a dynamic programming strategy, where the matrix
K(r, x) is built up from the previous values K(r−1, x). In fact, the (r, x)-th
entry of the matrix K is a strict lower bound on the number of (r − 1)-sets
that any family of x r-sets can contain. We use this information to generate
the list of profiles P (n). We prove these facts in Section 4.

Using the algorithm, we can compute the number of profiles of MBFs
on n variables, which is one less than Sequence A007695 on the OEIS, to
account for the all-ones function. We show this in Table 5.

n Number of profiles n Number of profiles
0 1 5 95
1 2 6 552
2 4 7 5460
3 9 8 100708
4 25 9 3718353

Table 5. Number of profiles for each n, from n = 0 to n = 9.

2.1.2. Using Profiles to Generate Functions. A monotone Boolean function
can be written uniquely as the disjunction of its minimal terms. Thus we
can generate all MBFs inductively beginning with profiles that have a single
non-zero entry. These have a simple structure - each consists of k subsets
of size i, where i is the index of the non-zero entry and k is the value of
that entry. Suppose now there is a second non-zero entry with index j.
If that entry is 1, we can generate all functions for this profile by taking
disjunctions between the functions in the first profile and all j-sets which
are incomparable to each of them. If the jth entry is larger than 1, we
just repeat the same steps until we generate the desired list of functions.
Hence a typical computation might start with the profile (0, 7, 0, 0, 0, 0, 0)
and continue on to (0, 7, 1, 0, 0, 0, 0), (0, 7, 2, 0, 0, 0, 0), etc. These lists are
then in turn used as starting points for profiles with three non-zero terms,
and so on.

Since we are computing inequivalent MBFs, we eliminate equivalent func-
tions after each profile is generated. To do this we generate for each function
obtained all 5040 equivalent functions, and take the“least representative,”by
which we mean the lexicographically smallest function. This can be imple-
mented quickly by keeping only the least representative as each permutation
of the original MBF is generated.

With the goal of enumerating R(7), we use Lemma 2.4 to eliminate profiles
we do not have to compute. However, we have to compute some profiles more
than once, as some profiles whose R-value can be obtained by symmetry are
used as intermediate steps to compute other profiles. More details of the
computation can be found in Section 3.

The largest profile for R(7) computed is that of (0, 0, 7, 7, 0, 0, 0), having
5443511 functions. For further illustration, we give in Table 6 the list of

8 TAMON STEPHEN AND TIMOTHY YUSUN

profiles in R(5) and the number of functions in each one. Note the list
does not include the all-ones function, which does not have a corresponding
profile (by Definition 2.1).

Profile # Profile # Profile # Profile #
(0,0,0,0,0) 1 (0,9,0,0,0) 1 (1,0,3,0,0) 1 (0,2,0,1,0) 1
(1,0,0,0,0) 1 (0,10,0,0,0) 1 (0,1,3,0,0) 6 (0,3,0,1,0) 1
(2,0,0,0,0) 1 (0,0,1,0,0) 1 (0,2,3,0,0) 6 (0,4,0,1,0) 1
(3,0,0,0,0) 1 (1,0,1,0,0) 1 (0,3,3,0,0) 4 (0,0,1,1,0) 1
(4,0,0,0,0) 1 (2,0,1,0,0) 1 (0,4,3,0,0) 1 (0,1,1,1,0) 1
(5,0,0,0,0) 1 (0,1,1,0,0) 2 (0,0,4,0,0) 6 (0,2,1,1,0) 1
(0,1,0,0,0) 1 (1,1,1,0,0) 1 (1,0,4,0,0) 1 (0,0,2,1,0) 2
(1,1,0,0,0) 1 (0,2,1,0,0) 4 (0,1,4,0,0) 6 (0,1,2,1,0) 1
(2,1,0,0,0) 1 (1,2,1,0,0) 1 (0,2,4,0,0) 4 (0,0,3,1,0) 3
(3,1,0,0,0) 1 (0,3,1,0,0) 6 (0,3,4,0,0) 1 (0,1,3,1,0) 1
(0,2,0,0,0) 2 (1,3,1,0,0) 1 (0,4,4,0,0) 1 (0,0,4,1,0) 2
(1,2,0,0,0) 2 (0,4,1,0,0) 6 (0,0,5,0,0) 6 (0,0,5,1,0) 1
(2,2,0,0,0) 1 (0,5,1,0,0) 4 (0,1,5,0,0) 4 (0,0,6,1,0) 1
(0,3,0,0,0) 4 (0,6,1,0,0) 2 (0,2,5,0,0) 1 (0,0,0,2,0) 1
(1,3,0,0,0) 3 (0,7,1,0,0) 1 (0,0,6,0,0) 6 (0,1,0,2,0) 1
(2,3,0,0,0) 1 (0,0,2,0,0) 2 (0,1,6,0,0) 2 (0,0,1,2,0) 1
(0,4,0,0,0) 6 (1,0,2,0,0) 1 (0,0,7,0,0) 4 (0,0,2,2,0) 1
(1,4,0,0,0) 2 (0,1,2,0,0) 4 (0,1,7,0,0) 1 (0,0,3,2,0) 1
(0,5,0,0,0) 6 (1,1,2,0,0) 1 (0,0,8,0,0) 2 (0,0,0,3,0) 1
(1,5,0,0,0) 1 (0,2,2,0,0) 7 (0,0,9,0,0) 1 (0,0,1,3,0) 1
(0,6,0,0,0) 6 (0,3,2,0,0) 6 (0,0,10,0,0) 1 (0,0,0,4,0) 1
(1,6,0,0,0) 1 (0,4,2,0,0) 4 (0,0,0,1,0) 1 (0,0,0,5,0) 1
(0,7,0,0,0) 4 (0,5,2,0,0) 1 (1,0,0,1,0) 1 (0,0,0,0,1) 1
(0,8,0,0,0) 2 (0,0,3,0,0) 4 (0,1,0,1,0) 1 TOTAL 209

Table 6. Number of inequivalent five-variable MBFs by profile.

As a byproduct of the calculations done for R(7), we also extended the
known values for the sequences Rk(n) included in the OEIS. The correspond-
ing sequences for Dk(n) are A051112 to A051118 [Slo11]. The new values
that we have computed are included in Table 7.

2.1.3. Computing Bounds on R(n) and D(n). Since each MBF can have at
most 7!−1 = 5039 other functions equivalent to it, we know that D(7)/7! ∼
479 million is a lower bound for R(7). In fact, we can increase the lower
bound by looking for highly symmetric functions. For instance, the MBF
with minimal term {1} is equivalent to only six other MBFs, all with one
singleton set as the only minimal term. Hence this equivalence class only
has 7 functions, and increases the lower bound we have by 5040−7

5040 . If we do
this for all equivalence classes of functions with at most two minimal terms,

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 9

k Rk(5) Rk(6) Rk(7)

2 13 22 34
3 30 84 202
4 49 287 1321
5 48 787 8626
6 34 1661 50961
7 18 2630 253104
8 7 3164 1025322
9 2 2890 3365328
10 2 2159 9005678
11 0 1327 19850932

Table 7. Partial list of values Rk(n), values in boldface were
not known to us.

and some simple equivalence classes with three and four minimal terms, we
are able to increase this lower bound by around 500.

This raises the interesting question of what the functions in high-cardinality
equivalence classes look like, that is, functions which have few or no sym-
metries. For n ≤ 5 functions with no symmetries are quite rare, however it
appears that they already are the overwhelming majority when n = 7. The
number of inequivalent n-variable MBFs that have no symmetries, starting
from n = 1, is the sequence 0, 1, 0, 0, 7, 7281.

3. Implementation Details

All computations were done on MATLAB, a high-level scientific com-
puting language [MAT]. We used three computational clusters: the Optima
cluster at SFU Surrey, the IRMACS computational cluster, and the bugaboo
cluster of Westgrid under Compute Canada. We use MATLAB for building
a prototype because it is easy to get started, and it is built for handling
large vectors and matrices. It has many built-in functions that work well
with the types of lists we are generating, and if desired, further work can be
transported over to other programming languages.

In MATLAB, we represent MBFs as their truth table forms, 1 × 2n row
vectors. This representation also lends itself well to using 32-bit integers
instead of long 0-1 strings. Given an MBF of length 2n, we partition the
zeros and ones into blocks of length 32, which we consider as a binary number
(a0a1a2 . . . a31)2, and which we then convert into decimal, by computing∑3

k=0 1ak2k. If n is smaller than 5, the truth table form has less than 32
entries, and we pad with zeros on the right. For n ≥ 5, an n-variable MBF
can be written as 2n−5 32-bit integers.

Example 3.1. The six-variable MBF

f = 1111111011111110111111001000000011111010111010101111100000000000

10 TAMON STEPHEN AND TIMOTHY YUSUN

has 64 entries, so it is divided into two blocks of 32:

11111110111111101111110010000000→ 20938623

11111010111010101111100000000000→ 2053983

hence the 32-bit integer representation of f is (20938623, 2053983). Its minimal
terms are {1, 2, 4}, {3, 4}, {1, 5}, {2, 3, 5}, {1, 2, 3, 6}, {2, 4, 6}, {2, 5, 6}, and {3, 5, 6}.

The algorithms we use involve building and frequently referencing a very
long list of functions. To do this efficiently we use a hash table and a
nonlinear hashing function on the 32-bit representations to perform checks
and lookups quickly. In particular, we use a polynomial hash function,
which acts on the four integers (say b1, b2, b3, and b4) by repeatedly adding
a number α > 2 modulo a prime p, and multiplying by the next component.
This can be written as b1(α + b2(α + b3(α + b4))) where all operations are
done modulo p. In our computations, using hash tables for list handling
instead of binary search led to a speedup of a factor of 4 for lists of size
40000, and a factor of 8 for lists of size 1500000.

The list of functions for each profile is generated from the list for a pro-
file which differs from it by one in a single coordinate. This allows many
possibilities for traversing this lattice of profiles. Our general strategy is as
follows: first, all profiles with a nonzero 1st or 6th entry, by Lemma 2.4
can be obtained from the corresponding profile in R(6). Next, we consider
the remaining profiles that have a nonzero 2nd or 5th entry. It is faster to
generate profile (0, 1, 8, 8, 0, 0, 0)R from (0, 1, 8, 7, 0, 0, 0)R rather than from
(0, 0, 8, 8, 0, 0, 0)R because the 2-set in the profile (0, 1, 8, 7, 0, 0, 0) substan-
tially reduces the number of comparable terms we need to consider when
taking disjunctions: any 2-set is comparable to five 3-sets and ten 4-sets.
Note that this also implies that the largest profiles we encounter are those
solely containing 3-sets and 4-sets. In fact, the functions in these profiles
account for 366689638 out of the total of 490013148 for R(7), or 74.8%.

In the computation, we generated the list of functions for profiles with
exactly one nonzero entry first, then proceeded through the list of profiles
with the above considerations as a general guide. Note that the branches of
computation are independent of each other and so multiple calculations can
be made to run concurrently. Also many profiles were computed more than
once, either as an intermediate step with the goal of computing a larger pro-
file, or as a redundancy check. For example, the profile (0, 0, 3, 4, 0, 0, 0)R is
computed both by a process generating profiles of the form (0, 0, 3, x, 0, 0, 0)R
and another one generating profiles of the form (0, 0, x, 4, 0, 0, 0)R. We saved
lists of functions to disk for the larger profiles generated to have various
points to start further computations or recover (as some jobs lasted several
weeks and were susceptible to system shutdowns, etc.).

All results of computations are saved by the script files as text files, which
include the numbers obtained and the computation time (Fig. 1). To keep
track of the data, we save all the results in a database together with the

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 11

computation times, with a running total (Fig. 2). At the end we obtain the
number R(7) = 490013148.

Figure 1. Sample output log of the computation

Figure 2. Portion of database where results are stored

To ensure accuracy we wrote code that outputs the minimal terms of
any input function. We then checked the minimal terms of around 10,000
functions from each profile in a random sample. Moreover, each iteration of
the code also includes a check to ensure that the functions in the input file
indeed correspond to the profile we start with. We also tested our algorithm
for n = 6 and obtained the correct number for both D(6) and R(6). As a
final check, we observe that the number obtained is higher than the lower
bound of 479 million discussed in Section 2. Our MATLAB code and the
database shown in Figure 2 are available on the website [Yus12].

4. Proof of Algorithm 1

Here we present a proof that Algorithm 1 is correct. First, we prove
that the rth row of the matrix K generated as an intermediate step in the
algorithm contains lower bounds on the number of comparable (r− 1)-sets.
Then, we show that the output P (n) of the algorithm contains all profiles
of n-variable MBFs.

Lemma 4.1. For 0 < r ≤ n and 0 < x ≤
(

n
bn/2c

)
, the (r, x)-th entry of the

matrix K output by Algorithm 1 encodes the smallest number of (r− 1)-sets
that are comparable to any of x number of r-sets.

12 TAMON STEPHEN AND TIMOTHY YUSUN

Proof. Assume first that r = 1, or r − 1 = 0. Since K(0, x) = 0 for any
x > 0, Line 16 of the algorithm gives

K(r, x) = K(0, x− k − 1) +

(
k − 1

0

)
⇒ K(r, x) = 1.

This is correct since the empty set is comparable to any number of singleton
sets, and there is only one empty set.

Now assume that r > 1. Again, Line 16 of the algorithm gives the recur-
sion step: K(r, x) = K(r−1, x−

(
k−1
r

)
) +
(
k−1
r−1
)
. We consider two cases, one

where the value of k was updated in Line 11 and one where it was not.
Case 1: If k was updated in Line 10, then x is exactly equal to

(
k
r

)
before

k was incremented by 1. This means, at Line 16, x is equal to
(
k−1
r

)
, and

hence K(r − 1, x −
(
k−1
r

)
) = K(r − 1, 0) = 0. Now if we have the exact

collection U =
({1,2,...,k−1}

r

)
, then the number of (r−1)-sets contained in our

collection of x r-sets must be equal to
(
k−1
r−1
)
, counting all (r − 1)-subsets of

[k − 1] = {1, 2, . . . , k − 1}.
Since any other collection of x r-sets must contain at least k elements,

then the number we obtained when we considered U =
({1,2,...,k−1}

r

)
must

have been the lower bound for any such collection. Thus, K(r, x) = K(r −
1, x−

(
k−1
r

)
) +
(
k−1
r−1
)

must be the lower bound for the number of (r− 1)-sets
contained in x r-sets.

Case 2: If k was not updated in Line 10, then
(
k−1
r

)
< x <

(
k
r

)
. Consider

the family of sets A = U ∪ V where U is the set of all r-subsets of [k − 1],

and V contains x−
(
k−1
r

)
other sets, all of which contain the element k.

The number of (r − 1)-sets contained in U is equal to
(
k−1
r−1
)
, that is, all

possibilities of taking r − 1 elements from [k − 1].
As for V, since U already contains all (r−1)-subsets of [k−1], we will only

count the number of (r−1)-sets comparable to V which contain the element
k. By removing k from all of the sets in V, we can see that this number is
bounded below by the number of (r− 2)-sets that must be contained in any

collection of x−
(
k−1
r

)
(r−1)-sets, or by induction, the value K(r−1,

(
k−1
r

)
).

Hence, the number of (r − 1)-sets that are necessarily contained in any

collection of x r-sets must be bounded below by K(r, x) = K(r−1,
(
k−1
r

)
)+(

k−1
r−1
)
, completing the proof. �

Theorem 4.2. The list P (n) in Algorithm 5 contains all profiles of mono-
tone Boolean functions on n variables.

Proof. We perform induction on the rightmost nonzero entry in a profile
vector.

When P (n) is initialized, the empty profile and all profiles with a single
nonzero entry in the first position are included. This is just the collection of

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 13

all MBFs with only 1-sets as minimal terms, and there are n such profiles
as there are n such sets in 2[n].

Now assume that P (n) contains all profiles with the rightmost nonzero
entry in the r-th position.

First of all, note that when x = 0, the conditional in Line 18 fails, and so
C(r, 0) = d, which was most recently updated to the value of s, the running
total of all profiles so far. This means that C(r, 0)−C(r−1, 0) is the number
of new profiles added when iterating in the (r−1)-st row. From Line 26, we
see that recent contains exactly the profiles with rightmost nonzero entry
in the (r − 1)-st position.

The loop starting at Line 28 looks at K(r, x), which by Lemma 4.1 tells
how many (r−1)-sets are equivalent to x r-sets. Then all the profiles which
have (r−1)-st entry at least K(r, x) will be taken – this is candidates. The
next few lines do a substitution, replacing this number of (r − 1)-sets by x
in the r-th entry. This new set of profile vectors is then appended into the
existing list, and values are updated.

Finally we prove the fact that the variable s keeps track of how many
profiles have been generated already. Since s is at each iteration incremented
by d, which is in turn C(r, x), we just have to prove that C(r, x) encodes the
number of profiles such that the rightmost nonzero entry is an x in the rth
position. But this is apparent from the loop starting at Line 18, since we
are forcing j to be larger than K(r, x), so that from the previous row, we are
only looking at profiles where the (r − 1)-st entry is at least K(r, x). This
allows us to make the substitution we describe above in the loop starting at
Line 28. �

5. Conclusions and Discussion

In this paper we propose a strategy for counting inequivalent monotone
Boolean functions (MBFs), which is a challenging enumeration problem on a
fundamental combinatorial object. The strategy is to break the computation
into smaller parts based on profiles of MBFs. We describe and implement a
non-trivial algorithm to generate the profiles. Using profiles, we are able to
generate the full set of inequivalent 7-variable MBFs in manageable pieces,
which in particular allows us to find that the number of such functions is
R(7) = 490013148.

At present it appears difficult to extend this technique to computing R(8).
This is because it requires generating, rather than merely counting, a non-
trivial fraction of the profiles.

It is appealing to try to use R(7) to compute D(9), which is presently not
known. Wiedemann in 1991 computed D(8) using D(6) and R(6), by going
through all pairs of functions in D(6)×R(6), and using a lookup function to
calculate how many functions in D(8) can be formed by fixing two “middle
functions”. See [Wie91] for details.

14 TAMON STEPHEN AND TIMOTHY YUSUN

To apply this technique to the computation of D(9), we would need to
generate D(7) from R(7), store the number of functions in each equivalence
class, and then calculate the number of MBFs each function contains as a
preprocessing step. The difficulty lies in the sheer amount of computation
needed, but as the strategy is simple to parallelize, there is some hope.
To make the calculation more manageable we would like to understand the
symmetries of monotone Boolean functions better. We might start by trying
to count functions by their symmetry group, or by extending the sequence
of inequivalent non-symmetric MBFs that we consider in Section 2.1.3.

6. Acknowledgments

This research was partially supported by an NSERC Discovery Grant.
We would like to thank the SFU Math Department, the IRMACS Centre at
SFU, and Westgrid and Compute Canada for the access to the computational
resources needed to perform the calculations in this paper.

Also, we are grateful to Michael Monagan and Utz-Uwe Haus for discus-
sion, in particular we thank MM for pointing out that we needed to use hash
tables for the large lists.

References

[BK76] J. Berman and P. Köhler, Cardinalities of finite distributive lattices, Mitt. Math.
Sem. Giessen (1976), no. Heft 121, 103–124.

[CH11] Y. Crama and P.L. Hammer, Boolean functions: Theory, algorithms, and ap-
plications, Encyclopedia of Mathematics and Its Applications, Cambridge Uni-
versity Press, 2011.

[Chu40] R. Church, Numerical analysis of certain free distributive structures, Duke
Mathematical Journal 6 (1940), no. 3, 732–734.

[Chu65] , Enumeration by rank of the free distributive lattice with 7 generators,
Notices of the American Mathematical Society (1965), no. 11, 724.

[Ded97] R. Dedekind, Über Zerlegungen von Zahlen durch ihre grossten gemeinsamen
Teiler, Ges. Werke, Vol. 2, 1897, pp. 103–148.

[Eng97] K. Engel, Sperner theory, Cambridge University Press, 1997.
[FMSS01] R. Fidytek, A. Mostowski, R. Somla, and A. Szepietowski, Algorithms counting

monotone boolean functions, Information Processing Letters 79 (2001), 203–
209.

[HKS08] U. Haus, S. Klamt, and T. Stephen, Computing knock-out strategies in metabolic
networks, J. Comput. Biol. 15 (2008), no. 3, 259–268.

[IKN07] H. Ito, M. Kobayashi, and G. Nakamura, Semi-distance codes and steiner sys-
tems, Graph. Comb. 23 (2007), 283–290.

[KG04] S. Klamt and E.D. Gilles, Minimal cut sets in biochemical reaction networks,
Bioinformatics 20 (2004), no. 2, 226–234.

[Kis88] A. Kisielewicz, A solution of Dedekind’s problem on the number of isotone
boolean functions, J. Reine Angew. Math. 386 (1988), 139–144.

[KJ03] G. Kilibarda and V. Jovovic, On the number of monotone boolean functions
with fixed number of lower units (in Russian), Intellektualnye sistemy 7 (2003),
no. 1-4, 193–217.

[Kle69] D. Kleitman, On Dedekind’s problem: The number of monotone boolean func-
tions, Proc. Amer. Math. Soc. 21 (1969), 677–682.

COUNTING INEQUIVALENT MONOTONE BOOLEAN FUNCTIONS 15

[Kor03] A. Korshunov, Monotone boolean functions, Russian Mathematical Surveys 58
(2003), no. 5, 929–1001.

[MAT] MATLAB, The MathWorks Inc., Natick, Massachusetts.
[RP11] F. Riquelme and A. Polyméris, On the complexity of the decisive problem in sim-

ple and weighted games, Electronic Notes in Discrete Mathematics 37 (2011),
21–26.

[Shm] I. Shmulevich, Computational learning theory, http://personal.

systemsbiology.net/ilya/LEARN.htm.
[Slo11] N. J. A. Sloane, The online encyclopedia of integer sequences, http://oeis.org,

2011.
[SSGC95] I. Shmulevich, T. M. Sellke, M. Gabbouj, and E. J. Coyle, Stack filters and

free distributive lattices, Proceedings of the 1995 IEEE Workshop on Nonlinear
Signal and Image Processing (Halkidiki, Greece), 1995, pp. 927–930.

[War46] M. Ward, Note on the order of free distributive lattices, Bulletin of the American
Mathematical Society (1946), no. 52, 423.

[Wie91] D. Wiedemann, A computation of the eighth Dedekind number, Order 8 (1991),
no. 1, 5–6.

[Yus12] T. Yusun, Counting inequivalent monotone Boolean functions, http://sfu.ca/
~tyusun/inequivalentMBF.html, 2012.

Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby, B.C. V5A 1S6, Canada

E-mail address: tyusun@sfu.ca

E-mail address: tamon@sfu.ca

http://personal.systemsbiology.net/ilya/LEARN.htm
http://personal.systemsbiology.net/ilya/LEARN.htm
http://oeis.org
http://sfu.ca/~tyusun/inequivalentMBF.html
http://sfu.ca/~tyusun/inequivalentMBF.html

