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A FAMILY OF DIGIT FUNCTIONS WITH LARGE

PERIODS

VLADIMIR SHEVELEV AND PETER J. C. MOSES

Abstract. For odd n ≥ 3, we consider a general hypothetical identity
for the differences Sn, 0(x) of multiples of n with even and odd digit
sums in the base n − 1 in interval [0, x), which we prove in the cases
n = 3 and n = 5 and empirically confirm for some other n. We give a
verification algorithm for this identity for any odd n. The hypothetical
identity allows to give a general recursion for Sn, 0(x) for every integer
x depending on the residue of x modulo p(n) = 2n(n− 1)n−1, such that
p(3) = 24, p(5) = 2560, p(7) = 653184, etc.

1. Introduction

For x ∈ N and n ≥ 3, denote by Sn(x) the sum

(1) Sn, j(x) =
∑

0≤r<x: r≡j (mod n)

(−1)sn−1(r),

where sn−1(r) is the digit sum of r in base n− 1.

Note that, in particular, S3, 0(x) equals the difference between the numbers

of multiples of 3 with even and odd binary digit sums (or multiples of 3

from sequences A001969 and A000069 in [7]) in interval [0, x).

Leo Moser (cf. [3], Introduction) conjectured that always

(2) S3, 0(x) > 0.

Newman [3] proved this conjecture. Moreover, he obtained the inequali-

ties

(3)
1

20
< S3, 0(x)x

−λ < 5,

where

(4) λ =
ln 3

ln 4
= 0.792481... .

In connection with this, the qualitative result (2) we call a weak Newman

phenomenon (or Moser-Newman phenomenon), while an estimating result

of the form (3) we call a strong Newman phenomenon.
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In 1983, Coquet [1] studied a very complicated continuous and nowhere

differentiable fractal function F (x) with period 1 for which

(5) S3, 0(3x) = xλF

(

ln x

ln 4

)

+
η(x)

3
,

where

(6) η(x) =

{

0, if x is even,

(−1)s2(3x−1), if x is odd.

He obtained that

(7) lim sup
x→∞, x∈N

S3, 0(3x)x
−λ =

55

3

(

3

65

)λ

= 1.601958421 . . . ,

(8) lim inf
x→∞, x∈N

S3, 0(3x)x
−λ =

2
√
3

3
= 1.154700538 . . . .

In 2007, Shevelev [4] gave an elementary proof of Coquet’s formulas (7)-

(8) and his sharp estimates in the form

(9)
2
√
3

3
xλ ≤ S3 0(3x, 0) ≤

55

3

(

3

65

)λ

xλ, x ∈ N.

In [4] it was found the following simple identity

(10) S3, 0(4x) = 3S3, 0(x), where x is even.

Since in the left hand side of (10) the argument 4x ≡ 0 (mod 8) then (10)

is not a recursion for evaluation of S3, 0(x). However, in the same work

Shevelev found the following recursion for fast calculation of S3, 0(x) :

(11) S3,0(x) = 3S3,0

(⌊x

4

⌋)

+ ν(x),

where

(12) ν(x) =



























0, if x ≡ 0, 7, 8, 9, 16, 17, 18, 22, 23 (mod 24);

(−1)s2(x), if x ≡ 3, 4, 10, 12, 20 (mod 24);

(−1)s2(x)+1, if x ≡ 1, 2, 5, 6, 11, 19, 21 (mod 24);

2(−1)s2(x), if x ≡ 15 (mod 24);

2(−1)s2(x)+1, if x ≡ 13, 14 (mod 24).

In 2008, Drmota and Stoll [2] proved a generalized weak Newman phe-

nomenon, showing that (2) is valid for Sn, 0(x) for every n ≥ 3, at least

beginning with x ≥ x0(n). A year before, Shevelev [5] proved a strong form
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of this generalization, but yet only in ”full” intervals of the form [0, (n−
1)2p). Recently Shevelev and Moses [6] in the case of odd n ≥ 3 and p ≥ n−1

2

found the relation

(13)

n−1
2

∑

k=0

(−1)k
(

n

2k

)

Sn, 0((n− 1)2p−2k) =

{

0, if p ≥ n+1
2
,

(−1)n, if p = n−1
2
.

In the case of p = n−1
2
, (13) could be rewrite in the form

(14)

n−1
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn, 0((n− 1)2j) = 1.

Numerous experiments show that, most likely, the following more general

relation takes place:
n−1
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn, 0((n− 1)2jx) =

(15)

n−1
∑

j=0

Sn, j(x), x ≥ 1, n ≡ 1 (mod 2).

In particular, we verified (15) for n = 3, 5, 7, ..., 35 and 1 ≤ x ≤ 1000. It is

clear that (14) is a special case of (15) for x = 1, since

(16) Sn, j(1) =

{

1, if j = 0,

0, if 1 ≤ j ≤ n− 1.

Below we show that (15) allows with the uniform positions to find a recursion

for Sn, 0(x) for every odd n ≥ 3. In the two first sections we prove identity

(15) in cases n = 3 and n = 5. In Section 4 we give a general verification

algorithm for the identity (15) which allows to prove the identity (15) for n =

7, 9, ..., etc. In Section 5 we give a simplification of the conjectural equality

(15). In Section 6 we prove the recursion in case n = 3 and in Section 7 we

give the recursion in case n = 5. After these sections, in supposition that

(15) is true, it will be clear how to find the further recursions for odd n ≥ 7.

2. The identity in case n = 3

Note that, by (1),

S3, j(x) =
∑

0≤r<x: r≡j (mod 3)

(−1)s2(r)

which yields that

(17)
∑

0≤r<2x: r≡2j (mod 6)

(−1)s2(r), j = 0, 1, 2.
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On the other hand,

S3, j(2x) =
∑

0≤r<2x: r≡j (mod 6)

(−1)s2(r)+

(18)
∑

0≤r<2x: r≡j+3 (mod 6)

(−1)s2(r), j = 0, 1, 2.

Using (18), for j = 0, 1, 2, we consecutively find

S3, 0(2x) =
∑

0≤r<2x: r≡0 (mod 6)

(−1)s2(r)−

(19)
∑

0≤r<2x: r≡2 (mod 6)

(−1)s2(r),

S3, 1(2x) = −
∑

0≤r<2x: r≡0 (mod 6)

(−1)s2(r)+

(20)
∑

0≤r<2x: r≡4 (mod 6)

(−1)s2(r),

S3, 2(2x) =
∑

0≤r<2x: r≡2 (mod 6)

(−1)s2(r)−

(21)
∑

0≤r<2x: r≡4 (mod 6)

(−1)s2(r).

Now the application of (17) to (19)-(21) yields the relations

(22) S3, 0(2x) = S3, 0(x)− S3, 1(x),

(23) S3, 1(2x) = −S3, 0(x) + S3, 2(x),

(24) S3, 2(2x) = S3, 1(x)− S3, 2(x).

For n = 3, the left hand side of (15) is 3S3, 0(x) − S3, 0(4x) and, using

(22)-(24), we have

3S3, 0(x)− S3, 0(4x) = 3S3, 0(x)− S3, 0(2x) + S3, 1(2x) =

3S3, 0(x)− S3, 0(x) + S3, 1(x)− S3, 0(x) + S3, 2(x) =

S3, 0(x) + S3, 1(x) + S3, 2(x)

which proves (15) in the case n = 3.
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3. The identity in case n = 5

In the same way, instead of (22)-(24), we find the following relations

(25) S5, 0(4x) = S5, 0(x)− S5, 1(x) + S5, 2(x)− S5, 3(x),

(26) S5, 1(4x) = −S5, 0(x) + S5, 1(x)− S5, 2(x) + S5, 4(x),

(27) S5, 2(4x) = S5, 0(x)− S5, 1(x) + S5, 3(x)− S5, 4(x),

(28) S5, 3(4x) = −S5, 0(x) + S5, 2(x)− S5, 3(x) + S5, 4(x),

(29) S5, 4(4x) = S5, 1(x)− S5, 2(x) + S5, 3(x)− S5, 4(x).

For n = 5, the left hand side of (15) is

(30) 5S5, 0(x)− 10S5, 0(16x) + S5, 0(256x).

Using (25)-(29), we easily find

(31) S5, 0(16x) = 4S5, 0(x)− 3S5, 1(x) + S5, 2(x) + S5, 3(x)− 3S5, 4(x),

(32) S5, 1(16x) = −3S5, 0(x) + 4S5, 1(x)− 3S5, 2(x) + S5, 3(x) + S5, 4(x),

(33) S5, 2(16x) = S5, 0(x)− 3S5, 1(x) + 4S5, 2(x)− 3S5, 3(x) + S5, 4(x),

(34) S5, 3(16x) = S5, 0(x) + S5, 1(x)− 3S5, 2(x) + 4S5, 3(x)− 3S5, 4(x),

(35) S5, 4(16x) = −3S5, 0(x) + S5, 1(x) + S5, 2(x)− 3S5, 3(x) + 4S5, 4(x).

Now using (31)-(35), we find

S5, 0(256x) = 36S5, 0(x)− 29S5, 1(x)+

(36) 11S5, 2(x) + 11S5, 3(x)− 29S5, 4(x).

Finally, for the expression (30), using (31) and (36), we have

5S5, 0(x)− 10S5, 0(16x) + S5, 0(256x) =

(37) S5, 0(x) + S5, 1(x) + S5, 2(x) + S5, 3(x) + S5, 4(x).

It is the identity (15) in the case n = 5.
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4. General problem

Quite analogously to systems (22)-(24), (25)-(29) we can write the system

for any n ≥ 3. For odd n, we have

Sn, 0((n− 1)x) = Sn, 0(x)− Sn, 1(x) + ... + Sn, n−3(x)− Sn, n−2(x),

Sn, 1((n− 1)x) = −Sn, 0(x) + Sn, 1(x)− ...− Sn, n−3(x) + Sn, n−1(x),

Sn, 2((n−1)x) = Sn, 0(x)−Sn, 1(x)+ ...−Sn, n−4(x)+Sn, n−2(x)−Sn, n−1(x),

...................................

Sn, n−2((n− 1)x) = −Sn, 0(x) + Sn, 2(x)− ...− Sn, n−2(x) + Sn, n−1(x),

(38) Sn, n−1((n− 1)x) = Sn, 1(x)− Sn, 2(x) + ... + Sn, n−1(x).

It is easy to see that the right hand side of the i-th equality for Sn, i((n −
1)x), i = 0, 1, ..., n − 1, of the system (38) satisfies the rules: 1) the signs

alternate, beginning with (−)i; 2) there is no summand Sn, n−1−i(x). Using,

as usual, the convention
∑b

a = 0, if b < a, one can write the system (38) in

the form

(39) (−1)iSn, i((n− 1)x)) =
n−i−2
∑

j=0

(−1)jSn j(x)−
n−1
∑

j=n−i

(−1)jSn j(x).

Thus the general problem is to prove that (39) yields (15).

5. A simplification of the conjecture

Note that in the sum
∑n−1

j=0 Sn, j(x) the index of summing j runs all

residues modulo n. Therefore, we have
n−1
∑

j=0

Sn, j(x) = S1, 0(x) =
∑

0≤i<x

(−1)sn−1(i) =

(40)

{

0, if x is even,

(−1)sn−1(x−1), if x is odd.

Thus the conjectural relation (15) is equivalent to the equality
n−1
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn, 0((n− 1)2jx) =

(41)

{

0, if x is even,

(−1)sn−1(x−1), if x is odd.

In particular, for x = 1, we again have (14). Note that (41) means that its

left hand side taken with sign (−1)sn−1(x−1) is periodic with period 2:
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(−1)sn−1(x−1)

n−1
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn, 0((n− 1)2jx) =

(42)

{

0, if x is even,

1, if x is odd.

6. Recursion for S3,0(x)

Here we prove (11)-(12). Let us write (42) for n = 3 and x := ⌊x
4
⌋. We

have

(−1)s2(⌊
x
4
⌋−1)(3S3, 0(⌊

x

4
⌋)− S3, 0(4⌊

x

4
⌋) =

(43)

{

0, if ⌊x
4
⌋ is even,

1, if ⌊x
4
⌋ is odd.

Note that ⌊x
4
⌋ is even, if x = 0, 1, 2, 3, 8, 9, 10, 11, ... and odd for other inte-

gers. Thus we obtain

Lemma 1. The sequence {A3(x)}, where
(44) A3(x) = (−1)s2(⌊

x
4
⌋−1)(3S3, 0(⌊

x

4
⌋)− S3, 0(4⌊

x

4
⌋),

is periodic with the period 8, such that

(45) A3(x) =

{

0, if x ≡ 0, 1, 2, 3, (mod 8),

1, if x ≡ 4, 5, 6, 7 (mod 8).

Consider the difference

(46) ∆3(x) = S3, 0(x)− S3, 0(4⌊
x

4
⌋).

Lemma 2. We have

(47) ∆3(x) =



















(−1)s2(x−1), if x ≡ 1, 7 or 10 (mod 12)

(−1)s2(x−2), if x ≡ 2 or 11 (mod 12)

(−1)s2(x−3), if x ≡ 3 (mod 12)

0, otherwise.

Proof. Let x = 12t+ j, j = 0, 1, ..., 11. Consider 3 cases.

a) j = 0, 1, 2 or 3.

Then

∆3(x) = S3,0(12t+ j)− S3,0(12t) =

{

0, if j = 0,

(−1)s2(x−j), if j = 1, 2, 3.
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b) j = 4, 5, 6 or 7.

Then

∆3(x) = S3,0(12t+ j)− S3,0(12t+ 4) =

{

0, if j = 4, 5, 6,

(−1)s2(x−1), if j = 7.

c) j = 8, 9, 10 or 11.

Then

∆3(x) = S3,0(12t+ j)− S3,0(12t+ 8) =











0, if j = 8, 9,

(−1)s2(x−1), if j = 10,

(−1)s2(x−2), if j = 11

and (47) follows. �

Now from (44)-(47) we easily deduce the following result.

Theorem 3.

(48) S3, 0(x) = 3S3, 0(⌊
x

4
⌋) + ∆3(x)− (−1)s2(⌊

x
4
⌋−1)A3(x),

where A3(x) and ∆3(x) are defined by (45) and (47) respectively.

Formula (48) gives a recursion for S3, 0(x). Let us show that it coincides

with the recursion (11)-(12), i.e.,

(49) ∆3(x)− (−1)s2(⌊
x
4
⌋−1)A3(x) = ν(x),

where ν(x) is defined by (12). This follows from the following two lemmas.

Lemma 4. The sequence

(50) {(−1)s2(x)+s2(⌊
x
4
⌋−1)A3(x)}

is periodic with period 8.

Proof. In cases x ≡ i (mod 8), i = 0, 1, 2, 3 the terms of the sequence

are zeros. If x ≡ i (mod 8), i = 4, 5, 6, 7, put x = 8t + i. Then A3(x) = 1

and we have

(−1)s2(x)+s2(⌊
x
4
⌋−1) = (−1)s2(8t+i)+s2(2t) =

(−1)s2(8t+i)+s2(8t) = (−1)s2(i)

and the lemma follows. �

Note that period of sequence (50) is
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(51) {0, 0, 0, 0,−1, 1, 1,−1}.

Lemma 5. The sequence

(52) {(−1)s2(x)∆3(x)}
is periodic with period 12.

Proof. According to (47), we have

(−1)s2(x)∆3(x) =

(53)



















(−1)s2(x)+s2(x−1), if x ≡ 1, 7 or 10 (mod 12)

(−1)s2(x)+s2(x−2), if x ≡ 2 or 11 (mod 12)

(−1)s2(x)+s2(x−3), if x ≡ 3 (mod 12)

0, otherwise.

Let x = 12t + i, 0 ≤ i ≤ 11. Let, firstly, i = 1, 7, 10. In cases i = 1 and

i = 7, we, evidently, have (−1)s2(x)+s2(x−1) = −1, while in case i = 10,

(−1)s2(12t+10)+s2(12t+9) = (−1)s2(12t+10102)+s2(12t+10012) = 1.

Let now i = 2, 11. In case i = 2, we, evidently, have (−1)s2(x)+s2(x−2) = −1

and also in case i = 11, we find

(−1)s2(12t+11)+s2(12t+9) = (−1)s2(12t+10112)+s2(12t+10012) = −1;

finally, if i = 3, then, evidently, we have (−1)s2(x)+s2(x−3) = 1. In other

cases, the terms of the sequence are zeros. �

Thus period of sequence (52) is

(54) {0,−1,−1, 1, 0, 0, 0,−1, 0, 0, 1,−1}.
Subtracting the tripled period (51) from the doubled period (54), we obtain

the period of length 24 of the left hand side of (49) multiplied by (−1)s2(x).

It is

{0,−1,−1, 1, 1,−1,−1, 0, 0, 0, 1,−1,

(55) 1,−2,−2, 2, 0, 0, 0,−1, 1,−1, 0, 0}.
It is left to note that, according to (12), (−1)s2(x)ν(x) is periodic with the

same period. �
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7. On recursion for Sn,0(x)

Let (42) be true. Let us write (42) for x := ⌊ x
(n−1)n−1 ⌋. We have

(−1)
sn−1(⌊

x

(n−1)n−1 ⌋−1)
((−1)

n−1
2 Sn, 0((n− 1)n−1⌊ x

(n− 1)n−1
⌋)+

n−3
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn, 0((n− 1)2j⌊ x

(n− 1)n−1
⌋)) =

(56)

{

0, if ⌊ x
(n−1)n−1 ⌋ is even,

1, if ⌊ x
(n−1)n−1 ⌋ is odd.

Denote the left hand side of (56) by An(x). Then, similar to (45), we have

An(x) =

(57)
{

0, if x ≡ 0, ..., (n− 1)n−1 − 1, (mod 2(n− 1)n−1),

1, if x ≡ (n− 1)n−1, ..., 2(n− 1)n−1 − 1, (mod 2(n− 1)n−1).

Furthermore, we consider the difference

(58) ∆n(x) = Sn, 0(x)− Sn, 0((n− 1)n−1⌊ x

(n− 1)n−1
⌋).

Lemma 6. (−1)sn−1(x)∆n(x) is periodic with period n(n− 1)n−1.

Proof. Indeed, let

x = n(n− 1)n−1t + j, j = 0, 1, ..., n(n− 1)n−1 − 1.

Let j such that

⌊ j

(n− 1)n−1
⌋ = m, 0 ≤ m ≤ n− 1.

Then

j = (n− 1)n−1m+ k, 0 ≤ k ≤ (n− 1)n−1 − 1.

We have

∆n(x) = Sn, 0(n(n− 1)n−1t+ j)− Sn, 0(n(n− 1)n−1t + (n− 1)n−1m) =

Sn, 0(n(n− 1)n−1t+ (n− 1)n−1m+ k)−Sn, 0(n(n− 1)n−1t+ (n− 1)n−1m) =

(59)
∑

i:(n−1)n−1m+1≤5i≤(n−1)n−1m+k−1

(−1)s4(n(n−1)n−1t+5i).

Note that

5i = (n− 1)n−1m+ l, 1 ≤ l ≤ k − 1 ≤ (n− 1)n−1 − 2.

Therefore, the summands in (59) multiplied by (−1)sn−1(x) have the form
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(−1)sn−1(n(n−1)n−1t+(n−1)n−1m+k)+sn−1(n(n−1)n−1t+(n−1)n−1m+l)

and, since l < k ≤ (n− 1)n−1 − 1, this equal

(−1)sn−1(n(n−1)n−1t+(n−1)n−1m)+sn−1(k)+sn−1(n(n−1)n−1t+(n−1)n−1m)+sn−1(l) =

(−1)sn−1(k)+sn−1(l).

Therefore, the summands of (59) not depend on t and thus the sum (59),

i.e., ∆n(x) not depends on t. �

Lemma 7. The sequence

(60) {(−1)
sn−1(x)+sn−1(⌊

x

(n−1)n−1 ⌋−1)
An(x)}

is periodic with period 2(n− 1)n−1.

Proof. In cases x ≡ i (mod 2(n − 1)n−1), i = 0, 1, ..., (n − 1)n−1 − 1

the terms of the sequence are zeros. If x ≡ i (mod 2(n − 1)n−1), i =

(n − 1)n−1, ..., 2(n − 1)n−1 − 1, put x = 2(n − 1)n−1t + i. Then An(x) = 1

and we have

(−1)
sn−1(x)+sn−1(⌊

x

(n−1)n−1 ⌋−1)
= (−1)sn−1(2(n−1)n−1t+i)+sn−1(2t) =

(−1)sn−1(2(n−1)n−1t+i)+sn−1(2(n−1)n−1t) = (−1)sn−1(i)

and the lemma follows. �

Now we obtain the following result.

Theorem 8. If the conjectural relation (15) is true, then we have

(61) Sn, 0(x) =

n−3
2

∑

j=0

(−1)
n−3
2

−j

(

n

2j + 1

)

Sn, 0((n−1)2j⌊ x

(n− 1)n−1
⌋)+νn(x),

where νn(x) multiplied by (−1)sn−1(x) is periodic with period 2n(n− 1)n−1.

Proof. Indeed, by (56)-(58), we obtain (61) with

νn(x) = ∆n(x) + (−1)
n−1
2

+sn−1(⌊
x

(n−1)n−1 ⌋−1)
An(x).

Then, by Lemmas 6-7, (−1)sn−1(x)νn(x) is periodic with period equal the

least common multiple of numbers 2(n− 1)n−1 and n(n− 1)n−1. �

As a corollary, in the case n = 3 we again obtain Theorem 3 for ν(x) = ν3(x)

but without detailed representation of ∆3(x) and ν(x).

Remark 9. It follows from the proof that, if for some

j = ji, i = 1, ..., k, 1 ≤ j1 < j2 < ... < jk ≤ n− 3

2
,

to replace in (61) Sn, 0((n− 1)2j⌊ x
(n−1)n−1 ⌋) by Sn, 0(⌊ x

(n−1)n−1−2j ⌋) and to
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denote the new sum by Σ(j1, ..., jk), then also the following form of The-

orem 8 is valid

Theorem 10. If the conjectural relation (15) is true, then we have

(62) Sn, 0(x) = Σ(j1, ..., jk) + ν(j1,...,jk)
n (x),

where ν
(j1,...,jk)
n (x) multiplied by (−1)sn−1(x) is periodic with period 2n(n −

1)n−1.

Thus we have 2
n−3
2 different formulas of type (62). In particular, in case

n = 3 we have only formula, in case n = 5 we have two different formulas,

etc.

8. Application of Theorem 8 in case n = 5

Since the conjectural identity (15) was proved in case n = 5, then, by

Theorem 8, we conclude that

(63) (−1)s4(x)ν5(x) = (−1)s4(x)(S5, 0(x)−10S5, 0(16⌊
x

256
⌋)+5S5, 0(⌊

x

256
⌋))

is periodic with period 2560. If to write the period, then (63) gives a

recursion for S5, 0(x). The computer calculations show that the period with

positions {0, ..., 2559} contains all numbers from interval [−35, 35]. Here

we give several sequences of positions in [0, 2559] with these numbers g ∈
[−35, 35].

g = −35 : {251, 252, 254},
g = −34 : {246, 249, 1531, 1532, 1534},
g = −33 : {241, 243, 244, 1526, 1529},
g = −32 : {237, 239, 1521, 1523, 1524},
g = −31 : {231, 232, 234, 1517, 1519},

g = −30 : {197, 199, 200, 217, 219, 220, 226, 229, 511, 1511, 1512, 1514,
2497, 2499, 2500, 2557, 2559},

...

g = 30 : {196, 198, 216, 218, 227, 228, 230, 1513,
1515, 2496, 2498, 2556, 2558},

g = 31 : {233, 235, 1516, 1518, 1520},
g = 32 : {236, 238, 240, 1522, 1525},
g = 33 : {242, 245, 1527, 1528, 1530},
g = 34 : {247, 248, 250, 1533, 1535},

g = 35 : {253, 255}.
Besides, by Theorem 10, also
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(64) (−1)s4(x)ν
(1)
5 (x) = (−1)s4(x)(S5, 0(x)− 10S5, 0(⌊

x

16
⌋) + 5S5, 0(⌊

x

256
⌋))

is periodic with period 2560. Again, if to write the period, then (64) gives

another recursion for S5, 0(x). The computer calculations show that the

period with positions {0, ..., 2559} contains all numbers from interval [−9, 9].

Several sequences of positions in [0, 2559] with these numbers h ∈ [−9, 9]

are the following:

h = −9 : {2411, 2412, 2414, 2491, 2492, 2494},
h = −8 : {1131, 1132, 1134, 1211, 1212, 1214, 2406, 2409, 2486, 2489},

...

h = 8 : {1133, 1135, 1213, 1215, 2407, 2408, 2410, 2487, 2488, 2490},
h = 9 : {2413, 2415, 2493, 2495}.

Finally, note that the sequence of the numbers of different values of

ν3(x), ν
(1)
5 (x), ν5(x), etc. begins with {5, 19, 71, ...} .

9. Recursions for S3, 1(x) and S3, 2(x)

Using (22)-(24), it is easy to show that the form 3y(x)−y(4x) is invariant

with respect to S3, i(x), i = 0, 1, 2. This means that together with

(65) 3S3, 0(x)− S3, 0(4x) = S3, 0(x) + S3, 1(x) + S3, 2(x),

we have also

(66) 3S3, 1(x)− S3, 1(4x) = S3, 0(x) + S3, 1(x) + S3, 2(x),

(67) 3S3, 2(x)− S3, 2(4x) = S3, 0(x) + S3, 1(x) + S3, 2(x).

Using (66)-(67), as in Section 6, we can prove that the expressions

(68) (−1)s2(x)(S3, 1(x)− 3S3, 1(⌊
x

4
⌋)),

and

(69) (−1)s2(x)(S3, 2(x)− 3S3, 2(⌊
x

4
⌋)),

are eventually priodic with the same period as (−1)s2(x)ν(x) (12), i.e., the

period (55), such that for S3, 2(x) the period starts at x = 8, while for

S3, 1(x) the period starts at x = 16. This means that, for S3, i(x), i = 1, 2,

the same recursions hold as the recursion for S3, 0(x) (11) with the same

function ν(x) (12):

(70) S3,1(x) = 3S3,1

(⌊x

4

⌋)

+ ν(x), x ≥ 16,
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with the initials

(71) S3,1(x) =



















0, if x = 0, 1,

−1, if x = 2, 3, 4,

−2, if x = 5, 6, 7, 11, 12, 13,

−3, if x = 8, 9, 10, 14, 15.

(72) S3,2(x) = 3S3,2

(⌊x

4

⌋)

+ ν(x), x ≥ 8,

with the initials

(73) S3,2(x) =

{

0, if x = 0, 1, 2, 6, 7,

−1, if x = 3, 4, 5.

For example, by (70), (71) and (12), we have

S3,1(20) = 3S3,1(5) + ν(20) = 3 · (−2) + (−1)s2(20) = −5;

analogously, by (72), (73) and (12), we find

S3,2(20) = 3S3,2(5) + ν(20) = 3 · (−1) + (−1)s2(20) = −2.

10. A generalization

A generalization of the conjectural equality (15) is the following
n−1
2

∑

j=0

(−1)j
(

n

2j + 1

)

Sn, i((n− 1)2jx) =

(74)
n−1
∑

j=0

Sn, j(x), i = 0, ..., n− 1, x ≥ 1, n ≡ 1 (mod 2).

If this conjecture is valid, then, as in the previous sections, we can obtain

the same recursions for every digit function Sn, i(x), i = 1, ..., n− 1, as for

Sn, 0(x) (cf. Theorems 8, 10). The question on initials in cases i ≥ 1 we

here remain open.
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