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Abstract

This paper proves explicit formulas for the number of dissections of a convex regular
polygon modulo the action of the cyclic and dihedral groups. The formulas are obtained
by making use of the Cauchy-Frobenius Lemma as well as bijections between rotationally
symmetric dissections and simpler classes of dissections. A number of special cases of these
formulas are studied. Consequently, some known enumerations are recovered and several
new ones are provided.

1. Introduction

In 1963 Moon and Moser [13] enumerated the equivalence classes of triangulations of a
regular convex n-gon modulo the action of the dihedral group D2n. A year later, Brown [2]
enumerated the equivalence classes of these triangulations modulo the action of the cyclic
group Zn. Recall that the triangulations of an n-gon are in bijection with the vertices of the
associahedron of dimension n−3 (see Figure 1). Lee [11] showed that the associahedron can
be realized as a polytope in (n− 3)-dimensional space having the dihedral symmetry group
D2n. Thus Moon and Moser’s result and Brown’s result are equivalent to enumerating of the
vertices of the associahedron modulo the dihedral action and the cyclic action, respectively.
The enumeration by Moon and Moser also arose recently in the work of Ceballos, Santos
and Ziegler [7]. Their work describes a family of realizations of the associahedron (due to
Santos), and proves that the number of normally non-isomorphic realizations is the number
of triangulations of a regular polygon modulo the dihedral action. In this paper we generalize
the results of Moon and Moser, as well as Brown, and enumerate the number of dissections
of regular polygons modulo the dihedral and cyclic actions.

Definition 1. Let n ≥ 3. A k-dissection of an n-gon is a partition of the n-gon into k + 1
polygons by k non-crossing diagonals. A triangulation is an (n − 3)-dissection of an n-gon
and an almost-triangulation is an (n− 4)-dissection. Let G(n, k) be the set of k-dissections

of an n-gon, and let G(n) =
n−3
⋃

k=0

G(n, k).

In terms of associahedra, a k-dissection corresponds to an (n − k − 3)-dimensional face
on an associahedron of dimension n. A natural generalization of the results of Moon and
Moser and of Brown is the enumeration of G(n, k)/D2n and G(n, k)/Zn, the sets of cyclic
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and dihedral classes, respectively, in G(n, k). In 1978, Read [15] considered an equivalent
problem. He enumerated certain classes of cellular structures, which are in bijection with
G(n, k)/D2n andG(n, k)/Zn. Read found generating functions for the number of such classes,
and included tables of values [15, Tables 3 and 5]. In fact, the first diagonal of Table 5 of
Read corresponds to the sequence found by Moon and Moser, and the first diagonal of Table
3 of Read corresponds to the sequence found by Brown. Lisonek [12] studied these results of
Read and showed that the sequences |G(n, k)/D2n| and |G(n, k)/Zn| are “quasi-polynomial”
in n when k is fixed. (Here and throughout, |X| denotes the cardinality of a finite set X .)
More recently, Read and Devadoss [8] studied various equivalence relations on the set of
polygonal dissections. They gave a sequence of figures [8, Figures 22-25] representing all
the dihedral classes of n-gons for 3 ≤ n ≤ 9. However, none of the above authors give
an explicit formula for |G(n, k)/D2n| or for |G(n, k)/Zn|. The present authors [3] give an
explicit formula enumerating G(n, n− 4)/D2n, the dihedral classes of almost-triangulations,
equivalently, of edges of associahedra. This formula agrees with the values of the second
diagonal of Table 5 of Read [15].

Explicit formulas for |G(n, k)/Zn| and |G(n, k)/D2n| could in principle be derived from
Read’s iteratively defined generating functions, but the resulting formulas would be consid-
erably more complicated than those computed here; see equations (6) and (7). Our approach
to solving these enumeration problems is similar to that of Moon and Moser [13]. For each
element of the dihedral group, the number of dissections in G(n, k) which are fixed under
its action is computed. The Cauchy-Frobenius Lemma is then used to derive the number of
dihedral and cyclic classes in G(n, k).

In Section 5 we introduce a combinatorial bijection (26) between certain rotationally
symmetric dissections (centrally unbordered dissections, see Definition 16) and a set G∗(n, k)
of marked dissections, which are dissections with one of their parts distinguished. These
marked dissections are easy to generate and enumerate. A bijection for centrally bordered
dissections is implicit in the proof of Lemma 17. Przytycki and Sikora [14] studied a set of
marked dissections Pi(s, n), which is a subset of G∗(n, k); however, the classes of dissections
enumerated in [14] are different from those studied here.

Besides their intrinsic interest, bijections involving polygonal dissections have connections
to other mathematical structures; for example, Torkildsen [17] proved a bijection between
G(n, n − 3)/Zn and the mutation class of quivers of Dynkin type An, while Przytycki and
Sikora describe a relationship between their bijection (between Pi(s, n) and another combi-
natorial structure) and their work in knot theory as well as Jones’ work on planar algebras.

After proving the general formulas (6) and (7) in Sections 2 through 5, special cases are
studied in Section 6. Consequently we not only recover known enumerations but are able
to provide several that are new. We note several of the interesting special cases here. For
example, setting k = n − 3 in (6) recovers the result of Moon and Moser [13], and setting
k = n − 3 in (7) recovers the result of Brown [2]. Setting k = n − 4 in (6) recovers the
result of the authors [3], while the following theorem gives a formula for the number of cyclic
classes in the case k = n − 4. For a nonnegative integer n, let Cn denote the n-th Catalan
number;

Cn =
1

n+ 1

(

2n

n

)

,
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Figure 1: The three-dimensional associahedron

and let Cn = 0 otherwise.

Theorem 2. Let n ≥ 4. The number |G(n, n− 4)/Zn| of almost-triangulations of an n-gon
(equivalently, edges of the (n − 3)-dimensional associahedron) modulo the cyclic action is
given by

n− 3

2n
Cn−2 +

1

2
Cn/4−1 +

1

4
Cn/2−1. (1)

Setting k = n− 5 gives the following formulas.

Theorem 3. Let n ≥ 5.

1. The number |G(n, n−5)/Zn| of (n−5)-dissections of an n-gon (equivalently, the number
of two-dimensional faces of the (n − 3)-dimensional associahedron) modulo the cyclic
action is given by

(n− 3)2(n− 4)

4n(2n− 5)
Cn−2 +

n− 4

8
Cn/2−1 +

4

5
Cn/5−1. (2)

2. The number |G(n, n − 5)/D2n| of (n − 5)-dissections of an n-gon (equivalently, the
number of two-dimensional faces of the (n−3)-dimensional associahedron) modulo the
dihedral action is given by

(n− 3)2(n− 4)

8n(2n− 5)
Cn−2 +

2

5
Cn/5−1 +

3(n− 4)(n− 1)

16(n− 3)
Cn/2−1,

if n is even, and

(n− 3)2(n− 4)

8n(2n− 5)
Cn−2 +

2

5
Cn/5−1 +

n2 − 2n− 11

8(n− 4)
C(n−3)/2, (3)

if n is odd.
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A formula equivalent to (1) occurs in the Online Encyclopedia of Integer Sequences [16,
sequence A0003444], while the sequences of (2) and (3) occur there without a formula [16,
sequences A0003450 and A0003445].

Finally, setting k = n− 6 in (7) gives the following formula.

Theorem 4. Let n ≥ 6. The number |G(n, n − 6)/Zn| of (n − 6)-dissections of an n-gon
(equivalently, the number of three-dimensional faces of the (n−3)-dimensional associahedron)
modulo the cyclic action is given by

(n− 3)(n− 4)2(n− 5)

24n(2n− 5)
Cn−2 +

(n− 4)2

4n
Cn/2−2 +

n− 3

9
Cn/3−1 +

1

3
Cn/6−1.

Another set of results is obtained by specializing equations (6) and (7) to fixed values of
k. Setting k = 1 gives the formulas |G(n, 1)/Zn| = |G(n, 1)/D2n| = n/2− 1 if n is even and
|G(n, k)/Zn| = |G(n, 1)/D2n| = (n− 3)/2 if n is odd: these formulas are easy to see directly.
In the case k = 2, (6) and (7) are more interesting.

Theorem 5. Let n ≥ 2.

1. The number of 2-dissections of an n-gon modulo the cyclic action is

|G(n, 2)/Zn| =

{

1
12
n(n− 2)(n− 4), if n is even

1
12
(n+ 1)(n− 3)(n− 4), if n is odd.

2. The number of 2-dissections of an n-gon modulo the dihedral action is

|G(n, 2)/D2n| =

{

1
24
(n− 4)(n− 2)(n+ 3), if n is even

1
24
(n− 3)(n2 − 13), if n is odd.

Note that Theorem 5 agrees with the result of Lisonek [12] in that the formulas obtained
are quasi-polynomials.

1.1. The general formulas

Let An
k = |G(n, k)| be the number of k-dissections of an n-gon. Cayley [6] showed that

for integers 0 ≤ k ≤ n− 3,

An
k =

1

k + 1

(

n + k − 1

k

)(

n− 3

k

)

. (4)

We take A2
0 = 1 corresponding to the trivial dissection of a digon (2-gon). Otherwise, unless

n and k are integers with 0 ≤ k ≤ n− 3, let An
k = 0. Note that

An
n−3 =

{

0, if n = 2

Cn−2, otherwise.
(5)

Let ϕ(n) denote Euler’s totient function (the number of positive integers less than n that
are relatively prime to n). The following two theorems are the main results of this paper.
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Theorem 6. Let 1 ≤ k ≤ n − 3. Let |G(n, k)/D2n| be the number of k-dissections of an
n-gon (equivalently, (n− k− 3)-dimensional faces of the (n− 3)-dimensional associahedron)
modulo the dihedral action. If n is even then |G(n, k)/D2n| is given by

1

2n
An

k +
1

2
A

n/2+1
(k−1)/2 +

1

4
A

n/2+1
k/2

+
∑

3≤d|n

ϕ(d)

2d
A

n/d+1
k/d−1 +

∑

2≤d≤n/3

ϕ(d)(n+ k − d)

2dn
A

n/d
k/d−1

+
∑

2≤d|n; r≥3; n1+...+nr=n/d
k1+...+kr+|{i:ni≥2}|=k/d

ϕ(d)

2r

r
∏

i=1

Ani+1
ki

+
1

4

∑

1≤t≤k
n0+...+nt=n/2

k0+...+kt=(k−t)/2

t
∏

s=0

(

Ans+1
ks−1 + Ans+1

ks

)

+
1

4

∑

0≤t≤k
n0+...+nt=n/2−1
k0+...+kt=(k−t)/2

t
∏

s=0

(

Ans+1
ks−1 + Ans+1

ks

)

,

and if n is odd then |G(n, k)/D2n| is given by

1

2n
An

k +
∑

3≤d|n

ϕ(d)

2d
A

n/d+1
k/d−1 +

∑

2≤d≤n/3

ϕ(d)(n+ k − d)

2dn
A

n/d
k/d−1

+
∑

2≤d|n; r≥3; n1+...+nr=n/d
k1+...+kr+|{i:ni≥2}|=k/d

ϕ(d)

2r

r
∏

i=1

Ani+1
ki

+
1

2

∑

1≤t≤k
n0+...+nt=n/2

k0+...+kt=(k−t)/2

t
∏

s=0

(

Ans+1
ks−1 + Ans+1

ks

)

.

(6)

Theorem 7. Let n ≥ 3. The number |G(n, k)/Zn| of k-dissections of an n-gon (equivalently,
(n − k − 3)-dimensional faces of the (n − 3)-dimensional associahedron) modulo the cyclic
action is given by

1

n
An

k +
∑

3≤d|n

ϕ(d)

d
A

n/d+1
k/d−1 +

∑

2≤d≤n/3

ϕ(d)(n+ k − d)

dn
A

n/d
k/d−1

+
∑

2≤d|n; r≥3; n1+...+nr=n/d
k1+...+kr+|{i:ni≥2}|=k/d

ϕ(d)

r

r
∏

i=1

Ani+1
ki

.

(7)
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2. Preliminaries

For any labeled graph H , let V (H) be its set of vertices and let E(H) be its set of edges,
defined to be two-element subsets of V (H). We frequently denote the edge {x, y} by xy. To a
dissection Φ ∈ G(n) we associate a labeled graph (V (Φ), E(Φ)), where V (Φ) = {0, . . . , n−1}.
To the sides of the n-gon we associate the edges S(Φ) = {01, 12, 23, . . . , (n−2)(n−1), (n−1)0}
and to the diagonals of the dissection we associate the rest of the edges of the graph. The
distance between any two vertices x, y ∈ V (Φ) is defined to be the graph-theoretic distance
between them in the subgraph (V (Φ), S(Φ)).

It is easily seen that two crossing diagonals of a convex n-gon correspond to edges ab and
cd (with a < b and c < d) if and only if

a < c < b < d or c < a < d < b. (8)

Thus if Φ ∈ G(n), there are no edges ab, cd ∈ E(Φ) satisfying (8). Hereafter we identify
dissections with their labeled graphs.

The elements of the dihedral group D2n are denoted using ε, ρ and τ to represent the
identity, rotation by 2π/n and reflection about a symmetry axis (which by convention passes
through one of the vertices of the n-gon), respectively. The cyclic group Zn can be identified
with the subgroup of D2n generated by ρ.

We use the notation [x]n to denote the remainder when x is divided by n. The elements
of D2n can be represented by their action on the vertices, ρ(v) = [v + 1]n and τ(v) = [−v]n.

For any σ ∈ D2n, let G(n, k; σ) denote the subset of G(n, k) consisting of dissections fixed
under the action of σ, and let

G(n; σ) =
n−3
⋃

k=0

G(n, k; σ).

Thus if Φ ∈ G(n) then Φ ∈ G(n; ρi) if and only if

[x+ i]n[y + i]n ∈ E(Φ) whenever [x]n[y]n ∈ E(Φ),

and Φ ∈ G(n; τρi) if and only if

[i− x]n[i− y]n ∈ E(Φ) whenever [x]n[y]n ∈ E(Φ).

The Cauchy-Frobenius Lemma [4] gives the equations

|G(n, k)/D2n| =
1

2n

(

n−1
∑

i=0

|G(n, k; ρi)|+

n−1
∑

i=0

|G(n, k; τρi)|

)

(9)

and

|G(n, k)/Zn| =
1

n

n−1
∑

i=0

|G(n, k; ρi)|. (10)

Equations (9) and (10) reduce the problem of enumerating the dihedral and cyclic classes in
G(n, k) to that of finding G(n, k; σ) for each σ ∈ D2n. In fact, the following lemma shows
that it suffices to consider only a subset of D2n.
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Lemma 8. Let 0 ≤ i ≤ n− 1. Then

1.
|G(n, k; ρi)| = |G(n, k; ρgcd(n,i))|.

2. (a) If n and i are even then |G(n, k; τρi)| = |G(n, k; τ)|.
(b) If n is even and i odd then |G(n, k; τρi)| = |G(n, k; τρ)|.
(c) If n is odd then |G(n, k; τρi)| = |G(n, k; τ)|.

Proof. 1. Since ρi and ρgcd(n,i) generate the same subgroup of D2n, they fix precisely the
same elements of G(n, k).

2. It is well known [1, p. 243] that conjugate elements in a group acting on a set have
the same number of fixed points. The results then follow from the conjugacy relations
in D2n.

Thus equations (9) and (10) imply

|G(n, k)/D2n| =











1
2n

∑

d|n

ϕ(d)|G(n, k; ρn/d)|+ 1
4
|G(n, k; τ)|+ 1

4
|G(n, k; τρ)|, if n is even

1
2n

∑

d|n

ϕ(d)|G(n, k; ρn/d)|+ 1
2
|G(n, k; τ)|, if n is odd

(11)
and

|G(n, k)/Zn| =
1

n

∑

d|n

ϕ(d)|G(n, k; ρn/d)|. (12)

Theorems 6 and 7 follow from calculating the terms in (11) and (12), respectively. Sec-
tion 3 addresses the terms |G(n, k; τ)| and |G(n, k; τρ)|, and Section 5 addresses the terms
|G(n, k; ρn/d)|.

3. Axially symmetric dissections

The sets G(n, k; τ) and G(n, k; τρ) of axially symmetric dissections can be enumerated
by considering the number of perpendiculars, i.e., diagonals of a dissection which are per-
pendicular to the axis of symmetry; these diagonals have the form [v]n[−v]n. Denote by
G(n, k; τ ; t) the set of dissections in G(n, k; τ) with exactly t perpendiculars. The notation
G(n, k; τρ; t) is defined analogously. Thus

G(n, k; τ) =
∑

t≥0

G(n, k; τ ; t),

with the analogous formula holding for G(n, k; τρ; t).

Lemma 9. If n is even then

|G(n, k; τ ; 0)| = A
n/2+1
(k−1)/2 + A

n/2+1
k/2 (13)
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Figure 2: An axially symmetric dissection.

and for t ≥ 1,

|G(n, k; τ ; t)| =
∑

n0+...+nt=n/2
k0+...+kt=(k−t)/2

t
∏

s=0

(Ans+1
ks−1 + Ans+1

ks
). (14)

Proof. Let [v1]n[−v1]n, . . . , [vt]n[−vt]n ∈ E(Φ) be the perpendiculars of Φ, where t ≥ 0 and
0 = v0 < v1 < . . . < vt < vt+1 = n/2. Let ns = vs+1 − vs for s = 0, . . . , t. The case
t = 0 is considered separately since in this case v0v1 = 0n

2
= [−0]n[−

n
2
]n = [−v0]n[−v1]n,

while in all other cases vsvs+1 6= [−vs]n[−vs+1]n. Let Φ ∈ G(n, k; τ ; 0) and suppose first that
0n
2
∈ E(Φ). The remaining k−1 diagonals of Φ are equally distributed between the two sides

of the symmetry axis. Each such dissection then uniquely corresponds to a dissection of the
resulting (n/2+1)-gon on either of its sides. Thus there are A

n/2+1
(k−1)/2 dissections of this type.

By a similar argument, there are A
n/2+1
k/2 dissections in G(n, k; τ ; 0) which do not contain the

diagonal 0n
2
, and (13) follows. Now suppose 1 ≤ t ≤ k and let Φ ∈ G(n, k; τ ; t). The k − t

other diagonals of Φ are pairs of the form xy and [−x]n[−y]n, where vs ≤ x < y ≤ vs+1

and 0 ≤ s ≤ t. Each such diagonal xy is either of the form vsvs+1 or it is a diagonal of
the (ns + 1)-gon with vertices vs, vs + 1, . . . , vs+1. Let ks be half the number of diagonals in
the region defined by the vertices vs, vs+1, [−vs+1]n and [−vs]n. If vsvs+1 ∈ E(Φ) then the
dissection of this region corresponds to a (ks − 1)-dissection of the (ns + 1)-gon. Otherwise,
it corresponds to a ks-dissection of the (ns + 1)-gon. This proves (14).

Figure 2 gives an example of an axially symmetric dissection where, using the notation
above, n = 20, k = 12, t = 2, v1 = 4, v2 = 8, k0 = 2, k1 = 2 and k2 = 1. The dissection of
the region s = 0 corresponds to a 1-dissection of the pentagon with vertices 0, 1, 2, 3, 4, and
the dissection of the region s = 1 corresponds to a 2-dissection of the pentagon with vertices
4, 5, 6, 7, 8.

For the next two lemmas, vsvs+1 6= [−vs]n[−vs+1]n for all s, and therefore the case t = 0
need not be considered separately. The proofs are otherwise analogous to that of Lemma 9.

8



Lemma 10. If n is even then for any t ≥ 0

|G(n, k; τρ; t)| =
∑

n0+...+nt=n/2−1
k0+...+kt=(k−t)/2

t
∏

s=0

(Ans+1
ks−1 + Ans+1

ks
). (15)

Lemma 11. If n is odd then for t ≥ 0,

|G(n, k; τ ; t)| =
∑

n0+...+nt=(n−1)/2
k0+...+kt=(k−t)/2

t
∏

s=0

(Ans+1
ks−1 + Ans+1

ks
). (16)

4. Components and marked dissections

A dissection Φ ∈ G(n) can be associated with the set C(Φ) of components comprising it,
each of these components being a polygon free of dissecting diagonals. Thus a component is
a subgraph γ of Φ such that for some r ≥ 2 and 0 ≤ vr = v0 < . . . < vr−1 ≤ n− 1,

V (γ) = {v0, . . . , vr−1},

E(γ) = {v0v1, . . . , vr−1vr},

and

vivj ∈ E(Φ) =⇒ vivj ∈ E(γ). (17)

For example, if Φ is the dissection shown in Figure 2 then C(Φ) consists of 32 digons, 10
triangles, two quadrilaterals and one hexagon. For r ≥ 2 let Cr(Φ) be the set of r-gons in
C(Φ), which we call r-components.

In what follows, X represents any list of parameters. For any r ≥ 2, an r-marked
dissection is a dissection Φ with one of its r-components γ distinguished. Let

Gr(X) = {(Φ, γ) : Φ ∈ G(X), γ ∈ Cr(Φ)}

be the set of r-marked dissections associated with G(X), and let G∗(X) =
⋃

r≥2

Gr(X).

Lemma 12. Let 0 ≤ k ≤ n− 3. Then

|G2(n, k)| = (n+ k)An
k , (18)

and for r ≥ 3,

r|Gr(n, k)| = n
∑

n1+...+nr=n
k1+...+kr+|{i:ni≥2}|=k

r
∏

i=1

Ani+1
ki

. (19)

9



Proof. Equation (18) holds since |C2(Φ)| = n + k for any dissection Φ ∈ G(n, k). Let
r ≥ 3. The left-hand side of (19) enumerates the marked dissections having one of the r
vertices v0 in the distinguished r-gon distinguished. The right-hand side enumerates the
same elements by selecting the r-component first and then dissecting the region between
each side of the component and the n-gon. Choose 0 ≤ v0 ≤ n − 1. Decompose the cycle
v0[v0+1]n, [v0+1]n[v0+2]n, . . . , [v0+n−1]n[v0+n]n into consecutive paths of length ni (where
1 ≤ i ≤ r and ni ≥ 1) with vertices v0, v1, . . . , vr. Observe that every such decomposition of
the edges of the n-gon corresponds to a set of ni satisfying n1 + . . . + nr = n. The vertices
V (γ) = {v0, . . . , vr−1} of an r-component are thus determined by

vi = [v0 +

i
∑

j=1

nj]n.

Now for each 0 ≤ i ≤ r− 1 select a dissection of the region between the edge vivi+1 and the
path from vi to vi+1 along the sides of the n-gon. Each such dissection corresponds to a set
of ki satisfying k1 + . . .+ kr + |{i : ni ≥ 2}| = k. (The term |{i : ni ≥ 2}| accounts for those
sides of the r-component that are not sides of the n-gon). Finally for each ki there Ani+1

ki
such dissections.

Since a triangulation consists of n− 2 triangles, a simpler formula for 3-marked triangu-
lations is

|G3(n, n− 3)| = (n− 2)An
n−3. (20)

Definition 13. Let Φ ∈ G(n) and consider the representation of Φ as a set of points in the
interior or boundary of a regular n-gon embedded in R

2 and centered at the origin. Any
component of Φ is a subset of the planar region. There is thus a unique component of Φ
containing the origin. We call this component the central polygon Z(Φ) of a dissection Φ. Let
Gm(X) be the subset of G(X) consisting of dissections whose central polygon is an m-gon;

Gm(X) = {Φ ∈ G(X) : Z(Φ) ∈ Cm(Φ)},

and put G 6=m(X) = G(X) \Gm(X).

For Φ ∈ Gm(n, k), if the regions outside of Z(Φ) are triangulated then m = n− k. More
generally,

m ≤ n− k for any Φ ∈ Gm(n, k). (21)

Definition 14. Let Φ ∈ G(n). Given an edge xy ∈ E(Φ) and a vertex v ∈ V (Φ), we say
that v is outer to xy if v lies strictly between x and y on the shorter path of the n-gon
connecting them.

Remark 15. A vertex v ∈ V (Z(Φ)) cannot be outer to any edge xy ∈ E(Φ).

10



5. Rotationally symmetric dissections

The enumeration of the sets G(n, k; ρn/d) of rotationally symmetric dissections can be
achieved by considering separately the following two classes.

Definition 16. A dissection Φ ∈ G(n, k; ρn/d) is said to be centrally bordered if Φ ∈
Gd(n, k; ρ

n/d) and centrally undbordered if Φ ∈ G 6=d(n, k; ρ
n/d).

Lemma 17 addresses the case of centrally bordered dissections; Lemmas 22, 24 and 25
and Theorem 26 address the case of centrally unbordered dissections. When considering the
set G(n; ρn/d) it is convenient to put j = n/d. Let δxy denote the Kronecker delta.

Lemma 17. Let d, j ≥ 2 and let 0 ≤ k ≤ n− 3.

|Gd(n, k; ρ
j)| = jAj+1

(k−d+δd2)/d
. (22)

Proof. Let Φ ∈ Gd(n, k; ρ
j). By symmetry the central polygon Z(Φ) is a regular d-gon,

which can be positioned in j different ways in the n-gon. Since all d − δd2 edges of Z(Φ)
are diagonals of Φ, there are k − d + δd2 diagonals of Φ which are not edges of Z(Φ). By
symmetry these diagonals are equally distributed among the d resulting (j +1)-gons, giving
Aj+1

(k−d+δd2)/d
choices for each position of Z(Φ).

Enumeration of the centrally unbordered dissections G 6=d(n, k; ρ
n/d) is accomplished by

the introduction of a bijection with the marked dissections which were enumerated in Lemma
12. We define the following “furling” maps Fd and F ∗

d (see Figure 3).

Definition 18. Let d, j ≥ 2.

1. Define a function fd on edges of a graph of n vertices by fd(xy) = [x]j [y]j.

2. Let Φ be a dissection or a component of a dissection of an n-gon. Define the labeled
graph Fd(Φ) by V (Fd(Φ)) = {[x]j : x ∈ V (Φ)} and E(Fd(Φ)) = fd[E(Φ)]. 1

3. For Φ ∈ G 6=d(n, k; ρ
j), define F ∗

d (Φ) = (Fd(Φ), Fd(Z(Φ))).

The conclusions of the following remark are easy observations.

Remark 19. Let d, j ≥ 2.

(i) If Φ ∈ G 6=d(n, k; ρ
j) then its central polygon Z(Φ) is itself invariant under ρj and hence

Z(Φ) is an rd-gon for some r ≥ 2. Therefore G 6=d(n, k; ρ
j) can be partitioned as follows.

G 6=d(n, k; ρ
j) =

⋃

r≥2

Grd(n, k; ρ
j). (23)

(ii) If Φ ∈ G 6=d(n, k; ρ
j) and xy ∈ E(Φ), then the distance between x and y is at most j−1.

(iii) Suppose Φ ∈ G 6=d(n, k; ρ
j). From the previous observation and by symmetry, it follows

that for 0 ≤ x < y ≤ j − 1,

xy ∈ E(Fd(Φ)) if and only if either xy ∈ E(Φ) or y(x+ j) ∈ E(Φ). (24)

1Functions on subsets of a set are defined in the usual way and denoted using square brackets.
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The map ud will be used to output symmetrically distributed edges in a dissection.

Definition 20. Let d, j ≥ 2. For an edge ab of a dissection Φ ∈ G(j), define

ud(ab) =
⋃

0≤i≤d−1

{

{[a+ ij]n, [b+ ij]n}
}

.

Note that if Φ ∈ Grd(n, k; ρ
j) and γ = Z(Φ) then by the d-fold symmetry, for some

0 ≤ vr = v0 < . . . < vr−1 ≤ j − 1,

V (γ) = {v0, . . . , vr−1, v0 + j, . . . , vr−1 + j, . . . , vr−1 + (d− 1)j},

E(γ) = ud(v0v1) ∪ ud(v1v2) ∪ . . . ∪ ud(vr−2vr−1) ∪ ud(vr−1(v0 + j))

(25)

The following lemma is readily verified using (24) and Remark 15. It employs the notation
(25) for Z(Φ).

Lemma 21. Let d, j ≥ 2 and let Φ ∈ Grd(n, k; ρ
j). Consider the map fd : E(Φ)→ E(Fd(Φ))

defined above. For an edge ab ∈ E(Fd(Φ)), with a < b, the preimage of ab under fd is given
by:

f−1
d [ab] =











ud(ab), if a > v0 or b < vr−1,

ud(b(a + j)), if a ≤ v0, b ≥ vr−1, and ab 6= v0v1,

ud(ab) ∪ ud(b(a + j)), if ab = v0v1.

(26)

Lemma 22. Let d, j, r ≥ 2 and let 1 ≤ k ≤ n− 3. If Φ ∈ Grd(n, k; ρ
j) then

F ∗
d (Φ) ∈ Gr(j, k/d− δr2).

Proof. Clearly Fd(Φ) has j vertices. We show that its diagonals are noncrossing. Suppose
that a1b1 and a2b2 are crossing diagonals of Fd(Φ), with 0 ≤ a1 < a2 < b1 < b2 ≤ j − 1. By
Lemma 21, for each i = 1, 2 either aibi or ai(bi + j) is a diagonal of Φ. Since a1 < a2 < b1 <
b2 < a1 + j < a2 + j, these two diagonals of Φ are crossing. This contradiction shows that
Fd(Φ) ∈ G(j).

We next show that Fd(Z(Φ)) is an r-component of Fd(Φ). By symmetry the center
Z(Φ) has the form (25). Therefore V (Fd(Z(Φ)) = {v0, . . . , vr−1} and E(Fd(Z(Φ))) =
{v0v1, . . . , vr−1vr}. Now if vsvt ∈ E(Fd(Φ)) with vs < vt then by (24) either vsvt or vt(vs+ j)
is in E(Φ). Therefore by the fact that Z(Φ) is a component of Φ and by (17), either vsvt or
vt(vs+j) is in E(Z(Φ)). Thus vsvt ∈ E(Fd(Z(Φ))). Applying (17) again gives the conclusion.

Let l be the number of diagonals of Fd(Φ). Suppose r ≥ 3. In this case an edge xy ∈ E(Φ)
is a diagonal of Φ if and only if fd(xy) is a diagonal of Fd(Φ). By (26), for each diagonal ab
of Fd(Φ), the preimage f−1

d [ab] consists of d diagonals of Φ. Furthermore, if ab 6= a′b′ then
f−1
d [ab] and f−1

d [a′b′] are disjoint. Thus k = dl. Now suppose r = 2. If ab is a diagonal of
Fd(Φ) with ab 6= v0v1 then f−1

d [ab] consists of d diagonals of Φ. Note that either v0v1 or
v1(v0+ j) is a diagonal of Φ, since otherwise k = 0. If both v0v1 and v1(v0+ j) are diagonals
then f−1

d [v0v1] consists of 2d diagonals of Φ. If only one of v0v1 and v1(v0 + j) is a diagonal
of Φ then v0v1 is not a diagonal of Fd(Φ) and f−1

d [v0v1] consists of d diagonals of Φ. Thus in
either case for r = 2, k = dl + d and the result follows.
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Lemma 22 shows that F ∗
d : G 6=d(n, k; ρ

j) → G∗(j). We next define an “unfurling” map
Ud.

Definition 23. Let d, j ≥ 2. Define Ud : G
∗(j)→ G(n) as follows. Let (Θ, β) ∈ Gr(j), and

denote the vertices of β by v0 < . . . < vr−1. Define Ud(Θ, β) by V (Ud(Θ, β)) = {0, . . . , n−1}
and E(Ud(Θ, β)) =

⋃

ab∈E(Φ)

f−1
d [ab], where f−1

d is given by (26).

Lemma 24. Let d, j ≥ 2. If (Θ, β) ∈ G∗(j) then F ∗
d (Ud(Θ, β)) = (Θ, β).

Proof. Clearly V (Fd(Ud(Θ, β))) = V (Θ) and

E(Fd(Ud(Θ, β))) = fd[E(Ud(Θ, β))] = fd





⋃

ab∈E(Θ)

f−1
d [ab]



 = E(Θ),

so Fd(Ud(Θ, β)) = Θ. Suppose (Θ, β) ∈ Gr(j); denote the vertices of β by vr = v0 < . . . <
vr−1, and let γ be the graph given by (25). By definition γ is a subgraph of Ud(Θ, β). As
in the the proof of Lemma 22, the condition (17) can be used to show that in fact γ is a
component of Ud(Θ, β). Finally since the vertices of γ include the regular d-gon with vertices
v0, v0 + j, . . . , v0 + (d− 1)j, their convex hull contains the origin, so γ = Z(Ud(Θ, β)). Thus
Fd(Z(Ud(Θ, β))) = Fd(γ) = β, completing the proof.

Lemma 25. Let d, j ≥ 2. If Φ ∈ G 6=d(n; ρ
j) then Ud(F

∗
d (Φ)) = Φ.

Proof. Let Φ ∈ Grd(n; ρ
j). It is easily seen that V (Ud(F

∗
d (Φ))) = V (Φ). As above, the center

Z(Φ) has the form (25). Therefore V (Fd(Z(Φ))) = {v0, . . . , vr−1}, and by Definition 23,

E(Ud(F
∗
d (Φ))) = E(Ud(Fd(Φ), Fd(Z(Φ))) =

⋃

ab∈E(Fd(Φ))

f−1
d [ab] = E(Φ).

Theorem 26. Let 1 ≤ k ≤ n− 3, let r ≥ 2 and let 2 ≤ d ≤ n/3 with d|n. Then there exists
a bijection:

Grd(n, k; ρ
j)←→ Gr(j, k/d− δr2).

Proof. By (23) and Lemmas 22, 24 and 25, the bijection is given in one direction by F ∗
d and

in the other direction by Ud.

Lemma 12 and Theorem 26 imply that for d ≤ n/3,

|G 6=d(n, k; ρ
n/d)| = |G2(n/d, k/d− 1)|+

∑

r≥3

|Gr(n/d, k/d)|

=
n+ k − d

d
A

n/d
k/d−1 +

∑

r≥3; n1+...+nr=n/d
k1+...+kr+|{i|ni≥2}|=k/d

n

r

r
∏

i=1

Ani+1
ki

.

(27)

Note that if d > n/3 then |G 6=d(n, k; ρ
n/d)| = 0.
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Figure 3: Examples showing the bijections of Theorem 26.
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5.1. Proof of Theorems 6 and 7

The proof of Theorems 6 and 7 now follows by substituting into equations (11) and (12)
the expressions obtained in (13)–(16) for the number of axially symmetric dissections, and
the values obtained in (22) and (27) for rotationally symmetric dissections.

6. Interesting special cases

The enumeration formulas can be specialized to certain classes of dissections, namely for
specific values of n−k and for specific values of k. The next lemma is equivalent to Catalan’s
k-fold convolution formula [5, 10].

Lemma 27. For any n,m ≥ 0,

∑

i1+...+im=n
i1,...,im≥0

Ci1 · · ·Cim =















m(n+1)(n+2)···(n+m

2
−1)

2(n+m

2
+2)(n+m

2
+3)···(n+m)

Cn+m/2, if m is even

m(n+1)(n+2)···(n+m−1

2
)

(n+m+3

2
)(n+m+3

2
+1)···(n+m)

Cn+(m−1)/2, if m is odd.

Lemma 28. 1. For any n ≥ 2,

An
n−3 + An

n−2 = Cn−2. (28)

2. For any n ≥ 2, q ≥ 2,
∑

i+j=n

Ai+1
i−1A

j+1
j+1−q = An

n−q. (29)

3. For any n ≥ 3,
∑

i+j=n

Ai+1
i−2A

j+1
j−2 = Cn−1 − 2Cn−2. (30)

4. For any n ≥ 3,
∑

i+j=n

Ai+1
i−2A

j+1
j−3 =

(n− 3)(n− 4)

2n
Cn−2. (31)

Proof. Equations (28) and (29) follow from (5), and (30) follows from (28) and from Lemma
27. To prove (31), we show that

(n− 4)An
n−4 = n

∑

i+j=n

Ai+1
i−2A

j+1
j−3. (32)

The result will then follow since An
n−4 = n−3

2
Cn−2. Now the left hand side of (32) is the

number of almost-triangulations marked by a diagonal (i.e., (Φ, β) ∈ G2(n, n − 4) where
V (β) is not of the form {v, [v+1]n}). These can also be enumerated as follows. Choose one
vertex v out of the n vertices, then choose 2 ≤ i ≤ n− 3 and j = n− i. Mark the diagonal
v[v+ i]n, and choose a triangulation of the resulting (i+1)-gon and an almost-triangulation
of the resulting (j + 1)-gon.
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The details of the proof of Theorem 3 for n even are given below. Most of the details of
the other cases are omitted. Note that if

∑

n1+...+nr=n/d
k1+...+kr+|{i:ni≥2}|=k/d

Ani+1
ki
6= 0

for some d ≥ 2, r ≥ 3, then it follows from (21) that 6 ≤ rd ≤ n − k. Thus these terms
vanish in the cases k = n− 3, n− 4 or n− 5.

Applying (6) and (7) when k = n−3 (i.e., for triangulations), recovers the result of Moon
and Moser and the result of Brown. (We omit the details here as the even dihedral case of
Theorem 3, for which the details are provided, is a similar calculation).

Theorem 29. 1. [13] Let n ≥ 3. The number of triangulations of an n-gon (equivalently,
the number of vertices of the (n − 3)-dimensional associahedron) modulo the dihedral
action is

|G(n, n− 3)/D2n| =

{

1
2n
Cn−2 +

1
3
Cn/3−1 +

3
4
Cn/2−1, if n is even

1
2n
Cn−2 +

1
3
Cn/3−1 +

1
2
C(n−3)/2, if n is odd.

2. [4] Let n ≥ 3. The number of triangulations of an n-gon (equivalently, the number of
vertices of the (n− 3)-dimensional associahedron) modulo the cyclic action is

|G(n, n− 3)/Zn| =
1

n
Cn−2 +

1

2
Cn/2−1 +

2

3
Cn/3−1.

Setting k = n− 4 in (6) recovers the following result of the authors.

Theorem 30. [3] Let n ≥ 4, and let g(e)(n) be the number of almost-triangulations of an
n-gon (equivalently, edges of the (n − 3)-dimensional associahedron) modulo the dihedral
action. Then

g(e)(n) =

{

(1
4
− 3

4n
)Cn−2 +

3
8
Cn/2−1 + (1− 3

n
)Cn/2−2 +

1
4
Cn/4−1, if n is even

(1
4
− 3

4n
)Cn−2 +

1
4
C(n−3)/2, if n is odd.

Setting k = n − 4 in (7) gives the result of Theorem 2. The following proposition gives
the details needed to simplify (6), thus completing the proof of the even dihedral case of
Theorem 3. The other cases are easier.

Proposition 31. Let n ≥ 6 and k = n− 5. If n is even then

1

2n
An

k =
(n− 3)2(n− 4)

8n(2n− 5)
Cn−2, (33)

1

2
A

n/2+1
(k−1)/2 =

n− 4

8
Cn/2−1, (34)

1

4
A

n/2+1
k/2 = 0, (35)
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∑

3≤d|n

ϕ(d)

2d
A

n/d+1
k/d−1 =

2

5
Cn/5−1, (36)

∑

2≤d≤n/3

ϕ(d)(n+ k − d)

2dn
A

n/d
k/d−1 = 0, (37)

∑

2≤d|n; r≥3; n1+...+nr=n/d
k1+...+kr+|{i:ni≥2}|=k/d

ϕ(d)

2r

r
∏

i=1

Ani+1
ki

= 0, (38)

1

4

∑

1≤t≤k
n0+...+nt=n/2

k0+...+kt=(k−t)/2

t
∏

s=0

(

Ans+1
ks−1 + Ans+1

ks

)

=
n2 − 2n− 12

16(n− 3)
Cn/2−1, (39)

and
1

4

∑

0≤t≤k
n0+...+nt=n/2−1
k0+...+kt=(k−t)/2

t
∏

s=0

(

Ans+1
ks−1 + Ans+1

ks

)

=
n

16(n− 3)
Cn/2−1. (40)

Proof. Equation (33) follows from (5), and (34) and (35) are immediate. In (36), the only
nonzero summand corresponds to d = 5. To prove (37), note that if d divides n and k then

d = 5, but then A
n/d
k/d−1 = 0 since n/d ≥ 3. Equation (38) follows from the remark before

Theorem 29. For (39), note that if
p
∏

s=0

(Ans+1
ks−1 + Ans+1

ks
) 6= 0, then ks ≤ ns − 1 for all s.

Therefore in this case

(k − t)/2 =
t
∑

s=0

ks ≤
t
∑

s=0

(ns − 1) = n/2− t,

i.e., t ≤ n − k − 2, with equality if and only if ks = ns − 1 for all s. Therefore, using the
notation of Section 3, the nonzero summands in (39) correspond to |G(n, n − 5; τ ; 1)| and
|G(n, n− 5; τ ; 3)|. Now

|G(n, n− 5; τ ; 1)| =
∑

n0+n1=n/2
k0+k1=n/2−3

(

An0+1
k0−1 + An0+1

k0

) (

An1+1
k1−1 + An1+1

k1

)

=
∑

n0+n1=n/2
k0+k1=n/2−3

(

An0+1
k0−1A

n1+1
k1−1 + An0+1

k0−1A
n1+1
k1

+ An0+1
k0

An1+1
k1−1 + An0+1

k0
An1+1

k1

)

.

(41)
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Any nonzero terms in (41) have (k0, k1) = (n0 − 1, n1 − 2) or (k0, k1) = (n0 − 2, n1 − 1).
Therefore by Lemma 28 and by symmetry,

|G(n, n− 5; τ ; 1)| = 2
∑

n0+n1=n/2

(

An0+1
n0−2A

n1+1
n1−3 + An0+1

n0−2A
n1+1
n1−2 + An0+1

n0−1A
n1+1
n1−3 + An0+1

n0−1A
n1+1
n1−2

)

= 2

[

(n− 6)(n− 8)

4n
Cn/2−2 + Cn/2−1 − 2Cn/2−2 +

n− 6

4
Cn/2−2 + Cn/2−2

]

.

Next by Lemma 27,

|G(n, n− 5; τ ; 3)| =
∑

n0+n1+n2+n3=n/2

(

An0+1
n0−2 + An0+1

n0−1

) (

An1+1
n1−2 + An0+1

n0−1

) (

An2+1
n2−2 + An0+1

n0−1

) (

An3+1
n3−2 + An0+1

n0−1

)

=
∑

n0+n1+n2+n3=n/2

Cn0−1Cn1−1Cn2−1Cn3−1 =
2n− 12

n
Cn/2−2.

Equation (39) now follows by simplifying these expressions and using the relation Cn/2−2 =
n

4(n−3)
Cn/2−1. A similar argument proves (40).

The proof of Theorem 3 now follows by applying Proposition 31 and Theorems 6 and 7.
The proof of Theorems 4 and 5 proceeds along similar lines. For Theorem 4, note that if
|Gr(n/d, k/d− δr2)| 6= 0 then either r = 2 and d = 2; or r = 2 and d = 3; or r = 3 and d = 2
(see Figure 3). The last of these cases can be computed using (20):

|G3(n/2, (n− 6)/2− 3 + 3)| = (n/2− 2)A
n/2
n/2−3 = (n/2− 2)Cn/2−2.
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