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Abstract 
 
In a recent paper G. Bhatnagar has given simple proofs of some of Ramanujan’s  continued 
fractions. In this note we show that some variants of these continued fractions are generating 
functions of q  Schröder-like numbers. 
 
1.Introduction 
 
In a recent “tutorial” Gaurav Bhatnagar [3] has given simple proofs of some of Ramanujan’s 
(convergent) q   continued fractions by using an elementary method of Euler. I had not been 
aware of these continued fractions before but came across similar formulae in the study of 
formal power series which are generating functions of Schröder-like numbers and their q 
analogues (cf. [4]). The purpose of this note is to call attention to these connections and to 
give simple proofs of the corresponding continued fractions from this point of view. 
 
A well-known example of the following story is the sequence of little Schröder numbers 

0( ) (1,1,3,11,45,197, )n ns     (cf. [6], A001003) whose generating function  
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The computation of Hankel determinants for Schröder numbers leads to the continued fraction  
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but there are also other interesting continued fractions for the little  Schröder numbers (cf. [6], 
A001003): 
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These will appear as special cases of the following considerations. 
 
 
 
2. Generating functions of q-Schröder-like numbers 
 
Some of the following results have been obtained in [4]. We repeat them in order to make the 
exposition self-contained.   
Let ,x y  be real or complex numbers and z  an indeterminate. 
 
Let the formal power series  
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satisfy the identity  
 ( ) 1 ( ) ( ) ( ).F z xzF z yzF z F qz    (2.2) 
 
This implies that 
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We are mainly interested in the series 
 

 0

( , , )
( ) ( , , ) ( , , ) .n

n

x yF z x y
f z f z x y a n x y z

x y


  

  (2.3) 

 
It is easily verified that it satisfies the equation 
  
 ( , , ) 1 ( , , ) ( ) ( , , ) ( , , ).f z x y xzf qz x y x y zf z x y f qz x y     (2.4) 
 
Its coefficients are given by 
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        with (0, , ) 1.a x y   

 
The sequence  ( ,1, )A n q  is a q  analogue  of the (large) Schröder numbers and the sequence  

 ( ,1, )a n q  is a q  analogue of the little Schröder numbers. The numbers ( ,1, )A n q  have been 

studied from a combinatorial point of view in [1]. We call ( , , )A n x y  and ( , , )a n x y  q 
Schröder-like numbers. They are polynomials in x  and .y  

The numbers ( ,0,1) ( ,0,1) ( )nA n a n C q  are the Carlitz q Catalan numbers. For 1q   they 

reduce to the Catalan numbers 
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Equation (2.2) implies immediately the expansion of the formal power series ( , , )F z x y into a 
continued fraction  
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Using (2.3) it is easily verified that  
 
 ( , , ) 1 ( ) ( , , ) ( , , ).F z x y x y zF z x y f qz x y    (2.6) 
 
Consider the uniquely determined series 
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From the defining equation for ( )F z  we get  
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Comparing coefficients we get  
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and thus 
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The identity 
 
( ) ( , , ) ( , , ) ( , , ),x y h z x qy xh z x y yh qz x y    
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Observing that 
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we see that (2.4) and (2.6) can be written in the form 
 
 ( , , ) 1 ( ) ( , , ) ( , , )F z x y x y zF z x y f qz x y    (2.12) 
and 
 ( , , ) 1 ( , , ) ( , , ).f z x y yzf z x y F z x qy   (2.13) 
 
The last line follows from (2.3) and (2.11): 
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We shall also need the formula 
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For the proof it suffices to show that 
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satisfies 
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or equivalently 

( ) ( ) ( 1) ( )( 1),k k k k k kq x y q x q y x q x q y q       
 

which is obviously true. 
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Let now y  also be an indeterminate. Then we can give another characterization of ( , , ) :f z x y  
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Here as usual   1; (1 )(1 ) (1 ).k

k
xz q xz qxz q xz     

 
To prove this observe that (2.14) implies 
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and thus also 
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If we set in this equation   
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with a formal power series 
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as a formal power series in y  whose coefficients are formal power series in .z  
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 is a q  binomial coefficient. 

Thus ( , , )H z x y  is a formal power series in z  whose coefficients are polynomials in .y  
Therefore the right-hand side of (2.17) is also a formal power series in z  whose coefficients 
are polynomials in .y  Therefore it is possible in (2.17) to replace the indeterminate y  by a 
real or complex number. 
 
Comparing (2.20) with (2.10) we see that 
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Formula (2.26) is a formal power series version of  [2], Entry 9. 

For ( , ) ( , )x y q q   we have ( , , ) 1h z q q   and 
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In this case (2.26) reduces to a well-known identity of Cauchy. 
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3. Associated continued fractions 
 
From the results of [4], (3.20) (there is a typo; it should read 1( ) ( (1 ) )n ns n q x q q y   ) we 
can deduce the Jacobi type continued fraction for ( , , )f z x y  which we state without proof: 
 

2 3 2 2 6 3 2

2 2 3
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But here we are interested in other continued fractions. 
 
 
a) From (2.12) and (2.13) we get 
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This gives the following continued fraction for ( , , ) :f z x y  
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 (3.3) 

which generalizes (1.6). 
 
Remark 
 
This and the other results about continued fractions are of course well known and due to 
Ramanujan who essentially  developed the right-hand side of (2.24) into a convergent 
continued fraction of the form (3.3).    The only new fact if anything in our approach is the 
connection with q  analogues of Schröder numbers. We are not interested in convergence 
questions and use only formal power series in z  instead of  convergent power series in .q  In 
this sense (3.3) can also be found in [2], (13.5) and [3], (6.5), where  in our notation 

( , , )f z qx qy  instead of ( , , )f z x y  has been used.  
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b) Another continued fraction for ( )f z  which is related to [3], (7.1) is 
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which generalizes (1.4). 
 
This is an immediate consequence of (2.18). 
 
 
Remark 
  
Note that (3.4) is essentially Touchard’s continued fraction which has been studied by Helmut 
Prodinger in [5]. We get  
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By (2.4) or by (2.10) we derive that 
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In our setting this follows from (2.26) since  
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c) Finally we derive the analogue of (1.5) (see [2], Entry 15, or [3], (5.3)) 
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This implies (3.8). 
 
As a special case we get 
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Note that for the famous Rogers-Ramanujan continued fraction 
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 both formulae (2.10) and (2.17) coincide. 

 
For the little q  Schröder numbers the corresponding continued fractions are 
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