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2 Isoperimetric Sequences for Infinite Complete Binary

Trees, Meta-Fibonacci Sequences and Signed Almost

Binary Partitions

L. Sunil Chandran∗ Anita Das∗ Frank Ruskey †

Abstract

In this paper we demonstrate connections between three seemingly unrelated con-
cepts.

1. The discrete isoperimetric problem in the infinite binary tree with all the leaves
at the same level, T∞: The n-th edge isoperimetric number δ(n) is defined to be
min|S|=n,S⊂V (T∞) |(S, S)|, where (S, S) is the set of edges in the cut defined by S.

2. Signed almost binary partitions: This is the special case of the coin-changing prob-
lem where the coins are drawn from the set {±(2d−1) : d is a positive integer }.
The quantity of interest is τ(n), the minimum number of coins necessary to make
change for n cents.

3. Certain Meta-Fibonacci sequences: The Tanny sequence is defined by T (n) =
T (n−1−T (n−1)) + T (n−2−T (n−2)) and the Conolly sequence is defined by
C(n) = C(n−C(n−1))+C(n−1−C(n−2)), where the initial conditions are T (1) =
C(1) = T (2) = C(2) = 1. These are well-known “meta-Fibonacci” sequences.

The main result that ties these three together is the following:

δ(n) = τ(n) = n+ 2 + 2 min
1≤k≤n

(C(k)− T (n− k)− k).

Apart from this, we prove several other results which bring out the interconnections
between the above three concepts.

Keywords: binary tree, isoperimetric properties of graphs, meta-Fibonacci sequences,
partitions of an integer.
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Figure 1: The leftmost part of the infinite binary tree T∞ with all leaves at the same level.

1 Introduction and Background

In this paper we consider three well-studied, but seemingly unrelated concepts and bring
out the interconnections between them. We begin by describing each concept, together with
some of its background.

1.1 Discrete Isoperimetric Problem on Infinite Binary Trees

Let G = (V,E) be a graph. For X ⊆ V (G), a cut (X,X) in G is defined as the set
{(u, v) ∈ E(G)|u ∈ X, v ∈ V − X}. The n-th edge isoperimetric number of a graph G,
denoted δ(n,G) is the least number of edges in any cut (X,X) where |X| = n. For finite
graphs, we take 1 ≤ n ≤ |V (G)|. In the case of infinite graphs, δ(1, G), δ(2, G), . . . , forms
an infinite sequence.

The discrete isoperimetric problems form a very useful and important subject in graph
theory and combinatorics. See [6], Chapter 16 for a brief introduction on isoperimetric
problems. For a detailed treatment see the book by Harper [9]. See also the surveys by Leader
[12] and by Bezrukov [2, 3] for a comprehensive overview of work in the area. Isoperimetric
problems are typically studied for graphs with special (usually symmetric) structure. The
study of isoperimetric properties of binary trees was initiated by Otachi et al. [15] and
continued in [4, 5].

Define the infinite binary tree T∞ whose leaves are all at the same level, as shown in
Figure 1. In this paper we will study the edge isoperimetric sequence of T∞. We will use
δ(n) to denote δ(n, T∞). A typical cut in T∞ is illustrated in Figure 2.

We will also study two natural variations of the edge isoperimetric problem on T∞. The
first one is by restricting X to be connected i.e., we minimize over subsets X of V (T∞),
where X induces a subtree and |X| = n. Then the minimum value is called the n-th
connected edge isoperimetric number and is denoted by δC(n). In Figure 3, on the right we
have illustrated a subset X of vertices with |X| = 24, inducing a subtree in T∞, such that
|(X,X)| = δC(24) = 2.

The second variation is by requiring that the infinite set X be connected. It is easy to see
that this condition is equivalent to restricting X to induce a disjoint collection of complete
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Figure 2: A subset S of T∞ with |S| = 24 and |(S, S)| = 20. The numbers on the nodes are
fS(v) from section 3.2.
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Figure 3: On the left: a subset illustrating δP (24) = δP (15 + 7+ 1+ 1) = 4. On the right: a
subset illustrating δC(24) = δC(31− 7) = 2.

binary trees with all leaves at the lowest level of T∞. In this case the minimum value is
called the n-th co-connected isoperimetric number and is denoted by δP (n).

1

In Figure 3, on the left we have illustrated a subset X of vertices with |X| = 24, with
X inducing a subtree in T∞, such that |(X,X)| = δP (24) = 4. Note that X consists of a
collection of complete binary trees with all leaves at the lowest level of T∞.

1.2 Almost binary partitions: A special case of coin changing

problem

We can state the well-known coin changing problem as follows: Let F be a subset of
integers, i.e. F ⊆ Z. Given a positive integer n, find the smallest k such that n can be
partitioned in to k parts, such that each part belongs to F . In other words, we require a
partition of n, of the form n =

∑

1≤i≤k ai, where ai ∈ F , for the smallest possible k. Note
that here we do not assume that ai 6= aj for i 6= j. A binary partition of a number n is
one that has all parts of the form 2k, i.e. F = {2k : k is a non-negative integer }. Several

1 P in δP stands for ‘positive’. It is chosen to be consistent with the notation τP from section 1.2.
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papers have been written about binary partitions of integers, e.g. Booth [7], Prodinger [16]
and Sawada [17].

We call a partition of n of the form
∑

1≤i≤k ai an ‘almost binary partition’ (ABP) if each

ai ∈ {2d− 1 : d is a positive integer }, and a signed almost binary partition (SABP) if each
ai ∈ {±(2

d − 1) : d is a positive integer }.
The number 2ℓ − 1 occurs so often in the rest of this paper that we adopt the following

two notations for it: νℓ = 2ℓ − 1 or ν(ℓ) = 2ℓ − 1. Furthermore we extend the notation to
sets, so that if P is a multi-set of natural numbers, then

ν(P ) =
∑

i∈P

νi =
∑

i∈P

(2i − 1).

Note that a SABP of n is specified by two multisets P (for positive) and N (for negative)
such that

n = ν(P )− ν(N) =
∑

i∈P

(2i − 1)−
∑

i∈N

(2i − 1).

Sometimes we refer to the pair (P,N) as the partition. We also use the notation |(P,N)|
to mean |P |+ |N |. Note that an ABP of n can be thought of as an SABP, (P,N) of n where
N = ∅.

We also define the connected SABP (abbreviated as CABP) of n to be a SABP (P,N)
of n, where |P | = 1. The definition of CABP may look somewhat unnatural, but it helps
crucially in establishing the interconnections among the three problems studied in this paper.

Define τ(n) to be the least number of parts in any SABP of n. Similarly define τC(n)
and τP (n) to be the least number of parts in any CABP and ABP of n, respectively. (The P
in notation τP stands for positive, since all terms are required to be positive in an ABP). If
a SABP (ABP or CABP) has the least number of parts then we will say that it is minimal ;
it is one that minimizes |(P,N)| = |P |+ |N |.

1.3 Meta-Fibonacci sequences

In this paper we will study two of the most well-studied Meta-Fibonacci sequences: The
Tanny sequence, defined by S. Tanny [18] and the Conolly sequence defined by B. W. Conolly
[8]. The Tanny sequence is given by the following recurrence relation, where T (1) = T (2) = 1.

T (n) = T (n− 1− T (n− 1)) + T (n− 2− T (n− 2)), n > 2 (1)

The Conolly sequence is given by the following recurrence relation, where C(1) = C(2) =
1.

C(n) = C(n− C(n− 1)) + C(n− 1− C(n− 2)), n > 2 (2)

In [11] it is proven that the ordinary generating functions T (z) and C(z) of the Tanny
and Conolly numbers are

4



n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

δC(n) 1 2 1 2 3 2 1 2 3 4 3 2 3 2 1 2 3 4 5 4
δP (n) 1 2 1 2 3 2 1 2 3 2 3 4 3 2 1 2 3 2 3 4
δ(n) 1 2 1 2 3 2 1 2 3 2 3 2 3 2 1 2 3 2 3 4

T (n) 1 1 2 2 2 3 4 4 4 4 5 6 6 7 8 8 8 8 8 9
C(n) 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12

Table 1: The values of δ(n), δP (n), δC(n), T (n) and C(n) for 1 ≤ n ≤ 20.

T (z) = z
∑

n≥0

n
∏

k=1

(z + z2
k

) and C(z) =
z

1− z

∏

n≥0

(1 + z2
n−1) (3)

1.4 Our Results

In this paper we prove several results which bring out the interconnections among the three
problems described in the previous sections. The main result is the following:

δ(n) = τ(n) = n + 2 + 2 min
0≤k≤n

(C(k)− T (n− k)− k)

The following result which was derived as an intermediate step in proving the main result,
is of independent interest. This result allows to prove a conjecture of J. Arndt, from OEIS
[14], regarding the generating function of the sequence, δP (n), n ∈ N \ {0}.

δP (n) = 2C(n)− n

For all n ≥ 1, it is clear that δ(n) ≤ δC(n) and δ(n) ≤ δP (n). See Table 1 for the values
of these sequences for small values of n, along with the corresponding values of T (n) and
C(n). In the OEIS, these are sequences A005811, A100661, A192099, A006949 and A046699,
respectively [14].

In Table 1, it is remarkable how often the three values δC(n), δP (n), and δ(n) are identical.
The first value of n for which δ(n) is strictly less than both δC(n) and δP (n) is when n = 43;
then δ(43) = 3 and δC(43) = δP (43) = 5. The first such even value is n = 282. However, the
number of times that δC(n) 6= δP (n) for 1 ≤ n ≤ 104 is 7187, so the true behavior is only
becoming apparent when n is large.

In tune with the literature on discrete isoperimetric problems, the most important ques-
tion here is to find an explicit formula for δ(n) in terms of n. But as in the case of many
other graph classes, this looks extremely difficult at this stage. So it makes sense to seek
a better understanding of δ in terms of the easier sequences δP and δC . (We will show in
this paper that these latter sequences are much easier to deal with than δ: For example,
δP (n) and δC(n) can be computed in O(logn) time, whereas as of now, we have only an
O(n) time algorithm to compute δ(n).) In this context, the following questions become
relevant: What would be the necessary and sufficient conditions for a number n to satisfy

5



the equality δ(n) = δP (n) or δ(n) = δC(n)? Let X = {n ∈ N \ {0} : δ(n) = δP (n)} and
Y = {n ∈ N \{0} : δ(n) = δC(n)}. Also let Xt = {n ∈ X : n < t} and Yt = {n ∈ Y : n < t}.
We show that there is a one to one correspondence between X2k and Y2k , for k ≥ 2. It also
follows that if we know the numbers in X2k then we can also get the numbers in Y2k . It
follows that it is sufficient to study one of these two sets.

We are still unable to characterize the numbers that belong to X , but we give a non-trivial
sufficient condition for a number n to belong to X , in terms of the nature of the optimal
ABP of n. Suppose n has an ABP, µi1 +µi2 + . . . µit with i1 > i2 > . . . > it and ij ≥ ij+1+k
for 1 ≤ j ≤ t − 1, then we say that this ABP of n satisfies the gap k condition. We prove
that δ(n) = δP (n), if n has an ABP satisfying the gap-3 condition. It is not possible to
replace the gap-3 condition with gap-2 condition: there exist numbers n which satisfy the
gap 2 condition, but with δ(n) 6= δP (n).

The gap-3 theorem discussed in the previous paragraph turned out to have an unex-
pected consequence: We could improve the previously best known lower bound on the edge
isoperimetric peak of Bd, the complete binary tree of depth d, studied in [15, 4, 5].

2 Preliminaries on (signed) almost binary partitions

2.1 Almost Binary Partitions

Recall that τP (n) is the least number of parts possible in an ABP of n. For example τP (12) =
4 since 12 = 3+3+3+3 = 7+3+1+1, and there is no way to write 12 using fewer parts of
the right form. As mentioned before, this is an instance of a “coin-changing problem” (make
change using the least number of coins), where the denominations of coins are taken from
the set A = {1, 3, 7, . . . , 2k − 1, . . .}. A greedy solution to the coin changing problem is one
where the largest possible coin is successively chosen. For our earlier example, the partition
7 + 3 + 1 + 1 would be the one chosen by the greedy algorithm. We define Greedy(n) to be
the multi-set of exponents that are used in finding the greedy partition of n. For example
Greedy(12) = {3, 2, 1, 1}, since 7 = 23 − 1, 3 = 22 − 1, and 1 = 21 − 1.

We will show that greedy algorithm outputs the least number of coins if the denomi-
nations of coins are from the set A = {2d − 1 : d is a positive integer }. Let G∞ be the
greedy algoithm for the coin changing problem, when the denominations come from the
set A = {2d − 1 : d is a positive integer } and let G∞(n) = |Greedy(n)| be the number
of parts in the partition of n returned by the algorithm G∞. Also for k ∈ N \ {0}, let
Gk denote the greedy algorithm when the denominations belong to the set {2d − 1 : d ≤
k, and d is a positive integer } and let Gk(n) be the number of parts in the partition on n,
returned by the algorithm Gk.

Lemma 2.1. The greedy algorithm solves the almost binary partition problem. In other
words, τP (n) = |Greedy(n)|.

Proof. According to a result of Magazine, Nemhauser, and Trotter [13] (also described in
the book of Hu and Shing [10]), given that the greedy algorithm Gk gives optimal solutions,
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the greedy algorithm Gk+1 gives optimal solutions if and only if there exist pk and ρk such
that

1 +Gk(ρk) ≤ pk, where 2k+1 − 1 = pk(2
k − 1)− ρk with 0 ≤ ρk < 2k − 1.

Solving the “where” condition, we get pk = 3 and ρk = 2(2k−1 − 1). The greedy ABP
for ρk = 2(2k−1 − 1) is (2k−1 − 1) + (2k−1 − 1) and thus Gk(ρk) = 2. Thus the inequality
1+Gk(ρk) ≤ pk is satisfied for all k. Clearly greedy algorithms G1, G2 etc give the optimum
solution. The result follows by induction.

The following lemma implies that in the greedy solution there are at most two equal
values. Furthermore, if there are two equal values, then they are the two smallest values.

Lemma 2.2. Let d1 ≥ d2 ≥ · · · ≥ ds be a sequence of positive integers such that
∑

1≤i≤s ν(di) =
n. Then

1. {d1, d2, . . . , ds} = Greedy(n) if and only if d1 > d2 > . . . > ds−1.

2. max Greedy(n) = ⌊log(n+ 1)⌋.

3. If maxGreedy(n) = d1, then n ≤ 2d1+1 − 2.

Proof. We will show that

2⌊log(n+1)⌋ − 1 ≤ n ≤ 2(2⌊log(n+1)⌋ − 1). (4)

Note that

n + 2 ≤ 2⌈log(n+2)⌉ ≤ 2⌊log(n+2)⌋+1.

But, unless n + 2 = 2k, we have ⌊log(n + 2)⌋ = ⌊log(n + 1)⌋. Thus, if n + 2 6= 2k,
n+2 ≤ 2⌊log(n+1)⌋+1 which implies the right inequality in (4). On the other hand, if n+2 = 2k,
then an easy calculation shows that the right inequality is, in fact, an equality.

These inequalities in (4) show that the integer first chosen by the greedy algorithm is
2⌊log(n+1)⌋ − 1 and therefore max(Greedy(n)) = ⌊log(n + 1)⌋. From this, part (2) of the
Lemma immediately follows, and also part (3) follows from the second inequality in (4). We
also see from inequality (4) that 2⌊log(n+1)⌋ − 1 can be chosen at most twice. Furthermore, if
it is chosen twice, then the algorithm terminates. Now to formally prove part (1) of Lemma,
we can observe that Greedy(n) = {ν⌊log(n+1)⌋}∪Greedy(n− ν⌊log(n+1)⌋) and apply induction.
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2.2 Signed almost binary partitions

Let (P,N) be a SABP of n. If (P,N) is a minimal SABP then by Lemma 2.1 we may assume
that P = Greedy(ν(P )) and N = Greedy(ν(N)).

We say that a SABP is in normal form if the following three conditions are met:

(A) P ∩N = ∅.

(B) P = Greedy(ν(P )) and N = Greedy(ν(N)).

(C) max(P ) ∈ {⌊log n⌋, 1 + ⌊log n⌋}.

Theorem 2.3. Every positive integer n has a minimal SABP in normal form.

Proof. Let d = ⌊log n⌋ and let (P,N) be an SABP of n. We first claim that if (P,N) satisfies
(A) and (B) and if max(P ) = d+1+c for some c > 0, then d+c ∈ N . To see this first note that
ν(P ) > ν(N) and since P = Greedy(ν(P )) and N = Greedy(ν(N)), max(P ) ≥ max(N).
Now if d+ c /∈ N , then in view of (A) we can infer that max(N) ≤ d+ c− 1. By Lemma 2.2
(3), ν(N) ≤ 2d+c − 2. So

n = (2d+c+1 − 1) +
∑

j∈P\{d+c+1}

νj − ν(N) (5)

≥ (2d+c+1 − 1)− 2d+c + 2 > 2d+c ≥ 2⌊logn⌋+1 (6)

which is impossible.
We define the following two operations which operate on a SABP of n and transform it

into another SABP of n.
Operation 1: Replace P by Greedy(ν(P )) and N by Greedy(ν(N)). If the operand (P,N)

was a minimal SABP of n, then clearly the new SABP also will be a minimal SABP of n.
Operation 2: For (P,N) satisfying (A) and (B) and with max(P ) = d+ 1 + c, for some

c > 0 we define the following operation: (Note that by the claim proved above, d+ c ∈ N .)

P ′ ← (P \ {d+ c+ 1}) ∪ {d+ c}
N ′ ← (N \ {d+ c,min(N)}) ∪ {min(N)− 1,min(N)− 1}

It is easy to check that ν(P ) − ν(N) = ν(P ′) − ν(N ′) and that |P | = |P ′|. In the
transformation for N ′ the 0s are deleted if min(N) = 1, but we still have |N ′| ≤ |N |. Clearly
if the operand (P,N) was a minimal SABP of n, then (P ′, N ′) also will be a minimal SABP
of n. We replace (P,N) with (P ′, N ′).

The transformation of a minimal SABP (P,N) to a normal SABP is achieved by the
following procedure: Since ν(P ) ≥ n, if (P,N) satisfies (B), and if max(P ) /∈ {d, d+1}, then
max(P ) = d+ 1 + c for some c > 0, by Lemma 2.2.

Step 1: Apply operation 1 on (P,N). If max(P ) ∈ {d, d + 1}, then stop and output
(P,N).
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Step 2. Apply operation 2 on (P,N) and go to step 1.
Note that for a minimal SABP, property (A) is trivially valid. It is easy to verify that

operation 2 can be applied on (P,N) in step 2. After each execution of step 1 and step 2,
(P,N) remains to be a minimal SABP of n. Note that each time step 2 is executed, ν(P )
reduces by 2d+c > 2d. Since in any minimal SABP (P,N) of n, ν(P ) ≥ n, the procudure
should end after a finite number of steps. When the procedure ends, (P,N) clearly satisfies
properties (B) and (C).

Note that condition (C) is not redundant. Although it is always true that (when (B) is
satisfied) max(P ) ≥ ⌊lg n⌋, for a minimal SABP it is not always the case that max(P ) ≤
1 + ⌊lg n⌋. For example, 5 = 15− 7− 3 is a minimal SABP.

3 Isoperimetric problems on T∞

3.1 Ralation with Tanny and Conolly Sequences

The first glimpse of the relationship between meta-Fibonacci sequences and the discrete
isoperimetric problem appreared in a paper by Bharadwaj, Chandran and Das [5], where they
related Tanny sequence with the connected edge isoperimetric sequence of the infinite binary
tree with all leaves at the same level T∞. Though an independent proof was presented there,
the result can also be obtained using the combinatorial interpretation of Tanny sequences
developed earlier by Jackson and Ruskey [11]. For a induced forest F of T∞, we use L(F )
to denote the number of leaves of F at the lowest level of T∞.

Theorem 3.1. For all n ≥ 1,

δC(n) = n+ 2− 2T (n). (7)

Proof. Let S be a subtree of size n of T∞. If v is a vertex in a graph, then by d(v) we denote
the degree of v in T∞. Note that

∑

v∈S

d(v) = L(S) + 3(n− L(S)) = 3n− 2L(S).

On the other hand, because S is a tree,

∑

v∈S

d(v) = 2(n− 1) + |(S, S)|.

Observe that
|(S, S)| = 3n− 2L(S)− 2n+ 2 = n+ 2− 2L(S).

Thus any subtree S that maximizes L(S) will be such that |(S, S)| = δC(n). In Jackson
and Ruskey [11] it is shown that T (n) = max|S|=nL(S), where S is a subtree of T∞.
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Figure 4: The tree/forest F0(40), showing the substructure F0(9) as darkened nodes.

Our next aim is to get a similar relation between Conolly number C(n) and the co-
connected edge isoperimetric number δP (n). To do this it is essential to establish that
δP (n) = τP (n).

Definition 3.2. The P-forest of an ABP (P, ∅): Let (P, ∅) be an ABP of n. We define
the P-forest F of (P, ∅) to be a forest induced in T∞ as the disjoint union of |P | complete
binary trees, such that for each t in the multi-set P we have a tree of size 2t− 1 in the forest
F with its root at height t from the leaf level, and having all their leaves at the lowest level
of T∞. Thus if F is the P-Forest of (P, ∅), |F | = n, F is connected in T∞ and |(F, F )| = |P |.

Lemma 3.3.
δP (n) = τP (n). (8)

Proof. Clearly every ABP (P, ∅) of n has a P-forest F ⊂ T∞ such that |F | = n, F inducing
a connected subgraph in T∞ and |(F, F )| = |P |. It follows that δP (n) ≤ τP (n). Conversely,
any subset of vertices with |S| = n and S connected in T∞, is such that S comprises of a
collection of complete binary trees with all leaves at the lowest level in T∞. Such a subset S
can be mapped into an ABP (P, ∅) by mapping each complete tree of size νj to an integer
j ∈ P ; with the result that |S| = n = ν(P ) and |(S, S)| = |P |. Thus τP (n) ≤ δP (n). The
Lemma follows.

We denote by LP (n) = L(F ) where F is the P-forest of the ABP (Greedy(n), ∅). We
will first prove LP (n) = C(n). For this we need a result from [11], to state which we need
the following notions.

Let F∞ be the infinite forest consisting of the infinite sequence of complete binary trees
B0, B1, B2, . . ., where for i ≥ 1, Bi is the complete binary tree of depth i, and B0 is the single
vertex tree. (Depth of a complete binary tree is the number of nodes in the path from the
root to one of its leaves. Note that for i ≥ 1, Bi contains νi vertices. Thus B1 is also a single
vertex tree.) Note that F∞ can be seen as an induced forest of T∞. It is obtained when we
remove the (infinite) path from the parent of the first leaf of T∞ to the root of T∞. (See
Figure 4: What should be removed from T∞ to get F∞ is shown using dotted lines.) In the
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rest of this sectin, when we mention F∞ we would be refering to this induced forest of T∞.
Also the complete binary tree Bi will always refer to some induced complete binary tree of
depth i in T∞, with its root at the ith level of T∞ and all its leaves at the lowest level of T∞.

The vertices of F∞ are numbered as follows: If u ∈ Bi and v ∈ Bj with i < j, then u is
given a smaller number than v. The vertices within Bi are numbered in the pre-order i.e.,
each vertex in Bi is given a smaller number than the number given to any of its descendant
and the left subtree is numbered before the right subtree. We denote by F(n), the subforest
of F∞ induced by the first n vertices with respect to this numbering. The following result is
from [11].

Lemma 3.4 ([11]). L(F(n)) = C(n).

A pre-order prefix of Bk having x nodes, denoted as PP (x,Bk) is defined as the sub-tree
of Bk formed by the first x nodes visited when a pre-order traversal of Bk starting from the
root is done. It is easy to verify that for x′ ≤ x, PP (x′, Bk) is contained in PP (x,Bk). Note
that PP (k− 1, Bk) is the path from the root of Bk to the parent of the left most leaf of Bk.
This path is called the primary path of Bk. The following lemma is easy to verify.

Lemma 3.5. Let x ≥ k − 1. Then L(PP (x,Bk)) = L(F(x− (k − 1))).

Proof. Let F ′ is the forest obtained by removing PP (k − 1, Bk) from PP (x,Bk). Then
L(PP (x,Bk)) = L(F ′) = L(F(x− (k − 1))).

Lemma 3.6. For all n ≥ 1,
LP (n) = L(F(n)).

Proof. The proof is by induction on n. For n = 1, 2 etc, it is easy to check that the Lemma
holds. Suppose that LP (j) = L(F(j)) for all j < n.

Clearly, there exists a unique positive integer k such that, n = 1 +
∑

1≤i≤k−1 νi + x,

where 0 ≤ x < νk. Let Bt =
⋃

0≤i≤t Bi. Clearly F(n) = Bk−1 ∪ PP (x,Bk). Note that

n = 2k − k + x. We consider two cases based on how x compares with k − 1.
Case I. When x < k − 1.

Since νk−1 ≤ n = 2k − k + x < 2k − 1 = νk, the greedy algorithm will first select νk−1,
and thus the corresponding P-forest will contain the complete binary tree Bk−1. Therefore
we get the following:

LP (n) = L(Bk−1) + LP (n− νk−1) (9)

On the other hand since F(n) = Bk−1 ∪ PP (x,Bk) = Bk−1 ∪ Bk−2 ∪ PP (x,Bk), we
have L(F(n)) = L(Bk−1) + L(Bk−2) + L(PP (x,Bk)). But note that L(PP (x,Bk) = 0 =
L(PP (x,Bk−1) since x < k − 1. Thus L(F(n)) = L(Bk−1) + L(Bk−2) + L(PP (x,Bk−1)) =
L(Bk−1) + L(F(n − νk−1)) since F(n − νk−1) = Bk−2 ∪ PP (x,Bk−1). Now, by induction
hypothesis we have L(F(n−νk−1)) = Lp(n−νk−1). It follows from Equation 9 that Lp(n) =
L(F(n).
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Case II. When x ≥ k − 1.
Since νk+1 > n = 2k − k + x ≥ 2k − 1 = νk, the greedy algorithm picks up νk first, and

thus the corresponding P-forest contains Bk. Therefore,

LP (n) = L(Bk) + LP (x− (k − 1)) = 2k−1 + LP (x− (k − 1)) (10)

On the other hand L(F(n)) = L(Bk−1) + L(PP (x,Bk). We note that L(Bk−1) = 1 +
∑

1≤i≤k−1 2
i−1 = 2k−1. Recalling that by Lemma 3.5, L(PP (x,Bk)) = L(F(x− (k − 1)), we

get L(F(n)) = 2k−1+L(F(x−(k−1))). By induction hypothesis we have L(F(x−(k−1)) =
LP (x− (k − 1)). It follows from Equation 10 that LP (n) = L(F(n)).

Corollary 3.7.
LP (n) = C(n)

Proof. Follows from Lemma 3.6 and Lemma 3.4.

Theorem 3.8.
δP (n) = 2C(n)− n. (11)

Proof. In T∞, every node is either a leaf or has two children. Let S be a subset of vertices
of T∞ inducing a P-forest corresponding to a minimal ABP of n. Clearly δP (n) = c, the
number of trees in the forest induced by S. Clearly L(S) + 3(n − L(S)) =

∑

v∈S d(v) =
2(n− c) + c = 2n− δP (n). From this, it is easy to see that Lp(n) = L(S) = (n + δP (n))/2.
Using Corollary 3.7, we obtain δP (n) = 2C(n)− n, as desired.

The following Theorem was conjectured to be true by Jeorg Arndt [1] (see OEIS A100661).

Theorem 3.9. The generating function of δP (z) is

z

1− z

(

2
∏

k≥1

(1 + z2
k−1)− (1− z)

)

Proof. This follows from (11) and the known generating function (3) for C(n).

3.2 Relation with SABP, ABP and CABP

In this section we show that δ(n) = τ(n) and δC(n) = τC(n), among other things.
3.2.1 To prove δ(n) ≥ τ(n)

Let S be a set of vertices of T∞, with |S| = n. We will show that |(S, S)| can be expressed
as the number of parts in a SABP of n. Define a function fS : V (T∞) → N as follows. Let
ℓ(v) denote the level number of v in T∞. If v is a leaf of T∞, we take ℓ(v) = 1.

fS(v) =











ν(ℓ(v)) if v ∈ S and par(v) 6∈ S,

−ν(ℓ(v)) if v /∈ S and par(v) ∈ S,

0 otherwise.
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(See figure 2, where we have illustrated the function fS for a subset S with |S| = 24.)

Theorem 3.10. For any subset S of V (T∞), with |S| = n, we have:

n =
∑

v∈V (T∞)

fS(v) and

|(S, S)| = |{v ∈ V (T∞) : fS(v) 6= 0}|. (12)

If S is connected, then there is exactly one positive term in (12).

Proof. The second equality is true because fS(v) 6= 0 precisely when (v, par(v)) is an edge
of the cut (S, S).

To prove the first equality think of labeling each node of T∞ by a multiset of +1s and
−1s. If f(v) = ν(ℓ(v)) then add a label +1 to each of the ν(ℓ(v)) nodes in the subtree rooted
at v. If f(v) = −ν(ℓ(v)) then add a label −1 to each of the ν(ℓ(v)) nodes in the subtree
rooted at v. Clearly the sum of the labels in each multiset, summed over all the nodes in
T∞, is equal to

∑

v∈V (T∞) fS(v). However, we claim that the sum of the labels at a node v is

+1 if v ∈ S and is 0 if v 6∈ S. To see this, consider the (infinite) path that starts at v and
then successively contains each ancestor of v.

If v ∈ S then the path will contain subpaths of nodes that are in S, then not in S, and
so on, alternately, until reaching the infinite subpath of nodes not in S. Each time that a
subpath changes status, a +1 or a −1 was added to the labels of v. Since the number of
such changes is odd, and the first change corresponds to a +1, the total sum is +1.

If v 6∈ S, then a similar argument shows that the total sum of the labels is 0. Thus the
sums of the labels over all nodes is equal to n.

If S is connected, then since it must be a tree, there is only one node v such that v ∈ S
and par(v) 6∈ S. Thus there is only one positive term in (12).

Corollary 3.11.
δ(n) ≥ τ(n) and δC(n) ≥ τC(n). (13)

Proof. By Theorem 3.10, every S ⊂ T∞ can be mapped to a SABP (P,N) such that |S| =
ν(P )−ν(N) and |(S, S)| = |P |+ |N |, where P = {ℓ(v) : fS(v) is positive }, and N = {ℓ(v) :
fS(v) is negative }. Moreover if S is connected then by Theorem 3.10, |P | = 1, i.e. (P,N)
is a CABP. From this the second part of the Theorem follows.

3.2.2 To prove δ(n) ≤ τ(n)

We now show that the inequality of (13) is in fact an equality.
Just like we define a P-forest corresponding to an ABP (P, ∅) of a positive integer n, now

we will define a tree (more precisely a subtree of T∞) that corresponds to a CABP ({r}, N)
of a positive integer n. (We will assume that N = Greedy(ν(N)), and therefore by part (1)
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of Lemma 2.2, only the smallest number in N can possibly repeat. If it repeats, it repeats
only twice.) We define the C-Tree of ({r}, N) as follows: consider a subtree of T∞ with its
root, say vr, at a height r. Now define a path (vr, vr−1, . . . , vh) starting from vr as follows:
vj−1 is defined to be the right child of vj if and only if j − 1 /∈ N , else it is defined to be the
left child of vj , for r ≥ j ≥ h + 1. If N does not have any repeated members, then h = 1,
else h = t + 1, where t = minN , the repeated (smallest) element in N . Now construct the
C-Tree of ({r}, N) from the subtree rooted at vr by the following procedure: For j = r to
h+1, prune away the subtree rooted at the right child of vj whenever vj−1 is the left child of
vj . If j = h then if h 6= 1 prune away the subtrees rooted at both its children. It is easy to
see that the number of vertices in the tree S constructed using the above method is exactly
νr −

∑

i∈N νi = n, and |(S, S)| = |N |+ 1 = |({r}, N)|.

Theorem 3.12. δC(n) = τC(n).

Proof. Let ({r}, N) be a minimal CABP of n in normal form. Let S be the C-tree of ({r}, N).
By the discussion above, δC(n) ≤ |(S, S)| ≤ |({r}, N)| = τC(n). The Theorem follows, by
combining with Corollary 3.11

Theorem 3.13.
δ(n) = τ(n).

Moreover, for any n there exists a subforest S of T∞ such that |S| = n, |(S, S)| = τ(n) and
such that all the trees in the forest, S, except possibly one are complete binary trees. If (P,N)
is a minimal SABP of n in normal form, the subforest obtained by taking the disjoint union
of the C-tree of ({maxP}, N) and the P-forest of (P \ {maxP}, ∅) is such a subforest.

Proof. In Corollary 3.11 we proved that δ(n) ≥ τ(n). Below we will show that δ(n) ≤ τ(n).
Let (P,N) be a minimal SABP of n. By Theorem 2.3 we can assume that (P,N) is in

normal form. We will show that there is a set S ⊂ V (T∞) where |S| = n and |(S, S)| =
|N |+ |P |, and such that all the trees in S, except possibly one are complete.

If N = ∅ then we simply take disjoint complete binary trees with all leaves at the lowest
level of T∞ of size νj for each j ∈ P . Otherwise, max(P ) > max(N). Since by part (3) of
Lemma 2.2, ν(N) ≤ νmax(N)+1 − 1 < νmax(P ), we infer that ({maxP}, N) is the CABP of
some positive integer n. Let S be the forest consisting of the C-tree of ({maxP}, N) and the
P-forest of the ABP (P − {maxP}, ∅). Cleary |S| = n and |(S, S)| = |P | + |N |. Moreover
since all the trees in a P-forest are complete binary trees with all leaves at the lowest level
of T∞, S can contain at most one tree which is not complete.

Theorem 3.14.

δ(n) = min
0≤v≤n

{δP (v) + δC(n− v)} = n+ 2 + 2 min
0≤v≤n

{C(v)− T (n− v)− v}.

Proof. Clearly δ(n) ≤ min0≤v≤n{δP (v) + δC(n − v)}. By Theorem 3.13, for any n, we can
find a subforest S of T∞ with |(S, S)| = δ(n) such that at most one of its trees is not a
complete binary tree, with all leaves at the lowest level of T∞. Clearly these binary trees
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together form a P-forest S ′ of the ABP of some number v′, where 0 ≤ v′ ≤ n. Also S − S ′

is a connected subtree of T∞. Therefore the number of out going edges from S ′ is at least
δP (v

′) and the number of out going edges from S − S ′ is at least δC(n− v′). It follows that
δ(n) ≥ min0≤v≤n{δP (v) + δC(n− v)}. The second equality follows from (7) and (11).

3.3 Towards a better understanding of δ(n)

Though Theorem 3.14 allows us to express δ(n) in terms of δP (n) and δC(n), it would be
nice to have a better understanding of the sequence δ(n). When we study table 1 containing
values of δ(n), δP (n) and δC(n) for small values of n we cannot fail to notice that for a
remarkably large number of columns in the table, the entry from the third row equals either
the entry in the first row or the second row. That is either δ(n) = δP (n) or δ(n) = δC(n). This
observation motivates us to carefully consider the two sets, X = {n ∈ N \{0} : δ(n) = δP (n)}
and Y = {n ∈ N \ {0} : δ(n) = δC(n)}. We would like to carefully consider the question
of characterising the numbers in X and Y . First we will show that the sets X and Y are
intimately related with each other: There is a one to one correspondence between these sets.
To prove this we need to note some symmetries in the sequences correspoding to δ(n), δP (n)
and δC(n). We explain this by defining the dual of a number:

Definition 3.15. The dual function: Let the function f : N \ {0} → N \ {0} be defined
as follows: If n = νk, for some k ≥ 1, then f(n) = n. Else, f(n) = 3.2d − n − 2, where
d = ⌊log n⌋. We say that f(n) is the dual of n.

Lemma 3.16. The dual of the dual of n equals n. That is f(f(n)) = n.

Proof. If n = νk, for some k ≥ 1, then clearly f(f(n)) = n. Else let n′ = f(n) = 3.2d−n−2,
where d = ⌊log n⌋. Since 2d ≤ n < 2d+1 − 1, clearly 2d ≤ n′ < 2d+1 − 1 also. Thus
⌊log n′⌋ = d = ⌊log n⌋. Thus f(n′) = 3.2d − n′ − 2 = n, as required.

Lemma 3.17. (1) τ(f(n)) ≤ τ(n), (2) τP (f(n)) ≤ τC(f(n)) (3) τC(f(n)) ≤ τP (n).

Proof. If n = νk, for some k ≥ 1, then clearly all the three statements are true, since in this
case f(n) = νk and therefore τ(f(n)) = τP (f(n)) = τC(f(n)) = 1. Now let n 6= νk, for k ≥ 1.
Given a minimal SABP (ABP or CABP) (P,N) of n in normal form, define P ′ and N ′ as
follows.

Let N ′ = P \{max(P )}. Recall that by the definition of normal form, maxP ∈ {d, d+1}
where d = ⌊log n⌋. Now define P ′ as follows:

P ′ =

{

{d+ 1} ∪N if max(P ) = d,

{d} ∪N if max(P ) = d+ 1.
(14)

Note that, if P is a multi-set and max(P ) repeats in P then to get N ′ only one copy of
maxP will be removed from P . Similarly if N already contains d, {d} ∪N will contain one
more copy of d.
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It is easy to see that |(P ′, N ′)| = |(P,N)|. Let (P ′, N ′) correspond to n′. Then n′ =
∑

j∈P ′ ν(j)−
∑

j∈N ′ ν(j). Therefore n+n′ = νd+1+νd = 3 ·2d−2, so that n′ = 3 ·2d−2−n =
f(n), as required. It follows that τ(f(n)) ≤ |(P ′, N ′)| = |(P,N)| = τ(n).

Finally if (P,N) is a ABP then N = ∅ and thus |P ′| = 1 so that (P ′, N ′) is a CABP. If
(P,N) is a CABP then |P | = 1 and thus |N ′| = 0 so that (P ′, N ′) is an ABP. From this we
can infer that τP (f(n)) ≤ τC(n) and τC(f(n)) ≤ τP (n).

Theorem 3.18.

τ(n) = τ(f(n)) and τC(n) = τP (f(n)) and τP (n) = τC(f(n)).

Proof. By Lemma 3.17, we have τ(f(n)) ≤ τ(n). Recalling that by Lemma 3.16, we have
f(f(n)) = n, τ(n) ≤ τ(f(n) also, by applying Lemma 3.17 to f(n). The other equalities
follow by a similar argument.

Theorem 3.19. For all n ≥ 2,

δC(n) = δP (f(n)) and δP (n) = δC(f(n))

and
δ(n) = δ(f(n)).

Proof. This is immediate from Lemma 3.3 and Theorems 3.12, 3.13 and 3.18.

Now we are in a position to state the relation between the two sets X = {n ∈ N \ {0} :
δ(n) = δP (n)} and Y = {n ∈ N \ {0} : δ(n) = δP (n)}. Also define Xn = {k ∈ X : k < n},
and Yn = {k ∈ Y : k < n}.

Theorem 3.20. Let n be a positive integer and let f(n) be its dual. Then,

1. n ∈ X if and only if f(n) ∈ Y.

2. n ∈ Y if and only if f(n) ∈ X .

3. |X2d+1| = |Y2d+1|

Proof. If n ∈ X , then δ(n) = δP (n). But by Theorem 3.19, we have δ(n) = δ(f(n)) and
δP (n) = δC(f(n)). It follows that δC(f(n)) = δ(f(n)), i.e. f(n) ∈ Y . The second statement
can be proved by a similar argument. Finally note that if 2d ≤ n ≤ 2d+1 − 1 we also have
2d ≤ f(n) ≤ 2d+1−1. f(2d) = 2d+1−2, f(2d+1) = 2d+1−3, . . . , f(2d+1−2) = 2d and so on,
while f(2d+1−1) = 2d+1−1. We infer from first and second statements that |X2d+1| = |Y2d+1|.
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The above Theorem implies that if we can characterise the numbers in the set X we can
also characterise the number in the set Y . Now we discuss an algorithmic motivation for
studying the sets X and Y .
Complexity of Computing δ(n): A motivation for studying the set X and Y: How
efficiently can we compute δP (n), δC(n) and δ(n)? In view of Lemma 2.1, we know that

δP (n) = 1 if n = νk for some k ≥ 1 (15)

= 1 + δP (n− ν⌊log n⌋) (16)

Therefore we can compute δP (n) in O(logn) time. Now using Theorem 3.19, we know that
δC(n) = δP (f(n)), and thus δC(n) also can be computed in O(logn) time, recalling that
⌊log f(n)⌋ = ⌊log n⌋. To compute δ(n) we can use Theorem 3.14: Let us use two arrays of
size n′ = 2⌈logn⌉ each, to store the values of δP (k) and δC(k) respectively for 1 ≤ k ≤ n′. It is
easy to see that this can be done in O(n) time, using Equation 15 and then Theorem 3.19.
Now we can compute δ(n) in O(n) time using Theorem 3.14.

Can we compute δ(n) in o(n) time ? As of now, we do not know any algorithm for this.
But we observe that Theorem 3.14 can be rewritten as

δ(n) = min
v∈X ,n−v∈Y

δP (v) + δC(n− v) (17)

To see this note that if δ(v) < δP (v) then we have a subforest of T∞ on v vertices, with
number of out going edges strictly less than δP (v). Now taking the disjoint union of this
subforest with a subtree of T∞ on n−v vertices with exactly δC(n−v) outgoing edges, we get
a subforest of T∞ with < δP (v)+ δC(n− v) out going edges. Thus, δ(n) < δP (v)+ δC(n− v).
We infer that if δ(n) = δP (v) + δC(n − v), then v ∈ X . A similar reasoning tells us that
n−v ∈ Y . Suppose we can enumerate the members of Xn in ascending order in O(|Xn|) time.
Note that if k ∈ X and k 6= νi for any i ≥ 1, then k− ν⌊log k⌋ ∈ X also. Thus using Equation
15, we can store the members of Xn′ (where n′ = 2⌈logn⌉) along with the corresponding δP
values in arrays, just the same way we did earlier. Now that we have stored the members Xn′

in arrays, we can store the members of Yn′ also along with their corresponding δC values, by
using Theorem 3.20: For each member k ∈ Xn′ , add f(k) in Yn′, and δC(f(k)) = δP (k). From
this it is easy to see that we can compute δ(n) in O(|Xn|) time, provided we can generate the
members of Xn in ascending order, in O(|Xn|) time. Based on the values for |Xn| for small
values of n we conjecture that |Xn| = o(n), and leave open the question of enumerating the
members of Xn in ascending order, in O(|Xn|) time.

As of now, we do not have a complete understanding of the set X . But we will present a
non-trivial sufficient condition (Theorem 3.22)for a number n to belong to X , in terms of the
nature of the optimal ABP of n. In the last section we will show an application of Theorem
3.22 to improve the previously known results on the edge isoperimetric peak of complete
binary trees.

Let (P, ∅) be the ABP of a number n where P = {i1, i2, . . . , ih} where i1 < i2 < . . . < ih.
If for each j where 1 ≤ j < h we have ij+1 − ij ≥ k for k ≥ 1, we say that the ABP satisfies
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the “gap-k condition”. Note that if an ABP satisfies the gap-k condition for some k ≥ 1,
then it satisfies the gap-k′ condition for all 1 ≤ k′ ≤ k. The following observation is a direct
consequence of Lemma 2.2 (1) and Lemma 2.1.

Observation 3.21. If an ABP of n satisfies the gap-1 condition for some k ≥ 1, (i.e. if no
terms repeat) then it is a greedy ABP and thus a minimal ABP of n.

Theorem 3.22. Let n = νi1 + νi2 + · · ·+ νik . If for every j, 2 ≤ j ≤ k, ij − ij−1 ≥ 3 (i.e.,
if n satisfies the gap-3 condition) then we have δ(n) = δP (n) = k.

Proof. In view of observation 3.21, we have δP (n) = k. We prove that δ(n) = k by induction
on the number of terms t. When t = 1, 2, this is easy to verify. Now let t = k where k ≥ 3.
Let us assume that the Theorem is true for all t < k. (If k ≥ 3 then ik ≥ 7 because of the
gap-3 condition.)

Suppose for contradiction that δ(n) ≤ k − 1.
Claim 0: Let (P,N) be a minimal SABP of n. Then ik /∈ P .

Suppose for contradiction that ik ∈ P . Then consider the number n′ = n− νik . Clearly
(P − {ik}, N) is a SABP of n′. Since we have assumed that δ(n) = τ(n) ≤ k − 1, we get
τ(n′) ≤ k − 2. This is a contradiction, since n′ =

∑k−1
j=1 νij satisfies the gap-condition, and

thus by induction hypothesis we should have τ(n′) = k − 1. ✷.
Consider any minimal SABP (P,N) of n. By Theorem 2.3, we can assume that this

minimum SABP is in normal form. Let max(P ) = im and max(N) = in respectively. Since
(P,N) is in normal form, we have max(N ∪ P ) = max(P ) = im ∈ {⌊log n⌋, ⌊log n⌋ + 1}.
Since νik < n < νik+1 (by Observation 3.21 and Lemma 2.2 part (3)), it is easy to verify that
⌊log n⌋ = ik. Thus im ∈ {ik, ik + 1}. In view of Claim 0, im 6= ik. Thus im = ik + 1.
Claim 1: In any minimal SABP (P,N) of n in normal form, im does not repeat in the
multiset P .

Suppose it repeats. Then since the SABP is assumed to be in the normal form, P =
Greedy(ν(P )). Thus by Lemma 2.2, if im repeats in the multiset P , P = {im, im}. Clearly
in < im. Recalling that im = ik+1, we have n = 2νik+1−

∑

j∈N νj ≥ (2ik+2−2)−(2ik+1−2) =

2ik+1 >
∑k

j=1 νij = n, a contradiction. ✷
Claim 2: If (P,N) is a minimal SABP of n in normal form with in = maxN , then we have
in < ik.

Recall that im = ik +1. Since SABP (P,N) is in normal form, in < im. Suppose in = ik.
Then we can get another minimal SABP (not necessarily in normal form), say (P ′, N ′), for
n, by taking P ′ = P − {ik + 1} ∪ {ik, 1} and N ′ = N − {ik}. This is clearly a contradiction
in view of Claim 0 since (P ′, N ′) is minimal, but ik ∈ P ′.

Now consider a minimal SABP (P,N) of n in normal form. By Theorem 3.13, we can
find a forest S in T∞, such that S = S ′ ∪ S ′′ where S ′ is the C-tree of ({im}, N) and S ′′ is
the P-forest of (P − {im}, ∅).

By the definition of a C-tree, the tree S ′ has height im = ik + 1. We say that a node in
S ′ (seen as a subtree of T∞) is saturated either if it is a leaf of T∞ or if both its children
(with respect to T∞) belong to S ′. Note that by the definition of C-tree, in S ′ a node at a

18



height t is unsaturated if and only if t− 1 ∈ N . Let r be the root of S ′. Since by Claim 2,
ik /∈ N , and since r is at height ik + 1, we have the following claim.
Claim 3: The root r of S ′ is saturated.

Let x and y be the right child and left child of r, respectively. Note that by the defintion of
C-tree, the subtree of S ′ rooted at y is complete and has νik vertices in it. Let S1 represent
the tree obtained by removing the subtree rooted at y from S ′. Then clearly, S1 ∪ S ′′

together is a forest in T∞, on n′ = n − νik vertices, and with number of out going edges
equal to δ(n) + 1 ≤ k − 1 + 1 = k. (We have to add 1 to δ(n) because a new out going edge
incident on r is created by the removal of the subtree rooted at y, namely the edge (r, y).)
By induction hypothesis we know that δ(n′) = k − 1, since n′ clearly has a ABP satisfying
the gap-3 condition. We will now show that by a slight modification of S1, we can reduce
the number of out going edges by at least 2 and get a representation of n′ with only k − 2
out going edges which will be a contradiction to the induction hypothesis. First we make an
easy observation.
Claim 4: n′ < νik−2.

Recalling that by gap-3 condition, ik−1 ≤ ik − 3, we get:

n′ = n− νik =
k−1
∑

j=1

νij (18)

≤ ν(ik−1+1) − 1 (19)

< νik−2 (20)

✷

Let x be the right child of r.
Claim 5: x is unsaturated in S ′, but it has a left child (say x′).

Since r is at a height ik +1, x is at a height of ik ≥ 7. If x is saturated it has a complete
left subtree with νik−1 vertices in it. Therefore n′ ≥ νik−1 > νik−2 which contradicts Claim
4. Thus x is unsaturated, i.e. it does not have a right child. If x does not have a left
child also, S1 contains only 2 nodes, namely r and x but has 4 outgoing edges. Clearly this
is not optimum for 2 nodes: We can replace S1 with two leaves of T∞, thereby reducing
the total number of outgoing edges by 2, which contradicts the induction hypothesis that
δ(n′) = k − 1. We infer that x has a left child, say x′.
Claim 6: x′ is unsaturated in S ′, but it has a left child (say x′′).

Clearly x′ is at a height of ik− 1 and if it is saturated it will have a complete left subtree
and therefore we get n′ > νik−2 a contradiction to Claim 4. Thus x′ has no right child. Now
if there is no left child also for x′, S1 contains only 3 vertices, namely r, x, x′ and together
they have 5 out going edges. This is clearly not the optimum representation for 3 vertices.
Rather, there exists representation for 3 vertices with just one out going edge.

In view of Claim 5, clearly there are 4 out going edges incident on the vertices r, x and x′.
We replace S1 with a forest consisting of the subtree of S1 rooted at x′′ and a complete binary
tree of 3 vertices reducing the number of out going edges by 2. Thus we get a representation
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for n′ using at most k−2 out going edges, a contradiction to the induction hypothesis. Hence
the theorem.

In view of the above theorem it is natural to ask if n has an ABP satisfying the gap-2
condition rather than gap-3 condition, then can we still say δP (n) = δ(n). This is not true
as the following example illustrates.

Example 3.23. Applying the greedy algorithm to n = 46912496118419, we obtain that n =
ν(1, 3, 5, . . . , 45). This ABP clearly satisfies the gap-2 condition and shows that δP (n) = 23.
On the other hand, n = ν(46) − ν(7) − ν(8, 10, 12, . . . , 44), showing that δ(n) ≤ 21 < 23 =
δP (n).

3.4 Improved lower bound for edge isoperimetric peak for Bd

The edge isoperimetric peak of a finite graph G, denoted as δ̂G(n) where |V (G)| = n, is
defined as δ̂G(n) = max1≤i≤n δ(i, G).

The problem of finding the isoperimetric peak of a complete binary tree of depth d
(denoted as Bd) was studied in [15] and [4]. In [15] it is shown that δ̂Bd

≥ d−(8+2 log d)
8+2 log d

and in

[4] it is shown that δ̂Bd
≥ d

5
(see the proof of Corollary 1 in [4]). We will show that using

Theorem 3.22 we can get a better lower bound for the edge isoperimetric peak of Bd. To do
this, we first make the following simple observation:

Lemma 3.24. For 1 ≤ n ≤ 2d − 1, δ(n,Bd) ≥ δ(n, T∞)− 1

Now we can get a better lower bound for the edge isoperimetric peak of Bd, compared
to the previous d/5.

Theorem 3.25. δ̂Bd
≥ ⌊d/3⌋ − 1.

Proof. Clearly if we take n = ν1 + ν4 + ν7 + . . .+ ν(⌊d/3⌋−1)3+1, then n ≤ 2d− 1. By Theorem

3.22 and Lemma 3.24, we get δ̂Bd
≥ δ(n,Bd) ≥ ⌊d/3⌋ − 1. ✷

Note that in the context of the edge isoperimetric peak problem, Theorem 3.22 gives us
more than what is claimed in Theorem 3.25. For any k ≤ ⌊d/3⌋ − 1, it allows to find some
numbers n < 2d − 1, such that δ(n,Bd) = k. The following Theorem captures this point.

Theorem 3.26. If k = ⌊d/3⌋ − 1− t, then |{n : n ≤ 2d − 1, δ(n,Bd) ≥ k}| ≥
(

⌊d/3⌋
t

)

Proof. Consider the ABP ν1+ ν4+ ν7+ . . .+ ν(⌊d/3⌋−1)3+1. We can remove any t of the terms
from this ABP to get another ABP of ⌊d/3⌋ − t terms, and that ABP would clearly satisfy
the gap-3 condition. By Theorem 3.22 each of these

(

⌊d/3⌋
t

)

ABPs, corresponds to a distinct
number n < 2d − 1, satisfying the property δ(n,Bd) = k. ✷
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