Counting and generating lambda terms

Katarzyna Grygiel ${ }^{\dagger} \dagger 1$ and Pierre Lescanne ${ }^{\ddagger} 1,2$
${ }^{1}$ Theoretical Computer Science Department Faculty of Mathematics and Computer Science Jagiellonian University
ul. Prof. Łojasiewicza 6, 30-348 Kraków, Poland
${ }^{2}$ ENS de Lyon
LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)
University of Lyon
46 allée d'Italie, 69364 Lyon, France

May 3, 2014

Abstract

Lambda calculus is the basis of functional programming and higher order proof assistants. However, little is known about combinatorial properties of lambda terms, in particular, about their asymptotic distribution and random generation. This paper tries to answer questions like: How many terms of a given size are there? What is a "typical" structure of a simply typable term? Despite their ostensible simplicity, these questions still remain unanswered, whereas solutions to such problems are essential for testing compilers and optimizing programs whose expected efficiency depends on the size of terms. Our approach toward the aforementioned problems may be later extended to any language with bound variables, i.e., with scopes and declarations.

This paper presents two complementary approaches: one, theoretical, uses complex analysis and generating functions, the other, experimental, is based on a generator of lambda terms. Thanks to de Bruijn indices, we provide three families of formulas for the number of closed lambda terms of a given size and we give four relations between these numbers which have interesting combinatorial interpretations. As a by-product of the counting formulas, we design an algorithm for generating λ-terms. Performed tests provide us with experimental data, like the average depth

[^0]of bound variables and the average number of head lambdas. We also create random generators for various sorts of terms. Thereafter, we conduct experiments that answer questions like: What is the ratio of simply typable terms among all terms? (Very small!) How are simply typable lambda terms distributed among all lambda terms? (A typable term almost always starts with an abstraction.)

In this paper, abstractions and applications have size 1 and variables have size 0 .
Keywords: lambda calculus, combinatorics, functional programming, test, random generator, ranking, unranking

1 Introduction

Let us start with a few questions relevant to the problems we address.

- How many closed λ-terms are of size 50 (up to α-conversion)?

$$
996657783344523283417055002040148075226700996391558695269946852267 .
$$

- How many closed terms of size n are there?

We will give a recursive formula for this number in Section 2.

- What does the following sequence enumerate:

$$
0,1,3,14,82,579,4741,43977,454283,5159441,63782411 ?
$$

This sequence enumerates closed terms of size $0,1,2,3,4,5,6,7,8,9,10$. It is the sequence A220894 of the Online Encyclopedia of Integer Sequences (https: //oeis.org/A220894). We will provide three ways to compute it (Section 4).

- Is it possible to generate simply typable terms randomly?

Yes, according to the process which consists in generating random λ-terms with uniform probability and sieving those that are simply typable. Thus, we can generate random simply typable terms of size up to 50 .

- Is a term starting with an abstraction more likely to be typable than a term starting with an application?
The answer is positive as shown in Figure 11, which gives the distribution of simply typable λ-terms among all λ-terms.
- Do these results have practical consequences?

Yes, they enable random generation of simply typable terms in the case of terms of size up to 50 in order to debug compilers or other programs, manipulating terms, e.g., type checkers or pretty printers.

The above questions seem rather classical, but amazingly very little is known about combinatorial aspects of λ-terms, probably because of the intrinsic difficulty of the combinatorial structure of lambda calculus due to the presence of bound variables. However, the answers to these questions are extremely important not only for a better understanding of the structure of λ-terms, but also for people who build test samples for debugging
compilers. Perhaps the reason for this ignorance lies in the surprising form of the recurrences. Indeed, due to the presence of bound variables, the recurrence does not work in the way mathematicians expect and are used to. The induction lies on two variables, one decreasing (the size), the other increasing (the number of free variables). Thus none of the methods used in the reference book of Flajolet and Sedgewick [8] applies. Why is that? In what follows we compute the number of λ-terms (and of normal forms) of size n with at most m distinct free variables. Denoting the number of such terms by $T_{n, m}$, the formula for $T_{n, m}$ contains $T_{n-1, m+1}$ and this growth of m makes the formula averse to treatments by generating functions and classical analytic combinatorics. We notice that for a given n the expression for $T_{n, m}$ is a polynomial in m. These polynomials can be described inductively and their coefficients are given by recurrence formulas. These formulas are still complex, but can be used to compute the constant coefficients, which correspond to the numbers of closed λ-terms. For instance, the leading coefficients of the polynomials are the well known Catalan numbers which count binary trees.

In order to find the recurrence formula for the number of λ-terms of a given size, we make use of the representation of variables in λ-terms by de Bruijn indices. Recall that a de Bruijn index is a natural number which replaces a term variable and enumerates the number of λ 's encountered on the way between the variable and the λ which binds the latter. In this paper, we assume the combinatorial model in which the size of each occurrence of abstraction or application is counted as 1, while the size of variables (de Bruijn indices) as 0 . This method is a realistic model of the complexity of λ-terms and allows us to derive the recurrences very naturally.

From the formula for counting λ-terms we derive one-to-one assignments of terms of size n with at most m distinct free indices to the numbers in the interval [1.. $T_{n, m}$]. From this correspondence, we develop a program for generating λ-terms, more precisely for building λ-terms associated with numbers in the interval [$1 . . T_{n, m}$]. In combinatorics the function that counts objects by assigning a number to each object is called a ranking and its inverse, i.e., the function that assigns an object to a rank is called an unranking [24]. Thus, in this paper, we can say that we rank and unrank lambda-terms and normal forms. If we pick a random number in the interval $\left[1 . . T_{n, m}\right]$, then we get a random term of size n with at most m distinct free variables. Most of the time we consider closed λ-terms, which means $m=0$. Beside the interest in such a random generation for applications like testing, this allows us to compute practical values of parameters by Monte-Carlo methods. Overall, we are able to build a random generator for simply typable terms. Unlike the method used so far [21], which consists in unfolding the typing tree, we generate random λ-terms and test their typability, until we find a simply typable term. This method allows us to generate uniformly simply typable λ-terms up to size 50 . We also use this method to describe the distribution of typable terms among all terms and typable normal forms among all normal forms.

Structure of the paper

According to its title, the paper is divided into two parts, the first one focuses on counting terms and its mathematical treatment, the second one addresses term generation and its applications. The first part (Sections 2 and 5) is devoted to the formulas counting λ terms. In Section 2 we study polynomials giving the numbers of terms of size n with
at most m distinct free variables. In Section 3, we show that the numbers of i-contexts give a combinatorial interpretation of the coefficients of the polynomials and yield a new formula for counting the closed terms of size n. If we add formulas for counting λ-terms of size n with exactly m distinct free variables, we have three formulas of three different origins for counting closed terms which we describe and compare in Section 4. In Section 5 we derive generating functions and asymptotic values for these coefficients. In Section 6 we give a formula for counting normal forms. In the second part of the paper, i.e., in Section 7 and Section 8, we propose programs to generate untyped and typable terms and normal forms. Section 9 is devoted to experimental results. Section 10 presents related works.

2 Counting terms with at most m distinct free variables

We represent terms using de Bruijn indices [6], which means that variables are represented by numbers $\underline{1}, \underline{2}, \ldots, \underline{m}, \ldots$, where an index, for instance \underline{k}, is the number of λ 's above the location of the index and below the λ that binds the variable, in a representation of λ terms by trees. For instance, the term with variables $\lambda x . \lambda y . x y$ is represented by the term with de Bruijn indices $\lambda \lambda 21$. The variable x is bound by the top λ. Above the occurrence of x there are two λ 's, therefore x is represented by $\underline{2}$, and from the occurrence of y we count just the λ that binds y, so y is represented by $\underline{1}$. Notice that unlike Lescanne [16] and like de Bruijn [6] and Abadi et al. [1] we start indices at 1, since it fits better with our aim of counting terms.

In what follows, by terms we mean untyped terms with de Bruijn indices and we often speak indistinctively of variables and (de Bruijn) indices. Assume that in a term t not all occurrences of indices need to be bound, i.e., there may occur indices that do not correspond to surrounding λ 's. Such indices are called "free" in t. Now, we introduce the notational convention for "free" indices occurring in terms. An interval of free indices for a term t is a set $\{\underline{1}, \underline{2}, \ldots, \underline{m}\}$ of indices, written $[\underline{1} . . \underline{m}]$, such that
(i) if t is an index \underline{i}, then any interval $[\underline{1} . . \underline{m}]$ with $1 \leq i \leq m$ is an interval for t,
(ii) if t is an abstraction λs and an interval of free indices for s is $[1 . . \mathrm{m}+1]$, then the interval of free indices for t is [$\underline{1} . \underline{m}$] (since the index $\underline{1}$ is now bound and the others are assumed to decrease by one),
(iii) if t is an application $t_{1} t_{2}$ and an interval of indices for t_{1} and t_{2} is [1.. \underline{m}], then an interval of indices for t is [1... m$]$.

To illustrate (ii), assume $t=\lambda s=\lambda \underline{3} 1$. An interval of free indices for s is $[1 . . \mathrm{m}+1]$ for any $m \geq 2$. For instance for $m=3,[\underline{1}, \underline{2}, \underline{3}, \underline{4}]$ is an interval of free indices for s. For $m=2,[\underline{1}, \underline{2}, \underline{3}]$ is another interval of free indices for s. An interval of free indices for t is [$\underline{1} . . \underline{m}]$ for any $m \geq 2$ and for $m=3,[\underline{1}, \underline{2}, \underline{3}]$ is an interval of free indices for t. For $m=2$, [1,2] is another interval of free indices for t. To say it in rough words, whereas one sees $\underline{3}$ as $\underline{3}$ in s, one sees $\underline{3}$ as $\underline{2}$ in t due to the abstraction λ which decreases the indices as they are seen.

We measure the size of a term in the following way:

$$
\begin{aligned}
|\underline{\mathrm{m}}| & =0, \text { for every index } \underline{\mathrm{m}}, \\
|\lambda t| & =|t|+1, \\
|t s| & =|t|+|s|+1
\end{aligned}
$$

Since λ-terms can be represented as unary-binary trees with labels or pointers, the notion of size of a term t corresponds to the number of unary and binary vertices in the tree representing t. This also means that adding a new variable (in other words, adding a new leaf to a tree) or a new operator (a unary or a binary vertex) always increases the size of a term by 1 .

One can define m using the concept of term openness (due to John Tromp). The openness of a terms is the minimum number of outer λ 's necessary to close the terms, i.e., to make the term a closed term. For instance, the openness of $(\lambda x .(x y))(\lambda x .(x z))$ is equal to 2 since the term needs two abstractions to become closed.

Let us denote by $\mathcal{T}_{n, m}$ the set of terms of size n with at most m distinct free de Bruijn indices. $\mathcal{T}_{n, m}$ is isomorphic to the set of terms having an openness equal to at most m. In what follows, we use the symbol @ to denote applications, whereas classical theory of λ-calculus uses concatenation, which we find not explicit enough for our purpose.

$$
\begin{aligned}
\mathcal{T}_{0, m} & =[\underline{1} \cdot . \underline{\mathrm{m}}] \\
\mathcal{T}_{n+1, m} & =\lambda \mathcal{T}_{n, m+1} \uplus \biguplus_{i=0}^{n} \mathcal{T}_{i, m} @ \mathcal{T}_{n-i, m} .
\end{aligned}
$$

For all $n, m \in \mathbb{N}$, let $T_{n, m}$ denote the cardinality of the set $\mathcal{T}_{n, m}$. According to the definition of size, operators λ and @ have size 1 and de Bruijn indices have size 0 . Therefore, we get the following two equations specifying $T_{n, m}$:

$$
\begin{aligned}
T_{0, m} & =m \\
T_{n+1, m} & =T_{n, m+1}+\sum_{i=0}^{n} T_{i, m} T_{n-i, m} .
\end{aligned}
$$

This means that there are m terms of size 0 with at most m distinct free de Bruijn indices, which are terms that are just these indices. Terms of size $n+1$ with at most m distinct free de Bruijn indices are either abstractions with at most $m+1$ distinct free indices on a term of size n or applications of terms with at most m distinct free indices to make a term of size $n+1$. As we said in the introduction, the 11 first values of $T_{n, 0}$ are:

$$
0,1,3,14,82,579,4741,43977,454283,5159441,63782411 .
$$

$T_{n, 0}$ is sequence A220894 in the On-line Encyclopedia of Integer Sequences.
Figure 1 gives all the values of $T_{n, m}$ for n up to 14 and m up to 6 . For instance, there is 1 closed term of size 1 , namely $\lambda \underline{1}$, there are 3 closed terms of size 2, namely $\lambda \lambda \underline{1}, \lambda \lambda \underline{2}, \lambda \underline{1} \underline{1}$, and there are 14 closed terms of size 3, namely

$\mathbf{n} \backslash \mathbf{m}$	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	3	7	13	21	31	43
2	3	13	41	99	199	353	573
3	14	76	312	962	2386	5064	9596
4	82	542	2784	10732	32510	82122	181132
5	579	4493	27917	131715	482015	1440929	3687513
6	4741	42131	307943	1741813	7612097	26763551	79193491
7	43977	439031	3690055	24537945	126536933	519788827	1771730211
8	454283	5020105	47635777	365779679	2198772055	10477986133	40973739725
9	5159441	62382279	658405747	5744911157	39769404045	218213327131	974668783199
10	63782411	835980065	9695617821	94786034723	746744227319	4681133293821	23769847893305
11	851368766	12004984120	151488900012	1639198623818	14531624611594	103244315616876	593009444765240
12	12188927818	183754242626	2502346785164	29658034018852	292747054367966	2338363467319958	15112319033576416
13	186132043831	2984264710781	43560247035581	560484305049943	6100545513799835	54347237563601321	393031286917940401
14	3017325884473	51220227153987	796828655891895	11046637024014049	131425939696979805	1295642289776992983	10425601907159190187

Figure 1: Values of $T_{n, m}$ for n and m up to 14 and 6 , respectively

$$
\begin{array}{ccccccc}
\lambda \lambda \lambda \underline{1} & \lambda \lambda \lambda \underline{2} & \lambda \lambda \underline{3} & \lambda \lambda \underline{1} \underline{1} & \lambda \lambda \underline{1} \underline{2} & \lambda \lambda \underline{2} \underline{1} & \lambda \lambda \underline{2} \underline{2} \\
\lambda(\underline{1} \lambda \underline{1}) & \lambda(\underline{1} \lambda \underline{2}) & \lambda \underline{1}(\underline{11}) & \lambda((\lambda \underline{1}) \underline{1}) & \lambda((\lambda \underline{2}) \underline{1}) & \lambda((\underline{1} \underline{1}) \underline{1}) & (\lambda \underline{1}) \lambda \underline{1} .
\end{array}
$$

Notice that in Section 7 we describe how to assign a term to a number and therefore how to list terms with increasing numbers. The above terms are listed in that order.

2.1 Computing the $T_{n, m}$'s

The recursive definition of T yields an easy naive program in a functional programming language (here Haskell):

```
naiveT :: Int -> Int -> Integer
naiveT 0 m = fromIntegral m
naiveT n m = naiveT (n-1) (m+1) +
    sum [naiveT i m * naiveT (n-1-i) m | i <- [0..n-1]]
```

This program is inefficient since it recomputes the values of T at each recursive call. For actual computations a program with memoization is required. In Sage this is obtained by requiring the function to be "cached". In Haskell we use the laziness of streams:

```
ttab' :: [[Integer]]
ttab' = [0..] : [[t' (n-1) (m+1) + s n m | m <- [0..]] | n <- [1..]]
    where s n m = sum $ zipWith (*) (ti n m) (reverse $ ti n m)
                        ti n m = [t' i m | i <- [0..(n-1)]]
t' :: Int -> Int -> Integer
t' n m = ttab !! n !! m
```

This program is not efficient enough and John Tromp proposed us a better program:

```
ttab :: [[[Integer]]]
ttab = iterate nextn . map return $ [0..]
    where
    nextn ls = zipWith rake (tail ls) ls
    rake (m1:_) ms = (m1 + conv ms) : ms
    conv ms = sum $ zipWith (*) ms (reverse ms)
t :: Int -> Int -> Integer
t n m = head $ ttab !! n !! m
```

Assume that we compute ttab n 0 for the first time. The basic operation rake requires $O(n)$ additions and $O(n)$ multiplications. nextn requires $O(n)$ calls to rake and iterate requires $O(n)$ to nextn. Therefore, the complexity of the first computation of t n 0 depends on the complexity of the addition and of the multiplication of arbitrary-precision integers which we may assume (intuitively) to be $O\left(\log ^{2}\left(T_{n, 0}\right)\right)$. Although the question of the asymptotic size of the number $T_{n, 0}$ is open, we know that it is superexponential in n and, on the other hand, it is asymptotically smaller than n^{n}. Therefore, t n 0 runs in $O\left(n^{3} \times \log ^{2}\left(T_{n, 0}\right)\right)$ which is at least of order n^{5} and at most of order $n^{5} \log ^{2}(n)$. Such estimations seem to be in accordance with our experiments. Once the table ttab is constructed, the runtime of t is in $O(n+m)$.

2.2 The polynomials P_{n}

In the end of this section and in the four coming sections we present results of mainly combinatorial flavor. We focus there on the quantitative approach to lambda calculus, with special emphasis on the challenging problem of counting λ-terms and approximating its asymptotic behavior. Therefore, a reader interested mostly in term generation and experimental results can skip this material and go directly to Section 7.

The problem of determining the asymptotic estimation of the number of closed terms of a given size turns out to be a non-trivial task. Due to the unusual combinatorial structure of λ-terms, such objects seem to resist methods developed in combinatorics so far. There are a few papers devoted to this challenging problem [2, 5, 17], however, none of the methods used by now could provide the final solution. Bodini et al. [2] use essentially analytic methods exploiting the functional equation of Proposition 3 (Section 3.1), whereas David et al. [5] use upper and lower bound approximations and Lescanne [17] uses algebraic computations on polynomials and power series. Our approach can be considered as the development of the previous research carried out by [17].

For every $n \geq 0$, we associate with $T_{n, m}$ a polynomial $P_{n}(m)$ in m. First, let us define polynomials P_{n} in the following recursive way:

$$
\begin{aligned}
P_{0}(m) & =m \\
P_{n+1}(m) & =P_{n}(m+1)+\sum_{i=0}^{n} P_{i}(m) P_{n-i}(m) .
\end{aligned}
$$

The sequence $\left(P_{n}(0)\right)_{n \geq 0}$ corresponds to the sequence $\left(T_{n, 0}\right)_{n \geq 0}$ enumerating closed λ-terms. The first nine polynomials are given in Figure 2.

This means that the constant coefficient of a polynomial $P_{n}(m)$ is exactly the number of closed λ-terms of size n.

Lemma 1 For every n, the degree of the polynomial P_{n} is equal to $n+1$.
Proof: The result follows immediately by induction on n from the definition of P_{n}.
For $i>0$ and $n \geq 0$, let us denote by $p_{n}^{[i]}$ the $i^{\text {th }}$ leading coefficient of the polynomial P_{n}, i.e., we have

$$
P_{n}(m)=p_{n}^{[1]} m^{n+1}+p_{n}^{[2]} m^{n}+\ldots+p_{n}^{[i]} m^{n+2-i}+\ldots+p_{n}^{[n+1]} m+p_{n}^{[n+2]} .
$$

\mathbf{n}	P_{n}
$\mathbf{0}$	m
$\mathbf{1}$	$m^{2}+m+1$
$\mathbf{2}$	$2 m^{3}+3 m^{2}+5 m+3$
$\mathbf{3}$	$5 m^{4}+10 m^{3}+22 m^{2}+25 m+14$
$\mathbf{4}$	$14 m^{5}+35 m^{4}+94 m^{3}+154 m^{2}+163 m+82$
$\mathbf{5}$	$42 m^{6}+126 m^{5}+396 m^{4}+838 m^{3}+1277 m^{2}+1235 m+579$
$\mathbf{6}$	$132 m^{7}+462 m^{6}+1654 m^{5}+4260 m^{4}+8384 m^{3}+11791 m^{2}+10707 m+4741$
$\mathbf{7}$	$429 m^{8}+1716 m^{7}+6868 m^{6}+20742 m^{5}+49720 m^{4}+90896 m^{3}+120628 m^{2}+104055 m+43977$
$\mathbf{8}$	$1430 m^{9}+6435 m^{8}+28396 m^{7}+98028 m^{6}+275886 m^{5}+617096 m^{4}+1068328 m^{3}+1352268 m^{2}+1117955 m+454283$

Figure 2: The first nine polynomials P_{n}

Lemma 2 For every $n \geq 0$ and $i>0$,

$$
\begin{aligned}
p_{0}^{[1]} & =1, \quad p_{0}^{[i]}=0 \text { for } i>1, \\
p_{n+1}^{[i]} & =\sum_{j=0}^{i-2}\binom{n+1-j}{i-2-j} p_{n}^{[j+1]}+\sum_{k=1}^{i} \sum_{j=0}^{n} p_{j}^{[k]} p_{n-j}^{[i+1-k]} .
\end{aligned}
$$

Proof: Since $P_{0}(m)=m$, equations from the first line in the above lemma are trivial.

The $i^{\text {th }}$ leading coefficient in the polynomial $P_{n+1}(m)$ is equal to the sum of coefficients standing at m^{n+3-i} in polynomials $P_{n}(m+1)$ and $\sum_{j=0}^{n} P_{j}(m) P_{n-j}(m)$.

The first of these polynomials, $P_{n}(m+1)$, is as follows:

$$
p_{n}^{[1]}(m+1)^{n+1}+\ldots+p_{n}^{[i-1]}(m+1)^{n+3-i}+\ldots+p_{n}^{[n+2]},
$$

therefore the coefficient of m^{n+3-i} in $P_{n}(m+1)$ is equal to

$$
\binom{n+1}{i-2} p_{n}^{[1]}+\binom{n}{i-3} p_{n}^{[2]}+\ldots+\binom{n+3-i}{0} p_{n}^{[i-1]}=\sum_{j=0}^{i-2}\binom{n+1-j}{i-2-j} p_{n}^{[j+1]}
$$

In the case of the second polynomial, $\sum_{j=0}^{n} P_{j}(m) P_{n-j}(m)$, we have

$$
\begin{array}{r}
\left(p_{j}^{[1]} m^{j+1}+\ldots+p_{j}^{[k]} m^{j+2-k}+\ldots+p_{j}^{[j+2]}\right) \\
\left(p_{n-j}^{[1]} m^{n-j+1}+\ldots+p_{n-j}^{[i+1-k]} m^{n-j+1+k-i}+\ldots+p_{n-j}^{[n-j+2]}\right)
\end{array}
$$

therefore the coefficient of m^{n+3-i} in $\sum_{j=0}^{n} P_{j}(m) P_{n-j}(m)$ is equal to

$$
\sum_{k=1}^{i} \sum_{j=0}^{n} p_{j}^{[k]} p_{n-j}^{[i+1-k]}
$$

The next section proposes a combinatorial interpretation of the coefficients $p_{j}^{[i]}$.

3 Counting contexts

In λ-calculus, an i-context is a closed term with i holes. Variables and holes are similar in the sense that they can be replaced by terms. But whereas a variable may occur many times in a term and so may be replaced by terms at more than one place at a time, a hole is anonymous, occurs once and only once (like a linear variable in linear λ-calculus [3]) and can be filled only once. Since as we said holes look like anonymous variables occurring once we suppose that each hole has size 0 and we assume that the holes are numbered $1, \ldots, i$ as they appear in the term from left to right. For instance, if we denote every hole by [], then $(\lambda \underline{1}[]) \lambda \lambda[] \underline{2}$ is a 2 -context of size 6 and its holes are numbered as follows $\left(\lambda \underline{1}[]_{1}\right) \lambda \lambda[]_{2} \underline{2}$. 0 -contexts correspond to closed terms. There is only one 1 -context of size 0 and there are no i-contexts of size 0 for $i \neq 1$. Let us write $c_{n, i}$ for the number of i-contexts of size n. Then we have

$$
\left.\begin{array}{rl}
c_{0,1} & =1 \\
c_{0, i} & =0 \text { for } i \neq 1 .
\end{array}\right\}(\dagger)
$$

Now, let us see how we construct an i-context of size $n+1$ from smaller ones.
By abstraction: let us take a j-context (for $j \in[i . n+1]$) of size n and add a new lambda above it. Then we choose a set of $j-i$ holes among the j holes which we substitute by variables (or indices) abstracted by the new lambda. For a fixed j there are $\binom{j}{i} c_{n, j}$ such i-contexts. Finally, we sum these quantities over every j from i to $n+1$ to get the numbers of i-contexts constructed this way.

By application: let us apply a j-context of size k to an $(i-j$)-context of size $n-k$ (for $j \in[0 . . i]$ and $k \in[0 . . n])$. This gives us an i-context of size $n+1$ since the application operator has size 1. For fixed j and k there are $c_{k, j} c_{n-k, i-j}$ such i-contexts. Finally, we sum these numbers from $j=0$ to $j=i$ and from $k=0$ to $k=n$.

Hence, we get the following formula:

$$
c_{n+1, i}=\sum_{j=i}^{n+1}\binom{j}{i} c_{n, j}+\sum_{j=0}^{i} \sum_{k=0}^{n} c_{k, j} c_{n-k, i-j} .
$$

Let us see how we can build terms from contexts. Recall that, by construction, an i context has only holes and no free index, which means that all the indices are bound. Therefore to build a term of size n with i occurrences of free indices taken among m ones from an i-context of size n and a map f from [1..i] to [1..m], we insert the index $f(j)$ in the $j^{t h}$ hole. There are $c_{n, i} m^{i}$ such terms. Therefore

$$
T_{n, m}=c_{n, n+1} m^{n+1}+\ldots+c_{n, i} m^{i}+\ldots+c_{n, 0}
$$

is the number of λ-terms of size n with at most m distinct free variables, which is the polynomial $P_{n}(m)$. In particular, $c_{n, n+2-i}=p_{n}^{[i]}$. This can be written as follows:

$$
P_{n}(m)=\sum_{i=0}^{n+1} c_{n, i} m^{i}
$$

The coefficients $c_{n, i}$ of the polynomials P_{n} 's count the i-contexts of size n. We see that $c_{n, i}=0$ when $i>n+1$.

The case $i=n+2$. In the case when $i=n+2$, using the fact that $c_{n, i}=0$ for $i>n+1$, the equations (\dagger) and (\star) boil down to:

$$
\begin{aligned}
c_{0,1} & =1 \\
c_{n+1, n+2} & =\sum_{k=0}^{n} c_{k, k+1} c_{n-k, n-k+1},
\end{aligned}
$$

which is characteristic of the Catalan numbers. Indeed, $(n+1)$-contexts of size n have only applications and no abstractions and are therefore binary trees.

3.1 The generating function for $\left(c_{n, i}\right)_{n, i \in \mathbb{N}}$

Proposition 3 Consider the bivariate generating function $L(z, u)=\sum_{n, i \geq 0} c_{n, i} z^{n} u^{i}$. Then

$$
L(z, u)=u+z L(z, u+1)+z L(z, u)^{2} .
$$

Proof: Notice that

$$
\begin{aligned}
L(z, u) & =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\infty} c_{n, i} u^{i}\right) z^{n} \\
& =\sum_{n=0}^{\infty} P_{n}(u) z^{n} \\
& =u+z \sum_{n=0}^{\infty} P_{n+1}(u) z^{n} \\
& =u+z \sum_{n=0}^{\infty} P_{n}(u+1) z^{n}+z \sum_{n=0}^{\infty} \sum_{k=0}^{n} P_{k}(u) P_{n-k}(u) z^{n} \\
& =u+z L(z, u+1)+z L(z, u)^{2} .
\end{aligned}
$$

A similar equation was known from Bodini, Gardy and Gittenberger [2] (for variable size 1). However, notice that what they call \mathcal{L} is not the class of open λ-terms, but the class of i-contexts. Notice that the function $L(z, 0)$ is the generating function for the number of closed terms of size n.

The equation

$$
z L(z, u)^{2}-L(z, u)+u+z L(z, u+1)=0
$$

has the following solution

$$
L(z, u)=\frac{1-\sqrt{1-4 z(u+z L(z, u+1))}}{2 z} .
$$

Let us state

$$
M(z, u)=2 z L(z, u)
$$

Then

$$
M(z, u)=1-\sqrt{1-4 z u-2 z M(z, u+1)}
$$

and hence
$M(z, 0)=1-\sqrt{1-2 z(1-\sqrt{1-4 z-2 z(1-\sqrt{1-8 z-2 z(1-\sqrt{1-12 z-2 z(1-\sqrt{1-16 z-\ldots})}))}} .}$.

3.2 The asymptotic behavior of $T_{n, 0}$

The function $M(z, u)$ has a singularity z_{u} for $1-4 z_{u} u-2 z_{u} M\left(z_{u}, u+1\right)=0$, in addition to the singularities of $M(z, u+1)$. Notice that since $z_{u} M\left(z_{u}, u+1\right)>0$, we get $z_{u}<\frac{1}{4 u}$. Therefore $L(z, 0)$ has a sequence of singularities $\left(z_{u}\right)_{u \in \mathbb{N}}$ which tends to 0 . Thus the radius of convergence of $L(z, 0)$ is 0 . Recall that a fundamental theorem on analytic functions connects the radius of convergence of a generating function with the exponential growth of its coefficients (see Section IV. 3 Singularities and exponential growth of the coefficients in Flajolet and Sedgewick's book [8]). This theorem says that if a generating function has a radius of convergence R, then its coefficients grow like $\left(\frac{1}{R}\right)^{n}$. This means that if the radius of convergence is 0 , then the coefficients grow faster that a^{n} for any $a \in \mathbb{R}$. Such a behavior is called superexponential.

4 Three formulas for counting closed terms

We have found three formulas to compute the number of closed terms of size n. Let us summarize them. In what follows the bracketed notation $[k=j]$ is the function which is 1 if $k=j$ and 0 if $k \neq j$.

Case $m=0$ for terms with at most m distinct free variables
$T_{n, 0}$ where

$$
\begin{aligned}
T_{0, m} & =m \\
T_{n+1, m} & =T_{n, m+1}+\sum_{i=0}^{n} T_{i, m} T_{n-i, m} .
\end{aligned}
$$

This formula is clearly the simplest. Its simplicity, one sum and no binomial, allows it to be unfolded and used as a basis for programming a term generator (see Section 7).

Case $m=0$ for terms with exactly m distinct free variables
$f_{n, 0}$ where

$$
\begin{aligned}
f_{0, m}= & {[m=1] } \\
f_{n, m}= & 0 \text { if } m>n+1 \\
f_{n+1, m}= & f_{n, m}+f_{n, m+1}+ \\
& \sum_{p=0}^{n} \sum_{c=0}^{m} \sum_{k=0}^{m-c}\binom{m}{c}\binom{m-c}{k} f_{p, k+c} f_{n-p, m-k} .
\end{aligned}
$$

This formula is the most complex. Appendix A. 1 shows how it is constructed.

0 -contexts

$c_{n, 0}$ where

$$
\begin{aligned}
c_{0, i} & =[i=1] \\
c_{n+1, i} & =\sum_{j=i}^{n+1}\binom{j}{i} c_{n, j}+\sum_{j=0}^{i} \sum_{k=0}^{n} c_{k, j} c_{n-k, i-j} .
\end{aligned}
$$

Four relations. Let us use the notation $R_{i}^{(m)}$ (see Flajolet and Sedgewick's book [8]) for the number of surjections from $[1 . . i]$ to $[1 . . m]$. Recall that

$$
R_{i}^{(m)}=\sum_{j=0}^{i}\binom{i}{j}(-1)^{j}(i-j)^{m} .
$$

The numbers $T_{n, m}, f_{n, m}$ and $c_{n, i}$ are related as follows (see Appendix A.2):

$$
\begin{aligned}
& T_{n, m}=\sum_{i=0}^{m}\binom{m}{i} f_{n, i}=\sum_{i=1}^{n+1} c_{n, i} m^{i} \\
& f_{n, m}=\sum_{i=0}^{m}(-1)^{m+i}\binom{m}{i} T_{n, i}=\sum_{i=1}^{n+1} c_{n, i} R_{i}^{(m)} .
\end{aligned}
$$

5 More generating functions

In this section, we provide the asymptotic approximation of the growth of the $k^{t h}$ coefficients of the polynomials P_{n}, where the first coefficient is the coefficient of the monomial of highest degree.

For every positive integer i, let us denote by a_{i} the generating function for the sequence $\left(p_{n}^{[i]}\right)_{n \geq 0}$, i.e.,

$$
a_{i}(z)=\sum_{n=0}^{\infty} p_{n}^{[i]} z^{n}=\sum_{n=0}^{\infty} c_{n, n+2-i} z^{n} .
$$

The $p_{n}^{[i]}$,s count the number of contexts of size n having $n+2-i$ holes. For the sake of clarity, instead of writing $a_{i}(z)$ sometimes we simply write a_{i}.

In order to compute the functions a_{i}, we apply the following basic fact about generating functions.

Fact 4 Let f and g be generating functions for sequences $\left(f_{n}\right)_{n \geq 0}$ and $\left(g_{n}\right)_{n \geq 0}$, respectively. Then
(i) the generating function for the sequence $\left.\binom{n}{k} f_{n}\right)_{n \geq 0}$, where k is a fixed positive integer, is given by $\frac{z^{k} f^{(k)}}{k!}$,
(ii) the generating function for the sequence $\left(\sum_{i=0}^{n} f_{i} g_{n-i}\right)_{n \geq 0}$ is given by $f \cdot g$,
(iii) the generating function for the sequence $\left(\binom{n-j}{i} f_{n}\right)_{n \geq 0}$, where $i \geq 0$ and $j>0$, is given by $\sum_{k=0}^{i}(-1)^{k}\binom{k+j-1}{j-1} z^{i-k} \frac{f^{(i-k)}}{(i-k)!}$.

Proof: Items (i) and (ii) can be found, e.g., in Chapter 7 of [10].
The third part follows from (i) and the following equality:

$$
\binom{n-j}{i}=\sum_{k=0}^{i}(-1)^{k}\binom{n}{i-k}\binom{k+j-1}{j-1},
$$

which holds for every $n, i \geq 0$ and $j>0$. This equality can be easily derived from two equalities known as "upper negation" and "Vandermonde convolution", which can be found in Table 174 of [10].

Now we are ready to provide a recurrence for functions a_{i}.
Theorem 5 The following equations are valid:

$$
\begin{aligned}
a_{1}= & z a_{1}^{2}+1, \quad a_{1}(0)=1 \\
a_{2}= & z a_{1}+2 z a_{1} a_{2} \\
a_{i}= & z^{i-1} \frac{a_{1}^{(i-2)}}{(i-2)!}+z^{i-2} \frac{a_{1}^{(i-3)}}{(i-3)!}+z^{i-2} \frac{a_{2}^{(i-3)}}{(i-3)!} \\
& +z \cdot \sum_{j=1}^{i-3} \sum_{k=0}^{i-3-j}(-1)^{k}\binom{k+j-1}{j-1} z^{i-3-j-k} \frac{a_{j+2}^{(i-3-j-k)}}{(i-3-j-k)!} \\
& +z \cdot \sum_{j=1}^{i} a_{j} a_{i-j+1}, \quad \text { for } i>2 .
\end{aligned}
$$

Proof: All these equations follow from Lemma 2 and Fact 4.
Notice that the a_{i} 's can be computed by induction. Indeed, a_{i} occurs twice in the last sum on the right hand side of the last equation and we have:

$$
\begin{aligned}
a_{i}\left(1-2 a_{1} z\right)= & z^{i-1} \frac{a_{1}^{(i-2)}}{(i-2)!}+z^{i-2} \frac{a_{1}^{(i-3)}}{(i-3)!}+z^{i-2} \frac{a_{2}^{(i-3)}}{(i-3)!} \\
& +z \cdot \sum_{j=1}^{i-3} \sum_{k=0}^{i-3-j}(-1)^{k}\binom{k+j-1}{j-1} z^{i-3-j-k} \frac{a_{j+2}^{(i-3-j-k)}}{(i-3-j-k)!} \\
& +z \cdot \sum_{j=2}^{i-1} a_{j} a_{i-j+1} .
\end{aligned}
$$

Since $1-2 a_{1} z=\sqrt{1-4 z}$, we get:

$$
a_{i}=\binom{z^{i-1} \frac{a_{i}^{(i-2)}}{(i-2)!}+z^{i-2} \frac{a_{i}^{(i-3)}}{(i-3)!}+z^{i-2} \frac{a_{2}^{(i-3)}}{(i-3)!}}{+z \cdot \sum_{j=1}^{i-3} \sum_{k=0}^{i-3-j}(-1)^{k}\binom{k+j-1}{j-1} z^{i-3-j-k} \frac{a_{j+2}^{(i-3-j-k)}}{(i-3-j-k)!}} / \sqrt{1-4 z}
$$

$$
\begin{aligned}
& a_{1}(z)=\left(\frac{1}{2}-\frac{(1-4 z)^{1 / 2}}{2}\right) z^{-1} \\
& a_{2}(z)=-\frac{1}{2}+\frac{1}{2(1-4 z)^{1 / 2}} \\
& a_{3}(z)=\left(\frac{1}{1-4 z}+\frac{z}{(1-4 z)^{3 / 2}}\right) z \\
& a_{4}(z)=\left(\frac{3}{(1-4 z)^{2}}+\frac{z}{(1-4 z)^{5 / 2}}\right) z^{2} \\
& a_{5}(z)=\left(\frac{4 z+9}{(1-4 z)^{3}}+\frac{z^{2}-19 z+5}{(1-4 z)^{7 / 2}}\right) z^{3} \\
& a_{6}(z)=\left(\frac{24 z+31}{(1-4 z)^{4}}+\frac{3 z^{2}-203 z+51}{(1-4 z)^{9 / 2}}\right) z^{4} \\
& a_{7}(z)=\left(\frac{16 z^{2}-128 z+181}{(1-4 z)^{5}}+\frac{2 z^{3}-194 z^{2}-1541 z+398}{(1-4 z)^{11 / 2}}\right) z^{5}
\end{aligned}
$$

Figure 3: The generating functions for the coefficients of the polynomials $P_{n}(m)$

Corollary 6 Exact formulas for the functions $a_{1}-a_{7}$ are given in Figure 3.
Proof: Let us first compute the function a_{1} which, according to Theorem 5, is given by

$$
a_{1}=z a_{1}^{2}+1, \quad a_{1}(0)=1 .
$$

By solving this equation, we obtain $a_{1}(z)=\frac{1-\sqrt{1-4 z}}{2 z}$, which is exactly the generating function for Catalan numbers-see, e.g., Chapter I. 1 of [8].

Now, let us notice that on the basis of Theorem 5 all the other functions can be immediately obtained by tedious, however elementary, computations. In order to get exact values we applied Sage software [23].

Let $\left[z^{n}\right] f(z)$ denote the $n^{\text {th }}$ coefficient of z^{n} in the formal power series $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$. As usual, we use the symbol \sim to denote the asymptotic equivalence of two sequences, i.e., we write $f_{n} \sim g_{n}$ iff the limit of the sequence $\left(f_{n} / g_{n}\right)_{n \geq 0}$ is 1 . Similarly, by $f(z) \underset{z \rightarrow z_{0}}{\sim} g(z)$ we mean that the limit of $f(z) / g(z)$ is 1 when $z \rightarrow z_{0}$. We say that a function $f(z)$ is of order $g(z)$ for $z \rightarrow z_{0}$ iff there exists a positive constant A such that $f(z) \underset{z \rightarrow z_{0}}{\sim} A \cdot g(z)$.

The theorem below (Theorem VI. 1 of [8]) serves as a powerful tool that allows us to estimate coefficients of certain functions that frequently appear in combinatorial considerations.

Fact 7 Let α be an arbitrary complex number in $\mathbb{C} \backslash \mathbb{Z}_{\leq 0}$. The coefficient of z^{n} in

$$
f(z)=(1-z)^{\alpha}
$$

admits the following asymptotic expansion:

$$
\begin{aligned}
{\left[z^{n}\right] f(z) \sim \frac{n^{\alpha-1}}{\Gamma(\alpha)}(1} & +\frac{\alpha(\alpha-1)}{2 n}+\frac{\alpha(\alpha-1)(\alpha-2)(3 \alpha-1)}{24 n^{2}} \\
& \left.+\frac{\alpha^{2}(\alpha-1)^{2}(\alpha-2)(\alpha-3)}{48 n^{3}}+O\left(\frac{1}{n^{4}}\right)\right)
\end{aligned}
$$

where Γ is the Euler Gamma function defined for $\Re(\alpha)>0$ as

$$
\Gamma(\alpha):=\int_{0}^{\infty} e^{-t} t^{\alpha-1} d t
$$

Now we are ready to prove the following approximation.
Proposition 8 The exact order of functions a_{i} for $z \rightarrow 1 / 4$ is given by

$$
a_{i}(z) \underset{z \rightarrow \frac{1}{4}}{\sim} \quad \frac{C_{i-2}}{2^{3 i-5}(1-4 z)^{(2 i-3) / 2}},
$$

where C_{i} is the $i^{\text {th }}$ Catalan number.
Proof: We prove the result by induction using Theorem 5. For the sake of simplicity, we write \sim and "is of order" to denote $\sim_{z \rightarrow \frac{1}{2}}^{\sim}$ and "is of order for $z \rightarrow 1 / 4 "$.

The result is true for $i=1$. For $i>1$ and $j \leq i$, assume that $a_{j}(z)$ is of order $\frac{1}{(1-4 z)^{(2 j-3) / 2}}$ and look at equation (\ddagger) to prove that $a_{i+1}(z)$ is of order $\frac{1}{(1-4 z)^{(2 i-1) / 2}}$.

Notice that the $i^{\text {th }}$ derivative of a_{1} is of order $\frac{1}{(1-4 z)^{(2 i-1) / 2}}$, hence its $(i-$ $2)^{t h}$ derivative is of order $\frac{1}{(1-4 z)^{(2 i-5) / 2}}$ and its $(i-3)^{t h}$ derivative is of order $\frac{1}{(1-4 z)^{(2 i-7) / 2}}$. Similarly, the $i^{\text {th }}$ derivative of a_{2} is of order $\frac{1}{(1-4 z)^{(2 i+1) / 2}}$, hence its $(i-3)^{\text {th }}$ derivative is of order $\frac{1}{(1-4 z)^{(2 i-5) / 2}}$.

By induction for $j+2 \leq i-3, a_{j+2}$ is of order $\frac{1}{(1-4 z)^{(2 j+1) / 2}}$. Among its successive derivatives we derive at most $i-3-j$ times, hence the items in the sum are of order at most $\frac{1}{(1-4 z)^{(2 i-5) / 2}}$.

Now, every product $a_{j} a_{i-j+1}$ is of order $\frac{1}{(1-4 z)^{i-2}}$, therefore the first four terms in (\ddagger) do not contribute to the asymptotic value of $a_{i+1}(z)$. Hence the contribution to the asymptotic value is given only by products $a_{j} a_{i-j+1}$'s. Multiplying their order by $\frac{1}{\sqrt{1-4 z}}$ we obtain that the last sum is of order $\frac{1}{(1-4 z)^{(2 i-1) / 2}}$.

Let us denote by K_{i} the multiplicative coefficient $C_{i-2} / 2^{3 i-5}$ of $\frac{1}{(1-4 z)^{(2 j-3) / 2}}$. One notices that $K_{2}=\frac{1}{2}=\frac{C_{0}}{2^{3 \times 2-5}}$. The sum $z \sum_{j=2}^{i-1} a_{j} a_{i-j+1}$ shows the
inductive part. Indeed, when $z=\frac{1}{4}$:

$$
\begin{aligned}
z \sum_{j=2}^{i-1} K_{j} K_{i-j+1} & =\frac{1}{4} \sum_{j=2}^{i-1} \frac{C_{j-2}}{2^{3 j-5}} \frac{C_{i-j+1-2}}{2^{3(i-j+1)-5}} \\
& =\frac{1}{2^{3 i-5}} \sum_{j=0}^{i-3} C_{j} C_{i-j-3} \\
& =\frac{C_{i-2}}{2^{3 i-5}}=K_{i}
\end{aligned}
$$

Finally, we are able to provide asymptotic values of coefficients of functions a_{i}.
Theorem 9 The coefficient of z^{n} in the function $a_{k}(z)$ admits the following asymptotic expansion:

$$
\left[z^{n}\right] a_{k}(z)=\frac{1}{2^{k-1}(k-1)!\sqrt{\pi}} 4^{n} n^{(2 k-5) / 2} \cdot \Psi(n, k)
$$

where

$$
\begin{aligned}
\Psi(n, k)= & 1+\frac{(2 k-3)(2 k-5)}{8 n}+\frac{(2 k-3)(2 k-5)(2 k-7)(3 k-11)}{384 n^{2}}+ \\
& \frac{(2 k-3)^{2}(2 k-5)^{2}(2 k-7)(2 k-9)}{3672 n^{3}}+O\left(\frac{1}{n^{4}}\right) .
\end{aligned}
$$

Proof: First recall that

$$
\Gamma((2 k-3) / 2)=\Gamma\left((k-2)+\frac{1}{2}\right)=\frac{(2(k-2))!\sqrt{\pi}}{2^{2(k-2)}(k-2)!} .
$$

Now using Fact 7, we can compute the principal part:

$$
\begin{aligned}
{\left[z^{n}\right] a_{k}(z) } & =\frac{C_{k-2}}{2^{3 k-5}} 4^{n}\left[z^{n}\right](1-z)^{(2 k-3) / 2} \\
& \sim \frac{C_{k-2}}{2^{3 k-5}} 4^{n} \frac{n^{(2 k-5) / 2}}{\Gamma((2 k-3) / 2)} \\
& =\frac{C_{k-2}}{2^{3 k-5}} \frac{(k-2)!2^{2(k-2)}}{(2(k-2))!\sqrt{\pi}} 4^{n} n^{(2 k-5) / 2} \\
& =\frac{C_{k-2}(k-2)!}{2^{k-1}(2(k-2))!\sqrt{\pi}} 4^{n} n^{(2 k-5) / 2} \\
& =\frac{1}{2^{k-1}(k-1)!\sqrt{\pi}} 4^{n} n^{(2 k-5) / 2}
\end{aligned}
$$

For $\Psi(n, k)$ we use Fact 7 with $\alpha=\frac{2 k-3}{2}$.
By looking at Figure 3, we can easily notice a recurring pattern concerning the structure of functions a_{i}. Therefore, we state the following proposition.

Proposition 10 For every $i>2$ we have

$$
a_{i}(z)=z^{i-2}\left(\frac{Q_{i}(z)}{(1-4 z)^{i-2}}+\frac{S_{i}(z)}{(1-4 z)^{i-\frac{3}{2}}}\right),
$$

where Q_{i} and S_{i} are polynomials over \mathbb{Z} in z and $\operatorname{deg} Q_{i}=\left\lfloor\frac{i-3}{2}\right\rfloor$ and $\operatorname{deg} S_{i}=\left\lfloor\frac{i-1}{2}\right\rfloor$.
Proof: By induction using formula (\ddagger), in the same vein as the proof of Proposition 8. In particular, the two first members of (\ddagger) are derivatives of the generating function of Catalan numbers studied in [15].

As we have already mentioned, the number of closed terms of size n is given by $P_{n}(0)$, which corresponds to the $n^{t h}$ term of the Taylor expansion of the function a_{n+2}. Hence, the sequence of the numbers of closed λ-terms is equal to the sequence $\left(\left[z^{n}\right] a_{n+2}(z)\right)_{n>0}$. From Proposition 10, the number of closed terms of size n is equal to $Q_{n+2}(0)+S_{n+2}(\overline{0})$. Currently, we have no recursive formula for the Q_{n} 's and the S_{n} 's. However, by Proposition 8, we know that

$$
S_{n+2}\left(\frac{1}{4}\right)=\frac{C_{n}}{2^{n+1}} .
$$

6 Counting normal forms

Beside counting terms, it is also interesting to count normal forms. To this end, we describe the set of normal forms as follows

$$
\begin{aligned}
& \mathcal{G}_{n+1, m}=[\underline{1} . . \mathrm{m}] \uplus \biguplus_{i=0}^{n} \mathcal{G}_{i, m} @ \mathcal{F}_{n-i, m} \\
& \mathcal{F}_{n+1, m}=\lambda \mathcal{F}_{n, m+1} \uplus \mathcal{G}_{n, m}
\end{aligned}
$$

Recall that a normal form consists of a (possibly empty) sequence of abstractions followed by the application of a de Bruijn index to normal forms. $\mathcal{F}_{n, m}$ represents the normal forms of size n with at most m free indices and $\mathcal{G}_{n, m}$ represents the neutral terms, i.e., terms starting with an index, of size n with at most m free indices. From this we derive the formulas for counting:

$$
\begin{aligned}
G_{0, m} & =m \\
G_{n+1, m} & =\sum_{k=0}^{n} G_{n-k, m} F_{k, m} \\
F_{0, m} & =m \\
F_{n+1, m} & =F_{n, m+1}+G_{n+1, m} .
\end{aligned}
$$

The values of $F_{n, 0}$ up to $n=10$ are:

$$
0,1,3,11,53,323,2359,19877,188591,1981963,22795849 .
$$

```
ftab :: [[Integer]]
ftab = [0..] : [[f' (n-1) (m+1) + g' n m | m<-[0..]] | n<-[1..]]
gtab :: [[Integer]]
gtab = [0..] : [[s n m | m <- [0..]] | n <- [1..]]
    where s n m = let fi = [f' i m | i <- [0..(n-1)]]
                    gi = [g' i m | i <- [n-1,n-2..0]]
                                in sum $ zipWith (*) fi gi
f, :: Int -> Int -> Integer
f' n m = ftab !! n !! m
g' n m = gtab !! n !! m
```

Figure 4: Haskell program for counting normal forms

```
fgtab :: [[[(Integer,Integer)]]]
fgtab = iterate nextn . map return $ zip [0..] [0..]
    where
    nextn ls = zipWith rake (tail ls) ls
    rake ((f1,_):_) ms = let cv = conv ms in (f1 + cv, cv) : ms
    conv ms = sum $ zipWith (\(a,_) -> \(_,b) -> a*b) ms (reverse ms)
f :: Int -> Int -> Integer
f n m = fst $ head $ fgtab !! n !! m
g n m = snd $ head $ fgtab !! n !! m
```


Figure 5: Haskell improved program for counting normal forms

This sequence, added by us to the On-line Encyclopedia of Integer Sequences, has its entry number A224345. A Haskell program for computing the values of $F_{n, m}$ and $G_{n, m}$ is given in Figure 4.

The efficiency of this program can be improved (Figure 5). Like for terms we derive polynomials:

$$
\begin{aligned}
{ }^{\mathrm{NF}} P_{0}(m) & =m \\
{ }^{\mathrm{NF}} P_{n+1}(m) & ={ }^{\mathrm{NF}} P_{n}(m+1)+{ }^{\mathrm{NF}} Q_{n+1}(m), \\
{ }^{\mathrm{NF}} Q_{0}(m) & =m \\
{ }^{\mathrm{NF}} Q_{n+1}(m) & =\sum_{k=0}^{n}{ }^{\mathrm{NF}} P_{k}(m){ }^{\mathrm{NF}} Q_{n-k}(m) .
\end{aligned}
$$

Lemma 11 For every n, the degree of the polynomials ${ }^{N F} P_{n}$ and ${ }^{N F} Q$ is equal to $n+1$.
Proof: Like the proof of Lemma 1, by induction on n from the definition of ${ }^{\mathrm{NF}} P_{n}$ and ${ }^{\mathrm{NF}} Q$.

6.1 Coefficients of the polynomials ${ }^{{ }^{N} P_{n}}$ and ${ }^{\mathrm{NF}} Q_{n}$

Let us count i-nf-contexts. They are closed normal forms with i holes. The i-nf-contexts of size n are counted by $d_{n, i}$. They are abstractions of i-contexts of the form [] $N_{1} \ldots N_{p}$, which we call i-nf-pre-contexts, where each N_{j} is a i_{j}-nf-context (with $i_{1}+\ldots+i_{j}+\ldots+i_{p}=$ $i-1$) and which are counted by $g_{n, i}$. There is one 1 -nf-context and one 1 -nf-pre-context of size 0 , whereas there are $0 i$-nf-contexts and $0 i$-nf-pre-contexts for $i \neq 1$ of size 0 . Thus we get

$$
\begin{aligned}
d_{0, i} & =[i=1], \\
g_{0, i} & =[i=1] .
\end{aligned}
$$

By reasoning similarly as in Section 3 and by using the description of normal forms given above, we get:

$$
\begin{aligned}
& d_{n+1, i}=\sum_{j=i}^{n+1}\binom{j}{i} d_{n, j}+g_{n+1, i}, \\
& g_{n+1, i}=\sum_{j=0}^{i} \sum_{k=0}^{n} g_{k, j} d_{n-k, i-j} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& { }^{\mathrm{NF}_{P_{n}}(m)}=\sum_{i=0}^{n} d_{n, i} m^{i}, \\
& { }^{\mathrm{NF}} Q_{n}(m)=\sum_{i=0}^{n} g_{n, i} m^{i} .
\end{aligned}
$$

6.2 Generating functions

Consider the two generating functions:

$$
\begin{aligned}
D(z, u) & =\sum_{n, i \geq 0} d_{n, i} z^{n} u^{i} \\
G(z, u) & =\sum_{n, i \geq 0} g_{n, i} z^{n} u^{i}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& D(z, u)=\sum_{n=0}^{\infty}{ }^{\mathrm{NF}} P_{n}(u) z^{n} \\
& G(z, u)=\sum_{n=0}^{\infty}{ }^{\mathrm{NF}} Q_{n}(u) z^{n} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
D(z, u) & =u+z \sum_{n=0}^{\infty}{ }^{\mathrm{NF}} P_{n}(u+1) z^{n}+\sum_{n=1}^{\infty}{ }^{\mathrm{NF}} Q_{n}(u) z^{n} \\
& =z D(z, u+1)+G(z, u)
\end{aligned}
$$

and

$$
\begin{aligned}
G(z, u) & =u+z \sum_{n=0}^{\infty}{ }^{\mathrm{NF}} Q_{n}(u)^{\mathrm{NF}} P_{n}(u) z^{n} \\
& =u+z \sum_{n=0}^{\infty} \sum_{k=0}^{n} g_{k, j} z^{k} u^{i} d_{n-k, i-j} z^{n-k} n u^{i-j} \\
& =u+z D(z, u) G(z, u) .
\end{aligned}
$$

Consequently the two functions D and G satisfy

$$
\begin{aligned}
D(z, u) & =z D(z, u+1)+G(z, u) \\
G(z, u) & =u+z D(z, u) G(z, u)
\end{aligned}
$$

$D(z, 0)$ is the generating function for the numbers of closed normal forms of size n. By solving the above system of equations, we get:

$$
z D(z, u)-\left(1+z^{2} D(z, u+1)\right) D(z, u)+u+z D(z, u+1)=0
$$

which yields

$$
D(z, u)=\frac{1+z^{2} D(z, u+1)-\sqrt{\left(1+z^{2} D(z, u+1)\right)^{2}-4 z(u+z D(z, u+1))}}{2 z} .
$$

7 Lambda term generation

From the simple equation defining the number $T_{n, m}$ of terms, we define the function generating them. More precisely, we define a function unrankT nm k which returns the $k^{\text {th }}$ term of size n with at most m distinct free variables (see the Haskell program in Figure 6). The variable k is an Integer (i.e., an arbitrary-precision integer) which belongs to the interval $\left[1 . . T_{n, m}\right]$. The unranking program mimics counting terms. If n is 0 , then the program returns the de Bruijn index $\underline{\mathrm{k}}$. Otherwise, if k is less than $T_{n-1, m+1}$, the rank k lies in the part of the interval [$1 . . T_{n, m}$] with terms that are abstractions. Therefore, for $k \leq T_{n-1, m+1}$ unrankT n m k returns λ (unrankT $(\mathrm{n}-1)(\mathrm{m}+1) \mathrm{k}$). If the rank k is larger than $T_{n-1, m+1}$, it lies in the part of the interval $\left[1 . . T_{n, m}\right]$ with applications. Therefore we call a function appTerm which tries to identify which sub-interval contains a pair of terms with indices k^{\prime} and $k^{\prime \prime}$ such that $k^{\prime}+k^{\prime \prime}$ is at the right place. The product of these values correspond to one of the products $T_{j, m} T_{n-j, m}$ in the sum. When the number j is found, two recursive calls of unrankT, with appropriate k^{\prime} and $k^{\prime \prime}$, build the subterms of the application. One may notice $(h-1)$ and +1 which take into account the fact that k lies in an interval $\left[1 . . T_{-,-}\right]$while divMod works in an interval $\left[0 . .\left(T_{-,-}-1\right)\right]$.

The function unrankT relies on the function t presented in Section 2.1 and called here $O(n)$ times. Assuming that t has been called once already and therefore runs in $O(n+m)$, unrankT performs $O(n)$ recursive calls and its complexity depends on one side linearly on the operations divMod, $(-)$ and $(*)$ performed on arbitrary-precision integers and on the other side is in $O\left(n^{2}\right)$ due to the accesses generated by t.

For a given n, this program can be used to enumerate all the closed λ-terms of size n and, more generally, all the λ-terms of size n with at most m distinct free variables. This is

```
data Term = Index Integer
    | Abs Term
    | App Term Term
unrankT :: Int -> Int -> Integer -> Term
unrankT 0 m k = Index k
unrankT n m k
    | k <= (t (n-1) (m+1)) = Abs (unrankT (n-1) (m+1) k)
    | (t (n-1) (m+1)) < k = appTerm (n-1) 0 (k - t (n-1) (m+1))
    where appTerm n j h
            | h <= tjmtnjm = let (dv,md) = ((h-1) 'divMod' tnjm)
                        in App (unrankT j m (dv+1))
                            (unrankT (n-j) m (md+1))
    | otherwise = appTerm n (j + 1) (h -tjmtnjm)
        where tnjm = t ( }\textrm{n}=\textrm{j}\mathrm{ ) m
        tjmtnjm = (t j m) * tnjm
```

Figure 6: Haskell program for term unranking
appropriate only for small values of n, since the number of λ-terms gets superexponentially large with n. But overall, in order to generate a random term of size n with at most m distinct free variables, it suffices to feed T with a random value k in the interval [1.. $T_{n, m}$]. Similarly, on the basis of the recursive formula for the number of normal forms, one defines a program for their generation (Figure 7).

8 Simply typable terms

Once we have a random generator for untyped terms, it is easy to build a random generator for simply typable terms. It suffices to sieve all terms by a predicate, which we call isTypable. This predicate is a classical principal type algorithm [19, 4, 11]. In Appendix B, we give a Haskell program. For instance, applying the random generator with parameter 10 (for the size of the term), we got:

$$
\lambda(\lambda(((\underline{1} \lambda(\underline{1})) \lambda((\underline{3} \lambda(((\underline{1} \underline{2}) \underline{3}))))))) .
$$

This is a "typical" simply typable random closed λ-term of size 10 written with de Bruijn indices. Its type is

$$
\begin{gathered}
((\alpha \rightarrow(((\beta \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma) \rightarrow \delta) \rightarrow \zeta)) \rightarrow \zeta) \rightarrow \gamma \rightarrow \\
((\beta \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma) \rightarrow \delta) \rightarrow \delta .
\end{gathered}
$$

We were able to generate typable terms of size 50 . For such terms, the generating process is slow, since it requires 50000 generations of terms, with (unsuccessful) tests of their typability before getting a typable one. But for size 40 , the number of attempts falls to 3 for 10000 .

```
unrankNF :: Int -> Int -> Integer -> Term
unrankNF 0 m k = Index k
unrankNF n m k
    | k <= f (n-1) (m+1) = Abs (unrankNF (n-1) (m+1) k)
    | f (n-1) (m+1) < k = unrankNG n m (k - f (n-1) (m+1))
unrankNG :: Int -> Int -> Integer -> Term
unrankNG 0 m k = Index k
unrankNG n m k = appNF (n-1) 0 m k
appNF :: Int -> Int -> Int -> Integer -> Term
appNF n j m h
    | h <= gjmfnjm = let (dv,md) = (h-1) 'divMod' fnjm
        in App (unrankNG j m (dv+1))
                                    (unrankNF (n-j) m (md +1))
    | otherwise = appNF n (j + 1) m (h -gjmfnjm)
    where fnjm = f (n-j) m
        gjmfnjm = g j m * fnjm
```

Figure 7: Haskell program for normal form unranking

This kind of random generator is useful for testing functional programs. Michał Pałka [20, 21] proposed a tool to debug Haskell compilers based on a λ-term generator. His generator is designed on the development of a typing tree, with choices made when a new rule is created. Such a method needs to cut branches in developing the tree to avoid loops. This way his generator is not random, which may be a drawback in some cases. As a matter of fact, a method for generating simply typed terms based on developing a typing tree does not produce terms on a uniform random distribution since it requires to cut the tree at arbitrary locations to avoid loops, "arbitrary" in the sense of randomness preservation. In other words, there is no simple recursive definition of simply typed terms, as well as of simply typable terms, that would allow an easy uniform random generation. This is also what makes the combinatorial study of typed terms difficult. A term is typable because it satisfies some constraints, not because it is generated in a specific way.

9 Experimental data

Given a random term generator, we are able to write programs to make statistics on some features of terms. While there are many possible experiments of this type, here we present only two that we find interesting and suggestive of other possibilities.

Figure 8: From top to bottom: Curve $\frac{2 n}{\ln (n)}$, average variable depth for closed terms, average variable depth for closed normal forms and curve $\frac{2 n}{\ln (n)^{1.1}}$.

9.1 Average variable depth in closed terms and closed normal forms

Let us define the variable depth as the number of symbols (abstractions and applications) between a variable and the top of the term. For instance, given the term $\lambda x .(\lambda y z . x)(\lambda u . u)$, the first occurrence of variable x has depth 1 and the second occurrence of variable x has depth 3 , while the depth of u is 2 . This gives the average depth 2 for this term. Looking at the de Bruijn indices of the brother term $\lambda \underline{1}(\lambda \lambda \underline{3} \lambda \underline{1})$, we say that the first index $\underline{1}$ has depth 1 , the second index $\underline{3}$ has depth 3 and the third index $\underline{1}$ has depth 2 , with the same average 2 as previously. In Figure 8, we draw the average variable depth for 300 random closed terms of size 15 up to size 175 (top scatter plot) and the average variable depth for 300 random normal forms of size 15 up to size 175 (bottom scatter plot) squeezed between the curves $\frac{2 n}{\ln (n)^{a}}$ for $a=1$ and $a=1.1$ (plain lines). In Figure 9 we see the same four curves enlarged in the interval [170..175]. This shows clearly that the average variable depth of closed terms and closed normal forms are different. On this basis, we conjecture that the average depth of variables in closed terms is asymptotically bounded from above by $\frac{2 n}{\ln (n)}$ and that the average variable depth is slightly smaller for normal forms than for closed terms.

Figure 9: Magnification of Figure 8 between $n=170$ and $n=175$.

9.2 Average number of head λ 's per closed term

We say that λx is a head lambda in a term t if the latter is of the form $\lambda x_{1} \ldots \lambda x_{n} \lambda x$.s for some positive integer n and a certain term s. In order to know the structure of an average term, we are interested in the average number of head λ 's occurring in closed terms. In Figure 10, we compare values of some functions $\sqrt{\frac{n}{\ln (n)^{a}}}$ with the number of head λ 's in 1000 random closed terms and the average number of head λ 's in 1000 normal forms, both in the case when size goes from 15 to 150 . We see that, in the case of closed terms, these numbers are in accordance with Theorem 35 in [5].

9.3 Ratio of simply typable terms among all terms

It is interesting to investigate the ratio of simply typable closed terms among all closed terms. There are 851368766 closed λ-terms of size 11, whereas there are 63782411 closed λ-terms of size 10. Therefore, we performed computations for closed terms of size less than 11. In fact, one cannot go much further due to the superexponential growth of the sequence enumerating closed terms. Table 1 gives the ratio of simply typable closed terms over all closed terms by an exhaustive examination of the closed terms up to 10 . For closed terms of size 8 or larger, we computed the ratio by the Monte Carlo method. The results are given in Table 2. We added the sequence of the numbers of simply typable closed terms of a given size to the On-line Encyclopedia of Integer Sequences and it can be found under the number A220471.

Figure 10: Bottom: average number of head λ 's per closed term. Top: average number of head λ 's per closed normal form. In between: curves $\sqrt{\frac{n}{\ln (n)^{a}}}$ for $a=0.025,0.2,0.3,0.5$.

size	4	5	6	7	8	9	10
nb of terms	82	579	4741	43977	454283	5159441	63782411
nb of typables	40	238	1564	11807	98529	904318	9006364
ratio	0.4878	0.4110	0.3299	0.2684	0.2168	0.1752	0.1412

Table 1: Numbers and ratios of simply typable closed terms up to size 10

size	8	9	10	11	12	13	14	15	16	20	30	40	45
ratio	.216	.175	.141	.111	.089	.073	.056	.047	.039	.0014	.0012	.0003	.00005

Table 2: Ratios of simply typable closed terms (of size at least 8)

We conclude that simply typable closed terms become very scarce as the size of the closed terms grows, falling to less than one over 100000 when the size gets larger than 50. Likewise, we have done the same task for normal forms. We got the ratio by an exhaustive examination of normal forms up to 10 in Table 3 and by the Monte Carlo method thereafter in Table 4.

size	4	5	6	7	8	9	10
nb of NF	53	323	2359	19877	188591	1981963	22795849
nb of typable NF	23	108	618	4092	30413	252590	2297954
ratio	0.4339	0.3343	0.2619	0.2058	0.1612	0.1274	0.1008

Table 3: Numbers and ratios of simply typable closed normal forms up to size 10

size	8	9	10	11	12	13	14	15	16	20	30	40	45
ratio	.159	.128	.102	.079	.063	.049	.040	.031	.024	.010	.0006	2.10^{-5}	$<10^{-5}$

Table 4: Ratios of simply typable closed normal forms

Figure 11: Distribution of simply typable closed λ-terms of size 25.250 segments on the horizontal axis, percentage ($0 \%-3 \%$) of typable closed λ-terms in segments on the vertical axis.

9.4 Distribution of simply typable lambda terms among terms

We said that simply typable terms are scarce, but we may wonder what scarce exactly means. More precisely, we may wonder how terms are distributed. To provide an answer to this question, we conducted experiments to approximate the distribution of typable closed λ-terms in segments of the interval $\left[1 . . T_{0, n}\right]$. We divided the interval into regular segments and computed the ratio of simply typable terms for a random sample of terms in each segment. Figure 11 is typical of the results we got. This corresponds to an experiment on closed terms of size 25 on 250 segments with tests for simple typability on 200 random closed terms in each segment. For each segment the height of the vertical bar represents the ratio of typable closed terms to general closed terms in the corresponding segment. The simply typable closed terms are not uniformly distributed. They are more concentrated on the left of the interval corresponding to closed terms with low numbers. Those closed terms correspond to closed terms starting more often with abstractions than with applications and this is recursively so for subterms giving the impression of rolling waves. For instance, there are 2% to 3% of typable closed terms (of size 25) starting with

Figure 12: Distribution of simply typable closed λ-terms of size 30.250 segments on the horizontal axis, percentage ($0 \%-2.5 \%$) of typable closed λ-terms in segments on the vertical axis.
many abstractions, whereas for closed terms starting with many applications there are large subintervals with almost no typable closed terms. Figure 12, which gives the same statistics for closed terms of size 30, shows that typable closed terms get more scarce as the size of the closed terms grows.

The typable closed normal forms are even more scarcely distributed. As a comparison, we drew the same graphs for closed normal forms (size of the closed normal forms: 25 and 30 , number of segments 250 , tests on 200 closed terms) in Figure 13. The typable closed normal forms aggregate more on the left of the interval where closed terms start mostly with abstractions, with peaks of 4% to 6% by segments. Figure 14 shows that scarcity of typable normal forms increases as the size of closed terms grows.

Figure 13: Distribution of simply typable closed normal forms of size 25. 250 segments on the horizontal axis, percentage ($0 \%-6 \%$) of typable closed normal forms in segments on the vertical axis.

Figure 14: Distribution of simply typable closed normal forms of size 30. 250 segments on the horizontal axis, percentage ($0 \%-1.45 \%$) of typable closed normal forms in segments on the vertical axis.

10 Related work

There are very few papers on counting λ-terms, whereas counting first order terms is a classical domain of combinatorics. Apparently, the first traces of counting expressions with (unbound) variables can be attributed to Hipparchus of Rhodes (c. 190-120 BC) (see [8] p. 68). Flajolet and Sedgewick's book [8] is the reference on this subject. Concerning counting λ-terms, we can cite only five works. [5] and [2] study asymptotic behavior of formulas on counting λ-terms. Strictly speaking, they do not exhibit a recurrence formula for counting. In particular, David et al. [5] provide only upper and lower bounds for the numbers of λ-terms in order to get information about the distribution of families of terms. For instance, they prove that "asymptotically almost all λ-terms are strongly normalizing". In [17] the second author of the present paper proposes formulas for counting λ-terms in the case of variables of size 1 , with more complex formulas and less results. On another hand, Christophe Raffalli proposed a formula for counting closed λ-terms, which he derives from the formula for counting λ-terms with exactly m distinct free variables. His formula appears in the On-line Encyclopedia of Integer Sequences under the number A135501. He considers size 1 for the variables. Beside those works, John Tromp [25] proposes a rather different way of counting λ-terms which deserves to be investigated further from the viewpoint of combinatorics. His size function works on terms with de Bruijn indices like ours and is (in our convention of starting at 1) as follows:

$$
\begin{aligned}
|\underline{n}| & =n+1 \\
|\lambda M| & =|M|+2 \\
|M N| & =|M|+|N|+2
\end{aligned}
$$

producing sequence A114852 (and sequence A195691 for closed normal forms) in the On-line Encyclopedia of Integer Sequences. This work is connected to program size complexity and Algorithmic Information Theory [18].

As concerns random generation, Wang in $[27,26]$ proposed algorithms for random generation of untyped λ-terms in the spirit of the counting formula of Raffalli for [27] and in the spirit of $T_{n, m}$ for [26]. On term generation, we can also mention two works. In [7] the authors enumerate and generate many more structures than λ-terms. In [13], the authors address a problem similar to ours. Indeed they play on the duality encoder-decoder or askbuild, when we speak of counting-generating or ranking-unranking. Our unranking program (Figure 6) can be made easily a game, with questions like "Is $k \leq(t(n-1)(m+1))$?" or like "Is $k>(t(n-1)(m+1))$?", but Kennedy and Vytiniotis do not know the precise range of their questions since they do not base their generation on counting. Since the size is not a parameter, their games may have unsuccessful issues and their programs can raise errors and are only error-free on well-formed games. Pałka [20, 21] uses generation of typable λ-terms to test Haskell compilers. He acknowledges that, due to his method, he cannot guarantee the uniformity of his generator (see discussion in [20] p. 21 and p. 45). Nonetheless, he found eight failures and four bugs in the Glasgow Haskell Compiler demonstrating the interest in the method, probably due the ability of generating large terms. Rodriguez Yakushev \& Jeuring [22] study the feasibility of generic programming for the enumeration of typed terms. The given examples are of size 4 or 5 , no realistic examples are provided, randomness is not addressed and the authors confess that their algorithm is not efficient. Knowing that there are 9006364 simply typable closed terms of size 10, one wonders if there is an actual use for such enumeration and it seems unrealistic to utilize enumeration for larger numbers. The "related work" section of [22] covers similar approaches, which all consist in cutting branches. For this reason they do not generate terms uniformly. A presentation of tree-like structure generation and a history of combinatorial generation is given in [14].

Since we cited, as an application, the random generation of terms for the construction of samples for debugging functional programming compilers and the connection with languages with bound variables, it is sensible to mention Csmith [28], which is the most recent and the most efficient bug tracker of C compilers. It is based on random program generation and uses filters for generating programs enforcing semantic restrictions, like ours when generating simply typable terms. However, the generation is not based on unranking, therefore Csmith lacks the ability to construct test case of a specific size on demand, but Csmith can generate large terms, which reveals to be useful, since the greatest number of distinct crash errors is found by programs containing $8 \mathrm{~K}-16 \mathrm{~K}$ tokens. However, one may wonder if this feature is not a consequence of the non-uniformity of the distribution.

11 Acknowledgments

Clearly Nikolaas de Bruijn and Philippe Flajolet were influential all along this research. We would like to thank Marek Zaionc for stimulating discussions and for setting the problem of counting λ-terms, Bruno Salvy for his help in the proof of Proposition 8, Olivier Bodini, Jonas Duregård, Danièle Gardy, Bernhard Gittenberger, Patrik Jansson, Jakub Kozik, John Tromp and the referees of this paper for their useful suggestions and interactions.

12 Conclusion

This paper opens tracks of research in two directions, which are intrinsically complementary, namely counting and generating, aka ranking and unranking. On counting terms, some hard problems remain to be solved. Probably the hardest and the most informative one is to give an asymptotic estimation for the numbers of closed terms of size n. It seems that big obstacles remain to be hurdled before getting a solution, since combinatorial structures with binders have not been studied so far by combinatorists. On generation of terms, implementations have to be improved to go further in the production of uniformly distributed terms, in particular, of uniformly generated typable terms.

References

[1] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions. Journal of Functional Programming, 1(4):375-416, 1991.
[2] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda terms of bounded unary height. In Proceedings of the Eighth Workshop on Analytic Algorithmics and Combinatorics, pages 23-32, 2011.
[3] Pierre-Louis Curien. Introduction to linear logic and ludics, part I. CoRR, abs/cs/0501035, 2005. http://arxiv.org/abs/cs/0501035.
[4] Luís Damas and Robin Milner. Principal type-schemes for functional programs. In Conference Record of the Ninth Annual ACM Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 1982, pages 207-212. ACM Press, 1982. Richard A. DeMillo ed.
[5] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and Marek Zaionc. Asymptotically almost all λ-terms are strongly normalizing. CoRR, abs/0903.5505v3, 2009. http://http://arxiv.org/abs/0903. 5505v3.
[6] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae, 34(5):381-392, 1972.
[7] Jonas Duregård, Patrik Jansson, and Meng Wang. Feat: functional enumeration of algebraic types. In Janis Voigtländer, editor, Proceedings of the 5th ACM SIGPLAN Symposium on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September 2012, pages 61-72. ACM, 2012.
[8] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008.
[9] Jean Gallier and Wayne Snyder. Complete sets of transformations for general Eunification. Theoret. Comput. Sci., 67(2-3):203-260, October 1989.
[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. Addison-Wesley, Reading, MA, 1989.
[11] J. Roger Hindley. M. H. Newman's typability algorithm for lambda-calculus. J. Log. Comput., 18(2):229-238, 2008.
[12] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: a rule-based survey of unification. In Jean-Louis Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages 257-321. The MIT press, Cambridge (MA, USA), 1991.
[13] Andrew J. Kennedy and Dimitrios Vytiniotis. Every bit counts: The binary representation of typed data and programs. J. Funct. Program., 22(4-5):529-573, 2012.
[14] Donald E. Knuth. The Art of Computer Programming, Generating All Trees-History of Combinatorial Generation, volume 4 (fascicle 4). Addison-Wesley Publishing Company, 2006.
[15] Wolfdieter Lang. On polynomials related to derivatives of the generative functions of the Catalan numbers. The Fibonacci Quarterly, 40(4):299-313, 2002.
[16] Pierre Lescanne. From $\lambda \sigma$ to λv, a journey through calculi of explicit substitutions. In Hans Boehm, editor, Proceedings of the 21st Annual ACM Symposium on Principles Of Programming Languages, Portland (Or., USA), pages 60-69. ACM, 1994.
[17] Pierre Lescanne. On counting untyped lambda terms. Theor. Comput. Sci., 474:8097, 2013.
[18] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications (2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.
[19] Max H. A. Newman. Stratified systems of logic. Proceedings of the Cambridge Philosophical Society, 39:69-83, 1943.
[20] Michał Pałka. Testing an optimising compiler by generating random lambda terms. Licentiatavhandling, Department of Computer Science and Engineering, Chalmers University of Technology and Göteborg University, May 2012.
[21] Michał H. Pałka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an optimising compiler by generating random lambda terms. In Proceedings of the 6th International Workshop on Automation of Software Test, AST'11, pages 91-97, New York, NY, USA, 2011. ACM.
[22] Alexey Rodriguez Yakushev and Johan Jeuring. Enumerating well-typed terms generically. In Ute Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer, editors, AAIP, volume 5812 of Lecture Notes in Computer Science, pages 93-116. Springer, 2009.
[23] William Stein et al. Sage Mathematics Software (Version 4.8). The Sage Development Team, 2012. http://www.sagemath.org.
[24] The On-Line Encyclopedia of Integer Sequences ${ }^{\circledR}$ (OEIS ${ }^{\circledR}$) Wiki. Ranking and unranking functions, 2013. https://oeis.org/wiki/Ranking_and_unranking_ functions, [Online; accessed 18-June-2013].
[25] John Tromp. Binary lambda calculus and combinatory logic. In Marcus Hutter, Wolfgang Merkle, and Paul M. B. Vitányi, editors, Kolmogorov Complexity and Applications, volume 06051 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
[26] Jue Wang. The efficient generation of random programs and their applications. Master's thesis, Honors Thesis, Wellesley College, Wellesley, MA, May 2004.
[27] Jue Wang. Generating random lambda calculus terms. Citeseer, 2005. available from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.2624.
[28] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in C compilers. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 283-294. ACM, 2011.

A Terms with exactly m distinct free variables

Here we study the numbers of terms with exactly m distinct free variables, the formulas for counting those numbers and their relations with quantities we considered.

A. 1 A formula

Let us show how to derive the formula for counting λ-terms with exactly m distinct free variables. This formula is adapted from a similar one when variables have size 1 due to Raffalli (On-line Encyclopedia of Integer Sequences under the number A135501). We assume that terms are built with usual variables (not de Bruijn indices) and that they are equivalent up to a renaming of bound variables and up to α-conversion. Let us denote the number of λ-terms of size n with exactly m distinct free variables by $f_{n, m}$.

Notice first that there is no term of size 0 with no free variable, hence $f_{0,0}=0$. There is one term of size 0 with one free variable, hence $f_{0,1}=1$. The maximum number of variables for a λ-term of size n is when the only operators are applications and all the variables are different. One has then a binary tree with n internal nodes and $n+1$ leaves holding $n+1$ variables. This means that for m beyond $n+1$ variables there is no term of size n with exactly m distinct free variables. Hence

$$
f_{n, m}=0 \quad \text { when } m>n+1 .
$$

In the general case, a term of size $n+1$ with m free variables starts either with an abstraction or with an application. Terms starting with an abstraction, say λx, on a term M contribute in two ways: either M does not contain x as a free variables or M contains
x as a free variable. There are $f_{n, m}$ such M 's in the first case and $f_{n, m+1}$ in the second. This gives the two first summands $f_{n, m}+f_{n, m+1}$ in the formula. Now, let us see how terms starting with an application look like. Assume they are of the form $P Q$ and of size $n+1$. For some $p \leq n$, the term P is of size p and Q is of size $n-p$. These terms share c common variables $(0 \leq c \leq m)$, while $P Q$ has m distinct free variables altogether. The term P has k distinct free variables, which do not occur in Q, hence P has $k+c$ distinct free variables altogether. The term Q has $m-k$ distinct free variables. Therefore, given a set of private variables for P, a set of common variables, and a set of private variables for Q, there are $f_{p, k+c} f_{n-p, m-k}$ possible pairs (P, Q). There are $\binom{m}{c}$ ways to choose the c common variables among m and there are $\binom{m-c}{k}$ ways to split the remaining variables into P and Q, namely k for P and $m-c-k$ for Q, hence the third summand of the formula:

$$
\sum_{p=0}^{n} \sum_{c=0}^{m} \sum_{k=0}^{m-c}\binom{m}{c}\binom{m-c}{k} f_{p, k+c} f_{n-p, m-k} .
$$

Now, we obtain the whole formula:

$$
f_{n+1, m}=f_{n, m}+f_{n, m+1}+\sum_{p=0}^{n} \sum_{c=0}^{m} \sum_{k=0}^{m-c}\binom{m}{c}\binom{m-c}{k} f_{p, k+c} f_{n-p, m-k} .
$$

A. 2 Relations between $T_{n, m}$ and $f_{n, m}$

The number of terms of size n with exactly i indices in [1..ㅍ] is $\binom{m}{i} f_{n, i}$. Therefore the number of terms with indices in [1... \underline{m}] is:

$$
T_{n, m}=\sum_{i=0}^{m}\binom{m}{i} f_{n, i} .
$$

By the inversion formula ([10] p. 192), we get:

$$
f_{n, m}=\sum_{i=0}^{m}(-1)^{m+i}\binom{m}{i} T_{n, i} .
$$

This shows with no surprise that $f_{n, m}$ and $T_{n, m}$ are simply connected. Knowing that the $T_{n, m}$'s can be easily computed, this provides a formula simpler than Raffalli's to compute the $f_{n, m}$'s.

A. 3 A relation between $f_{n, m}$ and $c_{n, i}$

We write $R_{i}^{(m)}$ the number of surjections from [1..i] to [1... \underline{m}]. To get a relation between $f_{n, m}$ and $c_{n, i}$, we can reproduce the process with which we associated $T_{n, m}$ and $c_{n, i}$ (Section 3), but instead of applications from [1..i] to [$\underline{1} . . \underline{m}$], we have surjections from [1..i] to $[\underline{1} . . \underline{\mathrm{m}}$], since this time we count terms with exactly m variables and all the de Bruijn indices must be reached by the applications. Therefore

$$
f_{n, m}=\sum_{i=0}^{n} c_{n, i} R_{i}^{(m)}
$$

Recall that

$$
R_{i}^{(m)}=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j}(i-j)^{m} .
$$

We can now go further in the expression of $f_{n, m}$.

$$
\begin{aligned}
f_{n, m} & =\sum_{i=0}^{n} c_{n, i} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j}(m-j)^{i} \\
& =\sum_{i=0}^{n} c_{n, i} \sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} k^{i} \\
& =\sum_{k=0}^{m}\binom{m}{k}(-1)^{m-k} \sum_{i=0}^{n} c_{n, k} k^{i} \\
& =\sum_{k=0}^{m}(-1)^{m+k}\binom{m}{k} T_{n, k} .
\end{aligned}
$$

which is another proof of the formula of Section A.2.

B A program for testing simple typability

In this section we give a simple Haskell program for testing simple typability of a term also called type reconstruction. The program which works on the types Type and Equation:
data Type = Var Int
I Arrow Type Type
type Equation = (Type,Type)
has three parts. First, a function builds the set of typability equational constraints of a closed term. This function called buildConstraint (Figure 15) takes a term and returns its potential principal type, which will be made explicit after solving the constraints, and a list of equational constraints. It requires a function build which will be called through the terms. Along its traversal of the term, the function build has to know the depth d (the number of λ 's it crossed). Moreover, build creates type variables. Actually, a constraint builder creates type variables in two situations: when it creates a context for the first time, that is when it deals with a de Bruijn index, and when it creates the type to be returned by an application. Since type variables are objects of the form Var i, where i is an Int, build takes an Int which is increased whenever a new type variable is created. We call the latter a cursor and denote it by cu. build returns a 4 -uple, namely the potential principal type of the term, a context (a list of types associated with de Bruijn indices), a set of equational constraints and the updated cursor.

To solve equational constraints we use a method based on transformation rules $[9,12]$. For that, we use a function decompose which splits an equation when both sides are arrow types. Moreover, when decompose meets an equation $\sigma_{1} \rightarrow \sigma_{2}=\alpha$, the latter is transformed into $\alpha=\sigma_{1} \rightarrow \sigma_{2}$.

```
buildConstraint :: Term -> (Type, [Equation])
buildConstraint t =
    let (ty,[],constraint,_) = build t 0 0
    in (ty, constraint)
    where
        build :: Term -> Int -> Int -> (Type, [Type], [Equation], Int)
        build (Index i) d cu =
        let ii = fromIntegral i
        in (Var (cu+ii-1), [Var j | j<-[cu..cu+d-1]],[],cu+d)
        build (Abs t) d cu =
        let (ty,(a:cntxt),constraint,cu') = build t (d+1) cu
        in ((Arrow a ty),cntxt,constraint,cu')
        build (App t1 t2) d cu =
        let (ty1, cntxt1, constraint1, cu1) = build t1 d cu
            (ty2, cntxt2, constraint2, cu2) = build t2 d cu1
                        ty = (Var cu2) in (ty,
                cntxt1,
                (ty1,(Arrow ty2 ty)):(zip cntxt1 cntxt2)
                        ++ constraint1 ++ constraint2,
                                cu2+1)
```

Figure 15: The function buildConstraint

```
decompose :: Equation -> [Equation]
decompose ((Arrow ty1 ty2), (Arrow ty1' ty2')) =
    decompose (ty1,ty1') ++ decompose (ty2,ty2')
decompose ((Arrow ty1 ty2),(Var i)) = [(Var i,(Arrow ty1 ty2))]
decompose (ty1,ty2) = [(ty1,ty2)]
```

A predicate nonTrivial $E q$ is necessary to filter out the trivial equations, i.e., of the form $\alpha=\alpha$.

```
nonTrivialEq :: Equation -> Bool
nonTrivialEq (Var i, Var j) = i /= j
nonTrivialEq (ty1, ty2) = True
```

A predicate $€$ checks whether a given variable belongs to a composed type. This is necessary to detect cycles. For instance, $\alpha=\beta \rightarrow \alpha$ is a cycle and shall be detected, whereas $\alpha=\alpha$ is a trivial equation, not a cycle, and shall be removed.

```
(€) :: Type -> Type -> Bool
(Var i) € (Var j) = False -- strict occurrence only
(Var i) € (Arrow ty1 ty2) = (Var i) €= ty1 || (Var i) €= ty2
    where (Var i) €= (Var j) = i == j
        (Var i) €= (Arrow ty1 ty2) = (Var i) €= ty1 ||
                                (Var i) €= ty2
```

Once this test is done, one can replace a variable α occurring in an equation of the form $\alpha=\sigma$ by σ everywhere else in the set of equational constraints before putting the equation $\alpha=\sigma$ in the solved part.

```
(\leftarrow) :: Type -> Equation -> Type
(Var j) \leftarrow (Var i, ty) = if i == j then ty else Var j
(Arrow ty1 ty2) \leftarrow (Var i, ty) =
    Arrow (ty1 \leftarrow (Var i, ty)) (ty2 \leftarrow (Var i, ty))
replace:: Equation -> Equation -> Equation
replace (Var i,ty) (ty1,ty2) = (ty1 \leftarrow (Var i,ty), ty2 \leftarrow (Var i,ty))
```

The function solve solves the set of equational constraints. It returns three things: first a list of equations which are the equations yet to be solved, second a list of equations which are the already solved equations and third a condition that says if the set of equational constraints is solvable or not. In other words, solve returns True as the third component if the set of equational constraints has a solution, that is when the set of equational constraints is empty. It returns False when it detects a cycle. Otherwise it tries to apply the transformations whenever it is possible, that is when the set of equational constraints is not empty. Indeed if there is no cycle and if the set of equational constraints is not empty, a transformation is always applicable.

```
solve :: [Equation] -> [Equation]
    -> ([Equation], [Equation],Bool)
solve ((Var i,ty):l) sol =
    if Var i € ty
    then ((Var i,ty):l,sol,False) -- cycle detected
    else solve (map (replace (Var i,ty)) l) ((Var i,ty):sol)
solve (eq:l) sol = solve (filter nonTrivialEq (decompose eq) ++ l) sol
solve [] sol = ([],sol,True)
```

Since we have all the ingredients, the test of typability consists in building the equational constraint and trying to solve it.

```
isTypable :: Term -> Bool
isTypable t = let (_,c) = buildConstraint t
    (_,_,b) = solve c []
    in b
```

Notice that we have everything to build the principal type of the term if it is typable.

[^0]: *This work was supported by the National Science Center of Poland, grant number 2011/01/B/HS1/00944, when the author hold a post-doc position at the Jagiellonian University within the SET project co-financed by the European Union.
 ${ }^{\dagger}$ email: grygiel@tcs.uj.edu.pl
 ${ }^{\ddagger}$ email: pierre.lescanne@ens-lyon.fr

