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Abstract. The determinantal form of the partition function of the 6-vertex
model with domain wall boundary conditions was given by Izergin. It is known

that for a special value of the crossing parameter the partition function reduces
to a Schur polynomial.

Caradoc, Foda and Kitanine computed the partition function of the higher

spin generalization of the 6-vertex model. In the present work it is shown that
for a special value of the crossing parameter, referred to as the combinatorial

point, the partition function reduces to a Macdonald polynomial.

Introduction

The 6-vertex model with domain wall boundary conditions was introduced by
Korepin in [11], where the partition function was shown to satisfy certain recursion
relations. In [10], Izergin solved Korepin’s recursion relations with the result being
a determinantal formula.

An interesting feature of this model is that it has multiple combinatorial interpre-
tations since its configurations are in bijection with several combinatorial objects,
such as alternating sign matrices, fully packed loops, and states of a square ice
model [2, 16, 17, 4]. For example, Kuperberg [13] used this model to compute the
number of alternating sign matrices.

The 6-vertex model is an integrable model, meaning that it possesses an R–
matrix which satisfies the Yang–Baxter equation. It is this algebraic structure that
allows the partition function to be calculated explicitly.

To each edge of the 6-vertex model a 1/2 spin is associated, since the correspond-
ing R-matrix in intimately connected with the representation theory of the algebra
sl2. It is natural to search for generalizations of this model, where the representa-
tion of the underlying algebra or even the algebra itself are replaced (for example,
by slr). The idea is to construct an R–matrix for the model, that satisfies the
Yang–Baxter equation (see, e.g. [19]).

If we restrict ourselves to studying general irreducible representations of sl2, there
is a systematic way of constructing the R–matrix, referred to as fusion [12, 20]. The
idea comes from the simple fact that in the representation theory of sl2 we can build
the spin /̀2 representation through the fusion of ` spin 1/2 representations. This
was achieved, for the 6-vertex model with domain-wall boundary conditions, in the
work of Caradoc, Foda and Kitanine [3], which serves as the basis of our paper.

The partition function of the 6-vertex model, as defined in Section 1, is a multi-
variate polynomial which is symmetric in two separate sets of variables (known as
spectral parameters). It also depends on an extra parameter, normally denoted by
q, and referred to as the crossing parameter.

If we set q = exp(2πi/3), known as the combinatorial point, the partition function
becomes symmetric in the two sets of variables as a whole, and it simplifies to a
Schur polynomial corresponding to a staircase partition (see [18, 22]).
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The main goal of the present work is to prove an analogous result for the higher
spin generalization of the six-vertex model with domain wall boundary conditions:
by setting q = exp(2πi/(2` + 1)), the partition function reduces to a Macdonald
polynomial corresponding to a staircase partition. As a consequence, the partition
function is a symmetric polynomial in the full set of spectral parameters.

Outline of the paper. The first two sections are introductory: Section 1 gives
the definition of the 6-vertex model with domain-wall boundary conditions and
the explicit determinantal form of the partition function. In Section 2 the higher
spin generalization of the 6-vertex model and the analogous representation of its
partition function are presented.

The following two sections contain the original results of the paper: Section 3
presents an alternative representation of the partition function in terms of deter-
minants of scalar products of rational functions, and this reformulation is used to
prove some basic but important properties of the partition function, valid for all
values of q. In Section 4 we prove that the partition function satisfies the wheel
condition when q = exp(2πi/(2`+1)), and, by using the results of [6], we show that
there is a well-defined unique Macdonald polynomial satisfying the same vanishing
constraints. It is shown that, up to a multiplicative constant, there is a unique
polynomial with the prescribed degrees and symmetries that satisfies the wheel
condition, and therefore the partition function and the Macdonald polynomial co-
incide, up to an explicit multiplicative constant. The proof of the uniqueness lemma
and the calculation of the proportionality constant are left to the appendices.

1. Review of the 6-vertex model

In this section we give a brief description of the 6-vertex model, on a square grid,
with domain wall boundary conditions, following the construction presented in [8].

1.1. Definition of the model. Take a square grid of size n×n, in which each edge
is given an orientation (an arrow), such that at each vertex there are two incoming
and two outgoing arrows, which gives six possibilities. Alternatively, the arrows
can be represented by signs according to the rule that arrows pointing right or
upward correspond to plus signs and arrows pointing downward or left correspond
to minus signs. Impose the domain wall boundary conditions prescribing that the
arrows at the top and bottom boundaries are outgoing and the ones at the left and
right boundaries are incoming. See, e.g., Figure 1.

1

Figure 1. A 6×6 configuration of the 6-vertex model in terms of
arrows (left) or signs (right)
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To each vertex configuration we assign a weight

w(x, y) =





a(x, y) = qx− q−1y

b(x, y) = x− y
c(x, y) = (q − q−1)

√
xy ,

(1)

according to Figure 2. The parameter q is called the crossing parameter of the
model, while the parameters x and y, called spectral parameters, depend on the
row and the column of the vertex, respectively. Let x = {x1, . . . , xn} and y =
{y1, . . . , yn} be the horizontal and vertical spectral parameters, respectively.

︸ ︷︷ ︸
a(x,y)

︸ ︷︷ ︸
b(x,y)

︸ ︷︷ ︸
c(x,y)

1

Figure 2. Weights of vertex configurations

The weight of a configuration is defined by the product of the weights of the
vertices. The partition function is defined as the sum of the weights over all possible
configurations:

Zn(x,y) :=
∑

configurations

n∏

i,j=1

wij(xi, qyj) . (2)

The partition function is renormalized in the following way:

Zn(x,y) = (−1)(
n
2)q−

n2/2(q − q−1)−n

(
n∏

i=1

x
−1/2
i y

−1/2
i

)
Zn(x,y) . (3)

The function Zn(x,y) is an homogeneous polynomial of total degree n(n− 1) and
of partial degree n− 1 in each variable xi or yi.

1.2. Integrability. Let V be the standard representation of sl2 spanned by the
eigenvectors |+〉 and |−〉 of Sz. The key ingredient to the exact solvability of the
6-vertex model is the R-matrix

R(x, y) :=




a 0 0 0
0 b c 0
0 c b 0
0 0 0 a


 (4)

representing an endomorphism

R : V ⊗ V → V ⊗ V
|ε1〉 ⊗ |ε2〉 7→ Rε3ε4ε1ε2 |ε3〉 ⊗ |ε4〉 (5)

where εi ∈ {+,−}. In what follows, we consider the vector space
⊗n

k=1 Vk, where
each Vk is a labelled copy of V . We use the abbreviated notation

|ε1ε2 · · · εn〉 := |ε1〉 ⊗ |ε2〉 ⊗ · · · ⊗ |εn〉 , εi = ± (i = 1, 2, . . . , n) (6)

for canonical basis in the tensor product representation. The matrix Rij stands for
the map that acts as R on Vi ⊗ Vj and as identity elsewhere.

The action of the matrix R can be interpreted as completing an allowed sign
configuration at a vertex with prescribed left and bottom signs, as shown below:

ε1 ε3
ε2

ε4

1
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The R-matrix satisfies the Yang-Baxter equation:

R23(y2, y3)R13(y1, y3)R12(y1, y2) = R12(y1, y2)R13(y1, y3)R23(y2, y3) , (7)

and the inversion equation:

R21(y, x)R12(x, y) = (qy − q−1x)(qx− q−1y) Id . (8)

The transfer matrix of the model is defined as

T (x,y) = 0〈−|R0n(x, qyn) . . . R02(x, qy2)R01(x, qy1)|+〉0 , (9)

where the matrix R0i acts on the tensor product of the ith space and the so-called
auxiliary space V0. In terms of the transfer matrix, the partition function is given
by:

Zn(x,y) = 〈+ + · · ·+ |T (x1,y)T (x2,y) . . . T (xn,y)| − − · · · −〉 . (10)

Using the Yang–Baxter equation, the renormalized partition function Zn(x,y),
defined in Equation (3), is shown to be the so-called Korepin–Izergin determi-
nant [11, 10]

Zn(x,y) =

∏
i,j(xi − qyj)(xi − q−1yj)

∆(x)∆(y)
det

∣∣∣∣
1

(xi − qyj)(xi − q−1yj)

∣∣∣∣
n

i,j=1

, (11)

where ∆(x) =
∏

1≤i<j≤n(xi − xj).

1.3. Combinatorial point. When q = exp(2πi/3), the Korepin–Izergin determi-
nant (11) dramatically simplifies and becomes a Schur polynomial [18, 22]:

Zn(x,y) = sδn(x,y) , (12)

where δn = (n−1, n−1, n−2, . . . , 2, 1, 1, 0, 0). It follows that the partition function
Zn(x,y), at the combinatorial point, is a fully symmetric polynomial in the 2n
variables {x,y}.

2. Fusion and the higher spin generalization of the 6-vertex model

We introduce the higher spin generalization of the 6-vertex model considered in
this paper. The corresponding R-matrix is constructed using fusion techniques for
the representations of sl2, as briefly explained below (see [20]).

2.1. Fusion and the generalized R-matrix. The representation Sym`V is the
irreducible component of V ⊗` spanned by the vectors

|`; `−m〉 :=
1

m!

(
S−
)m |+ + . . .+︸ ︷︷ ︸

`

〉 m = 0, 1, . . . , ` (13)

(see [9]). The R-matrix (5) can be used to build an endomorphism of the vector
space

V ⊗` ⊗ V ⊗` = V1 ⊗ . . .⊗ V` ⊗ V`+1 ⊗ . . .⊗ V2` , (14)

with spectral parameters

{x, q2x, . . . , q2`−2x, y, q2y, . . . , q2`−2y} (15)

associated to the 2` factors of the tensor product decomposition (14).

Definition 2.1. The operator

R(`)(x, y) : V ⊗` ⊗ V ⊗` → V ⊗` ⊗ V ⊗` (16)
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is defined by

R(`)(x, y) := R1,2`(x, q
2`−2y)R1,2`−1(x, q2`−4y) . . . R1,`+1(x, y) (17)

×R2,2`(q
2x, q2`−2y)R2,2`−1(q2x, q2`−4y) . . . R2,`+1(q2x, y)

. . .

×R`,2`(q2`−2x, q2`−2y)R`,2`−1(q2`−2x, q2`−4y) . . . R`,`+1(q2`−2x, y) .

Given that R satisfies the Yang–Baxter equation (7) and the inversion rela-
tion (8), it can be shown that so does R(`):

Proposition 2.2. The matrix R(`)(x, y) satisfies the Yang–Baxter equation

R
(`)
23 (y2, y3)R

(`)
13 (y1, y3)R

(`)
12 (y1, y2) = R

(`)
12 (y1, y2)R

(`)
13 (y1, y3)R

(`)
23 (y2, y3) (18)

and the inversion equation

R(`)(y, x)R(`)(x, y) ∝ Id . (19)

Note that (18) and (19) hold with general spectral parameters; the special

choice (15) allows the operator R(`) to be restricted to the subspace Sym`V ⊗
Sym`V , as shown below.

Proposition 2.3. A state |v〉 ∈ V ⊗` belongs to Sym`V if and only if

Ri,i+1(q2i−2x, q2ix)|v〉 = 0 (20)

for all 1 ≤ i ≤ `− 1.

Proof. It is enough to show that the operator Ri,i+1(q2i−2x, q2ix) annihilates a
state |v〉 if and only if |v〉 is invariant under exchanging positions i and i+ 1, since
the R-matrix is a local operator. The R-matrix for the special choice of spectral
parameters (q2i−2x, q2ix) reads as

Ri,i+1(q2i−2x, q2ix) = (q2 − 1)q2i−2x




0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


 , (21)

whose kernel is exactly Sym2V ⊂ V ⊗ V . �

Lemma 2.4. The operator R(`) leaves Sym`V ⊗ Sym`V invariant and therefore
the map

R(`)(x, y) : Sym`V ⊗ Sym`V → Sym`V ⊗ Sym`V (22)

is well-defined.

Proof. Let |v〉 ⊗ |w〉 ∈ Sym`V ⊗ Sym`V . Note that the commutation relation

Ri,i+1(q2i−2x, q2ix)
(
R(`)(x, y)|v〉 ⊗ |w〉

)

= R(`)(x, y)
(
Ri,i+1(q2i−2x, q2ix)|v〉

)
⊗ |w〉 (23)

holds for 1 ≤ i ≤ `− 1, as a consequence of the Yang–Baxter equation (7) applied
to (17).

Since |v〉 belongs to Sym`V , the r.h.s. of (23) vanishes for 1 ≤ i ≤ ` − 1.
Therefore, by Proposition 2.3, the vector R(`)(x, y)|v〉⊗ |w〉 is symmetric in its first
` factors. A similar argument shows that R(`)(x, y)|v〉 ⊗ |w〉 is also symmetric in

its last ` factors, and hence R(`)(x, y)|v〉 ⊗ |w〉 ∈ Sym`V ⊗ Sym`V . �



6 TIAGO FONSECA AND FERENC BALOGH

2.2. Higher spin model. Take a n× n grid as in the 6-vertex model above, and
to each edge associate an integer 0 ≤ α ≤ `, which labels the corresponding state
|`;α〉 ∈ Sym`V . We assume generalized domain wall boundary conditions, that is,
` is assigned to the edges on the left and top boundaries and 0 is fixed along the
edges of the bottom and right boundaries. As in the 6-vertex model, 2n spectral
parameters {x,y} are associated to the vertical and horizontal lines of the grid (see
Figure 2.2).

x1

x2

x3

x4

x5

x6

y1 y2 y3 y4 y5 y6

`
`
`
`
`
`
0 0 0 0 0 0

0
0
0
0
0
0

` ` ` ` ` `

1

Figure 3. Boundary conditions and spectral parameters for the
6× 6 grid

Analogously to the 6-vertex model, the following conservation condition is im-
posed on a vertex configuration:

α γ

β

η
such that α+ β = γ + η .

1

By using the standard notation

R(`)(xi, yj)|`;α〉 ⊗ |`;β〉 = R(`) γ,η

α,β (xi, yj)|`; γ〉 ⊗ |`; η〉 , (24)

the weight of a vertex configuration is given by

wi,j(xi, yj) = R(`) γ,η

α,β (xi, qyj) . (25)

This choice guarantees the integrability of the model.

2.3. Partition function. The partition function Zn,`(x,y) of the spin ` model is
defined exactly as in (2), where now the weights wij are those given in (25). The

fusion process, defining R(`) from R, allows to express the partition function of the
spin ` model in terms of the original 6-vertex model partition function as

Zn,`(x,y) = Z`n(x̄, ȳ) , (26)

where

x̄ = {x1, q
2x1, . . . , q

2`−2x1, . . . , xn, q
2xn, . . . , q

2`−2xn} , (27)

and ȳ is defined similarly.
As in (3), the function

Ẑn,`(x,y) =

n∏

i

(xiyi)
− /̀2

Zn,l(x,y) (28)

is an homogeneous polynomial in the variables xi and yi. Moreover, Ẑn,`(x,y) is
divisible by the product

n∏

i,j

`−2∏

p=0

`−1∏

k=0

(q2kxi − q2p+1yj) , (29)
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as a consequence of the Korepin–Izergin formula (11) evaluated at x̄ and ȳ. The
reduced partition function is defined as

Zn,`(x,y) :=

∏n
i,j=1

∏`
p=0

∏`−1
k=0(q2kxi − q2p−1yj)

∆(x̄)∆(ȳ)
detA`(x,y) (30)

where A`(x,y) is the `n× `n matrix given by:

A`(x,y) := [A`(xα, yβ)]
n
α,β=1 (31)

with `× ` blocks of the form

A`(x, y) :=

[
1

(q2jx− q2i−1y)(q2jx− q2i+1y)

]`−1

i,j=0

. (32)

Note that we recover the Korepin–Izergin determinant when ` = 1.
The original partition function can be written as

Zn,`(x,y) = Const.

n∏

i

(xiyi)
/̀2

n∏

i,j

`−2∏

p=0

`−1∏

k=0

(q2kxi − q2p+1yj)Zn,`(x,y) , (33)

where the constant can be determined explicitly.

3. Alternative representation of the partition function

For rational functions u(z) and v(z) the residue pairing is defined as

〈u(z), v(z)〉 = − Res
z=∞

u(z)v(z)dz , (34)

in terms of which the Korepin–Izergin formula (11) can be presented as

Zn(x,y) =
1

∆(x)∆(y)
det

(〈
pi(x; z),

1

z − yj

〉)n

i,j=1

, (35)

where

pi(x; z) =

n∏

k=1
k 6=i

(z − qxk)(z − q−1xk) , i = 1, . . . , n . (36)

In what follows, we use the following alternative representation of the partition
function:

Proposition 3.1. The standard 6-vertex model partition function Zn(x,y) can be
written as

Zn(x,y) = det

(〈
ri(x; z),

zj−1

w(y; z)

〉)n

i,j=1

, (37)

where

w(y; z) =

n∏

k=1

(z − yk) , (38)

and

ri(x; z) =
w(x; qz)(q−1z)i−1 − w(x; q−1z)(qz)i−1

(q − q−1)z
, i = 1, . . . , n . (39)

Proof. First observe that if ∆(y) 6= 0 then

span

{
1

z − yj

}n

j=1

= span

{
zj−1

w(y; z)

}n

j=1

, (40)

and the change of basis is given explicitly as

zi−1

w(y; z)
=

n∑

i=1

Mij(y)
1

z − yj
, i = 1, . . . , n , (41)
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where M is the n× n matrix

Mij(y) =
yi−1
j∏

k 6=j(yj − yk)
, i, j = 1, . . . n . (42)

Similarly, if ∆(x) 6= 0 then

span {pj(x; z)}nj=1 = span {rj(x; z)}nj=1 , (43)

and the change of basis can be written, using again (42), as

ri(x; z) =

n∑

j=1

Mij(x)pj(x, z) . (44)

To conclude the proof, it is enough to note that

det(M(x)) =
(−1)(

n
2)

∆(x)
. (45)

�

Lemma 3.2. The higher spin partition function is given by

Zn,`(x,y) = det

(〈
r̃i(x; z),

zj−1

w(ȳ; z)

〉)n`

i,j=1

, (46)

where

r̃i(x; z) = qn(`−1)w(x; qz)(q−1z)i−1 − w(x; q−2`+1z)(qz)i−1

(q − q−1)z
, (47)

for 1 ≤ i ≤ n` .

Proof. Define the polynomial

π(x; z) = qn(`−1)2
`−1∏

k=1

w(x; q−2k+1z) . (48)

Observe that

w(x̄; qz) = qn(`−1)π(x; z)w(x; qz) (49)

w(x̄; q−1z) = qn(`−1)π(x; z)w(x; q−2`+1z) , (50)

and hence

ri(x̄; z) = π(x; z)r̃i(x; z) , i = 1, . . . , n` . (51)

The identity (46) follows by factoring out the product

n∏

j=1

`−1∏

k=0

π(x; q2kyj) (52)

of the l.h.s. of (37). �

Proposition 3.3. The partition function Zn,`(x,y) satisfies the following proper-
ties:

(i) Zn,`(x,y) is an homogeneous polynomial in the set of variables {x,y},
(ii) Zn,`(x,y) is symmetric in the variables x and in the variables y,

(iii) Zn,`(x,y) = Zn,`(y,x),
(iv) Zn,`(x,y) has total degree at most `n(n− 1),
(v) Zn,`(x,y) has partial degree at most `(n− 1) in each variable xi or yi.
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Proof. The exchange symmetry (iii) follows easily from the representation (30). The
determinantal representation (46) shows that Zn(x,y) is symmetric homogeneous
polynomial in x, and therefore in y. The total degree of the partition function can
be read off from (30).

To compute the partial degree of Zn,`(x,y) in the variable y1, note that (46)
can be slightly modified as

Zn,`(x,y) =
(−1)(

n`
2 )

∆(ȳ)
det

(〈
r̃i(x; z),

1

z − ȳj

〉)n`

i,j=1

, (53)

where the only the first ` columns of the determinant depend on y1. The degree of
the polynomial r̃i(x; z) in z is equal to n+i−2 and therefore the ith row in the first
n`× ` block of the matrix in (53) consists of polynomials of partial degree n+ i− 2
in the variable y1. This means that the highest possible exponent of y1 appearing

in the determinant (53) is equal to
∑`
k=1(n+n`−k−1) = n`(`+1)− 1

2`(`+3). To
conclude (v), it is enough to recall that the partial degree of ∆(ȳ) in the variable
y1 is 1

2`(`− 1) + (n− 1)`2. �

Remark 3.4. In general, the partition function Zn,`(x,y) is not fully symmetric
in the set of 2n variables {x,y}.

4. The combinatorial point

In this section we present our main result: at the combinatorial point, q =
exp(2πi/(2`+ 1)), the partition function Zn,`(x,y) is a certain Macdonald polyno-
mial.

4.1. The main result. Let `δn be the staircase partition with n steps 2 × `,
that is `δn = (`(n − 1), `(n − 1), . . . , `, `, 0, 0). Notice that the total degree and
the partial degree of the partition function Zn,`(x,y) are equal to, respectively,
|`δn| = `n(n− 1) and the first part of `δn. Let

ρ` = e
2πi/(2`+1) . (54)

Theorem 4.1. At the combinatorial point q = ρ`, the partition function Zn,`(x,y)
is a Macdonald polynomial [15], up to a multiplicative constant, more precisely

Zn,`(x,y) = γn,`P`δn(x,y; ρ2
` , ρ`) . (55)

The proportionality constant γn,` will be given explicitly in Proposition 4.16.

Remark 4.2. The coefficients uλµ(q, t) in the expansion of the Macdonald poly-
nomial

Pλ(z; q, t) =
∑

µ≤λ

uλµ(q, t)mµ(z) (56)

are rational functions of q and t and therefore the specialization q = ρ2
` and t = ρ`

has to be done carefully. This issue is addressed in Subsection 4.3.

Theorem 4.1 has the following important consequence:

Corollary 4.3. At the combinatorial point q = ρ`, the partition function Zn,`(x,y)
is a fully symmetric polynomial.

In order to prove Theorem 4.1, we show below that the partition function
Zn,`(x,y) satisfies a set of constraints, known as the wheel condition, see The-
orem 4.9. The wheel condition together with the properties described in Propo-
sition 3.3 is sufficient to characterize the partition function up to a multiplicative
constant, see Lemma 4.11. Using a result of Feigin et al, we prove that there is a
unique Macdonald polynomial of total degree `n(n−1) which also satisfies the wheel
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condition, see Proposition 4.14. Therefore the uniqueness result of Lemma 4.11 im-
plies Theorem 4.1.

4.2. The wheel condition. Let z = {z1, . . . , z2n}.

Definition 4.4 (Wheel condition). Let q and t be such that qr−1tk+1 = 1, for some
non-negative integers k and r. A function f(z) is said to obey the (r, k)q,t-wheel
condition if f(z) vanishes whenever

ziα+1

ziα
= tqsα for any sα ∈ N such that

k∑

α=1

sα ≤ r − 1 , (57)

and for any choice of 1 ≤ i1 < i2 < . . . < ik+1 ≤ 2n.

Lemma 4.5. Let n ≥ 3. At the combinatorial point q = ρ`, the partition function
Zn,`(x,y) vanishes whenever

x3 = q1+2s2x2 = q2+2s1+2s2x1 (58)

for any s1, s2 ∈ N such that s1 + s2 ≤ `− 1.

Proof. Let S = span {ri(x̄; z)}`ni=1. The polynomial

a(x̄; z) =

(
n∏

i=4

`−1∏

k=0

(z − q2kxi)

)(
s1−1∏

k=0

(z − q2kx1)

)

(
s1+s2−1∏

k=s1

(z − q1+2kx1)

)(
`−2∏

k=s1+s2

(z − q2+2kx1)

)
, (59)

of degree `(n− 2)− 1, is such that

w(x̄; qz)a(x̄; q−1z)− w(x̄, q−1z)a(x̄; qz)

(q − q−1)z
= 0 . (60)

Thus dimS < `n. This implies that the matrix appearing in Equation (46) is
singular. �

Lemma 4.6. Let n ≥ 2. At the combinatorial point q = ρ`, the partition function
Zn,`(x,y) vanishes whenever

y1 = q1+2s2x2 = q2+2s1+2s2x1 (61)

for any s1, s2 ∈ N such that s1 + s2 ≤ `− 1.

Proof. Notice that ȳ`−s1−s2+j = q2j−1x1 for 0 ≤ j ≤ s1, because y1 = q2+2s1+2s2x1.

Let S̃ = span {r̃i(x; z)}`ni=1 and let

ai(x; z) = zi−1
s1−1∏

j=0

(z − q2jx) , (62)

for 1 ≤ i ≤ `n− s1. Then the polynomials

r′i(x̄; z) =
w(x; qz)ai(x1; q−1z)− w(x; q−2`+1z)ai(x1; qz)

(q − q−1)z
, (63)

belonging to S̃, vanish at z = q2j−1x1 for 0 ≤ j ≤ s1.

Let Aij =
〈
r̃i(x; z), 1

z−ȳj

〉
, then the partition function is given by

Zn,`(x,y) =
(−1)(

`n
2 )

∆(ȳ)
det (Aij)

n`
i,j=1 . (64)
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Let S ′ = span{r′i(x; z)}`n−s1i=1 be a subspace of S̃, and let A′ij =
〈
r′i(x; z), 1

z−ȳj

〉
.

The entries A′ij vanish when ` − s1 − s2 ≤ j ≤ ` − s2, then A′ is of rank at most
`n− s1 − 1. Therefore A is of rank at most `n− 1. �

Lemma 4.7. Let n ≥ 2. At the combinatorial point q = ρ`, the partition function
Zn,`(x,y) vanishes whenever

y2 = q1+2s2y1 = q2+2s2+2s2x1 (65)

for any s1, s2 ∈ N such that s1 + s2 ≤ `− 1.

Proof. This follows from Lemma 4.6, by using the symmetries of the partition
function. �

Lemma 4.8. Let n ≥ 3. At the combinatorial point q = ρ`, the partition function
Zn,`(x,y) vanishes whenever

y3 = q1+2s2y2 = q2+2s1+2s2y1 (66)

for any s1, s2 ∈ N such that s1 + s2 ≤ `− 1.

Proof. Recall that Zn,`(x,y) = Zn,`(y,x), and hence this follows from Lemma 4.5.
�

By summarizing the above, we obtain the following crucial property of the par-
tition function at the combinatorial point:

Theorem 4.9. At the combinatorial point q = ρ`, the partition function Zn,`(x,y)
satisfies the (`, 2)ρ2` ,ρ`-wheel condition.

Definition 4.10. Let x = {x1, . . . , xn} and y = {y1, . . . , yn}. The vector space
Vn is defined as the space of polynomials p(x,y) such that

(i) p(x,y) is an homogeneous polynomial in the set of variables {x,y},
(ii) p(x,y) is symmetric in the variables x, and also in the variables y,
(iii) p(x,y) = p(y,x),
(iv) p(x,y) has total degree at most `n(n− 1),
(v) p(x,y) has partial degree at most `(n− 1) in each variable xi or yi,

(vi) p(x,y) satisfies the (`, 2)ρ2` ,ρ` -wheel condition.

Lemma 4.11. The vector space Vn is at most one dimensional.

The proof of the above lemma is given in Appendix A.

4.3. The wheel condition and Macdonald polynomials.

Definition 4.12 (Admissible partitions). A partition λ = (λ1, λ2, . . .) is said to be
(r, k)-admissible if and only if λi − λi+k ≥ r for all i.

According to the result of Feigin et al [6], the space of symmetric polynomi-
als satisfying the wheel condition is spanned by Macdonald polynomials. More
precisely:

Theorem 4.13 ([6]). Let q and t be two generic scalars such that qr−1tk+1 = 1, and
let V denote the space of symmetric polynomials in z satisfying the (r, k)q,t-wheel
condition. Let M be the space spanned by the Macdonald polynomials Pλ(z; q, t)
indexed by (r, k)-admissible partitions. Then V =M.

In the case of relevance for our purposes this simplifies to

Proposition 4.14. Let q and t be two generic scalars such that q`−1t3 = 1, and let
p(z) be an homogeneous symmetric polynomial of total degree `n(n − 1) satisfying
the (`, 2)q,t-wheel condition. Then

p(z) ∝ P`δn(z; q, t) . (67)
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Proof. The partition λ = `δn is the only (`, 2)-admissible partition such that |λ| =
`n(n− 1). �

Because we do not use generic q and t extreme care is required before we apply
the theorem of Feigin et al. Let m = gcd(3, ` − 1). The locus of the equation
q`−1t3 = 1 splits into m branches: q(`−1)/mt3/m = ω, where ω is a m-th root of
unity. We consider the branch corresponding to ω = exp(2πi/m), parametrized by
a variable u:

q(u) = u3

q(u) = u

t(u) = u−(`−1)

t(u) = u−
`−1
3 e

2πi
3

for ` ≡ 0, 2 (mod 3)

for ` ≡ 1 (mod 3) .
(68)

Let u0 be such that q(u0) = ρ2
` and t(u0) = ρ`. Explicitly

u0 = e
4πi

3(2`+1) e
2πi
3

u0 = e
4πi
2`+1

u0 = e
4πi

3(2`+1) e−
2πi
3

for ` ≡ 0 (mod 3)

for ` ≡ 1 (mod 3)

for ` ≡ 2 (mod 3) .

(69)

In [6], it was shown that the coefficients uλµ(q(u), t(u)) in the expansion (56)
are well-defined rational functions in u. When u approaches u0, the coefficients
u`δn,µ(q(u), t(u)) behave like (u− u0)nµ for some power nµ. Let N = −minµ{nµ},
which is non-negative because n`δn = 0. Then the renormalized polynomial

P̃`δn(z; q(u), t(u)) = (u− u0)NP`δn(z; q(u), t(u)) (70)

is a regular function when u approaches u0.
Notice that P̃`δn(z; q(u), t(u)) is an homogeneous symmetric polynomial of to-

tal degree `n(n − 1) satisfying the wheel condition when u 6= u0. The limit

limu→u0
P̃`δn(z; q(u), t(u)) is well-defined, and it is simply given by:

lim
u→u0

P̃`δn(z; q(u), t(u)) = P̃`δn(z; ρ2
` , ρ`) . (71)

Lemma 4.15. The polynomial P̃`δn(z; ρ2
` , ρ`) satisfies the (`, 2)ρ2` ,ρ`-wheel condi-

tion.

Proof. This lemma follows from the regularity of P̃`δn(z; q(u), t(u)) when u ap-
proaches u0. �

4.4. The proof of the main theorem. Let

[`]q! = [`]q[`− 1]q . . . [1]q , where [a]q =
qa − 1

q − 1
. (72)

Proposition 4.16. The constant γn,`, defined in Theorem 4.1, is given by:

γn,` =

(
(−1)(

`
2)ρ

2(`2)(2n−3)

` [`]ρ2` !

)n
. (73)

In order to prove this proposition, in Appendix B we compute the coefficient
of
∏n
i=1(xiyi)

`(i−1) in the partition function. Since this coefficient is non-zero, the
Macdonald polynomial P`δn(x,y; ρ2

` , ρ`) is well-defined and

P`δn(x,y; ρ2
` , ρ`) = P̃`δn(x,y; ρ2

` , ρ`) . (74)

Proof of Theorem 4.1. Note that the definition of Vn is such that Zn,`(x,y) ∈ Vn,
and P`δn(x,y; ρ2

` , ρ`) ∈ Vn. But by Lemma 4.11, Vn is at most one dimensional,
and therefore Zn,`(x,y) = γn,`P`δn(x,y; ρ2

` , ρ`), with coefficient γn,` computed in
Proposition 4.16. �
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5. Final remarks

5.1. Combinatorial interpretation. A canonical higher spin generalization of an
alternating sign matrix (ASM), as defined by Behrend and Knight [1], is a square
matrix with entries in {−`, . . . ,−1, 0, 1, . . . , `}, such that sum of all entries in each
row or column is `, and the partial sum of the first or last r entries in each row
or column is non-negative for each r. The bijection between such matrices and the
configurations of the model considered in this paper can be established similarly to
the case ` = 1: reading each column of the grid from the bottom to the top, if the
value of the edge goes from β to η, the corresponding entry of the higher spin ASM
is η − β. Alternatively, the constraint (??) on a configuration guarantees that the
same result is obtained by reading each row from right to left. Unfortunately, the
weights considered in this paper seem very unnatural in the combinatorial setting.

By setting all variables of the partition function Zn(x,y) to be equal to 1 at the
combinatorial point q = exp(2πi/3), we get the famous sequence

1, 1, 2, 7, 42, 429, 7436, 218348, ... (sequence A005130 in OEIS) (75)

that counts several objects, including alternating sign matrices and totally symmet-
ric self-complementary plane partitions. We have seen that the combinatorial point
q = exp((2`+ 1)/2πi), the higher spin partition function Zn,`(x,y) is a Macdonald
polynomial. Therefore, it would be interesting to find some combinatorial interpre-
tation of the values obtained for ` > 1 in the homogeneous limit when xi = yi = 1
for all i.

5.2. The wheel condition. The wheel condition for the higher spin partition
function is deduced using the special determinantal form Zn,`(x,y) that involves
rational function entries with a specific dependence of the crossing parameter q.
This motivates a more systematical study of the connection between the wheel
condition and more general determinants of a similar type. See, for example [14],
for a different generalization of the Korepin–Izergin determinant that satisfies a
wheel condition.

There are other integrable statistical models that are of interest from this point
of view, such as, for example, the son model in [5] and the eight-vertex model in
[24, 21].

5.3. Symmetry. It is very intriguing that we start with a function that exhibits
an Sn × Sn symmetry but not S2n symmetry in general. It is natural to ask
what the special features of this determinant are that imply the extra symmetry
at q = exp((2`+ 1)/2πi). It would be expected that the symmetry comes from the
physics of the model, that is, there exists some mechanism (like the Yang–Baxter
equation) which, for this very special value of q, allows to exchange a row with
a column. Another idea to explain the symmetry might come from Stroganov’s
article [22].

5.4. Relation to KP τ-functions. The alternative representation (46) of the
partition function has a Grassmannian manifold interpretation, and this point of
view is intimately connected with the fact that the 6-vertex model with domain
wall boundary conditions can be seen as a τ -function of the KP hierarchy, where
the spectral parameters x and y play the role of Miwa variables associated to the
commuting flows of the hierarchy. This was first observed by Foda et al. [7], based
on a fermionic vacuum expectation value representation of the partition function.
In his survey paper [23], Takasaki extends this and other related results by showing
how partition functions of certain 2D solvable models and scalar products of Bethe
vectors from integrable spin chain models can also be written as KP τ -functions.
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Appendix A. Uniqueness

The goal of this section is to prove Lemma 4.11. That is, if there exists a nonzero
polynomial p(x,y) ∈ Vn, then it is unique up to a multiplicative constant.

Let z = {z1, . . . , z2n} = {x,y} and q = ρ`. We generalize the (`, 2)q2,q-wheel
condition:

Definition A.1 (r-wheel condition). Let r be such that 3r < `. A polynomial
p(z) is said to obey the r-wheel condition if p(z) vanishes whenever

zk = q1+2r+2s2zj = q2+4r+2s1+2s2zi (76)

for any s1, s2 ∈ N such that s1+s2 ≤ `−1−3r, and any choice of 1 ≤ i < j < k ≤ 2n.

The following lemma holds:

Lemma A.2. Let a(x,y) ∈ Vn be such that a(x,y)|yj=qxi = 0 for a given i and

j, then a(x,y) = 0.

Proof. The result is trivial when n = 1. Assume n > 1. By symmetry, a(x,y) ∝∏
i,j(yj − qxi)(xi − qyj), therefore, there exists b(x,y) such that

a(x,y) =


∏

i,j

(yj − qxi)(xi − qyj)


 b(x,y) . (77)

The polynomial b(x,y) has total degree at most (` − 2)n(n − 1) − 2n and partial
degree at most (`− 2)(n− 1)− 2 in each variable xi or yi. When ` ≤ 2, b(x,y) = 0
and the lemma is proved.

By the wheel condition, the following holds:

b(x,y)|xj=qxi =


 ∏

k 6=i,j

∏̀

s=1

(xk − q2sxi)



(∏

k

`−1∏

s=2

(yk − q2sxi)

)
b′(x,y) . (78)

The polynomial b′(x,y) has partial degree at most −2n in xi, and therefore it
vanishes identically. Thus

a(x,y) = w1(x,y)a1(x,y) , (79)

for some polynomial a1(x,y) obeying the 1-wheel condition, and

wα(z) =
∏

i 6=j

(zi − qαzj) . (80)

The polynomial a1(z) has total degree at most (` − 4)n(n − 1) − 2n and it has
partial degree at most (`− 4)(n− 1)− 2 in each variable xi or yi.
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By the 1-wheel condition, the following holds:

a1(z)|zj=q3zi =


 ∏

k 6=i,j

`−4∏

s=0

(zk − q6+2szi)


 a′1(z) . (81)

The polynomial a′1(z) has partial degree at most −2(n− 1)− 4 in zi, and therefore
it vanishes identically. Thus

a1(z) = w3(z)a2(z) . (82)

This procedure can be iterated. In the r-th step, we define ar(z) by

ar−1(z) = w2r−1(z)ar(z) . (83)

The polynomial ar(z) obeys the r-wheel condition, has total degree at most (` −
4r)n(n − 1) − 2rn and it has partial degree at most (` − 4r)(n − 1) − 2r in each
variable zi. The r-wheel condition implies:

ar(z)|zj=q1+2rzi
=


 ∏

k 6=i,j

`−1−3r∏

s=0

(zk − q2+4r+2szi)


 a′r(z) . (84)

The polynomial a′r(z) viewed as a function of zi has degree at most −2r(n−1)−4r,
and therefore it vanishes identically. This closes the iteration step.

We should stop the iteration at r∗ = min{r ∈ N such that 3r ≥ `}. The
polynomial ar∗(z) has negative total degree and therefore it vanishes identically. �

Proof of Lemma 4.11. Use induction on n. Let pn(x,y) ∈ Vn.
The lemma holds for n = 1. By the wheel condition the following holds

pn(x,y)|yj=qxi =


∏

k 6=i

∏̀

s=1

(xk − q2sxi)




∏

k 6=j

∏̀

s=1

(yk − q2sxi)


 p̂n(x,y) .

The polynomial p̂n(x,y) does not depend either on xi or on yj . It can then be
checked that p̂n(z) ∈ Vn−1, which by hypothesis is one-dimensional.

For any nonzero polynomial p′n(x,y) ∈ Vn there is a constant α such that

(pn(x,y)− αp′n(x,y))|yj=qxi = 0 . (85)

Apply Lemma A.2. �

Appendix B. The coefficient γn,`

Proposition B.1. The recursion identity

Zn,`(x,y)|xn=yn=0 = (−1)(
`
2)q4(`2)(n−1)−(`2)[`]q2 !

(
n−1∏

k=1

x`ky
`
k

)
Zn−1,`(x̂, ŷ) (86)

holds, where x̂ = (x1, . . . , xn−1) and ŷ = (y1, . . . , yn−1).

Proof. The determinant representation (46) of Zn,`(x,y) implies that

Zn,`(x,y)|xn=yn=0 = det

(〈
r̃i(x; z)|xn=0 ,

zj−1

w(¯̂y; z)z`

〉)n`

i,j=1

. (87)

Observe that

r̃`+i(x; z)|xn=0 = z`+1r̃i(x̂; z) i ≥ 1 . (88)

Note also, assuming yi 6= 0 for 1 ≤ i ≤ n− 1, that

span

{
zj−1

w(¯̂y; z)z`

}n`

j=1

= span

({
1

z`−j+1

}`

j=1

∪
{

zj−1

w(y; z)

}(n−1)`

j=1

)
, (89)
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with the change of basis

zi−1

w(¯̂y; z)z`
=
∑̀

j=1

Mi,j(ŷ)
1

z`−j+1
+

(n−1)`∑

j=1

Mi,`+j(ŷ)
zj−1

w(¯̂y; z)
, (90)

where the matrix M(ŷ) defined by (90) is upper triangular, and its determinant is
equal to

det(M(ŷ)) =
1

w(¯̂y; 0)`
= (−1)(n−1)` q

−(n−1)`2(`−1)

∏n−1
k=1 y

`2
k

. (91)

A simple calculation gives that

〈
r̃i(x; z)|xn=0 ,

1

z`−j+1

〉

=





0 i > `− j + 1

(−1)n−1qn(`−1)+i−2`+1[`− i+ 1]q2
n−1∏

k=1

xk i = `− j + 1
. (92)

By combining the above, we obtain

Zn,`(x,y)|xn=yn=0 = det(M(ŷ)) det




n∏

j=1

〈
r̃i(x; z)|xn=0 ,

1

z`−j+1

〉

`

i,j=1

× (93)

× det

(〈
z`+1r̃i(x̂; z),

zj−1

w(¯̂y; z)

〉)(n−1)`

i,j=1

. (94)

A short calculation gives

det




n∏

j=1

〈
r̃i(x; z)|xn=0 ,

1

z`−j+1

〉

`

i,j=1

= (−1)(
`
2)+(n−1)`qn(`−1)`− 3`(`−1)

2 [`]q2 !

(
n−1∏

k=1

xk

)`
, (95)

and we also have

det

(〈
z`+1r̃i(x̂; z),

zj−1

w(¯̂y; z)

〉)(n−1)`

i,j=1

= q(`−1)`(`+1)(n−1)

(
n−1∏

k=1

y
`(`+1)
k

)
Zn−1,`(x̂, ŷ) , (96)

from which the recursion formula (86) follows. �

Proof of Prop. 4.16. Note that

r̃i(x; z) = qi−`[`− i+ 1]q2z
i−1 + lower order terms, (97)

and hence

Z1,`(x, y) = q−(`2)[`]q2 ! det

(〈
zi−1,

zj−1

w(ȳ; z)

〉)n`

i,j=1

(98)

= (−1)(
`
2)q−(`2)[`]q2 ! . (99)



THE HIGHER SPIN 6-VERTEX MODEL AND MACDONALD POLYNOMIALS 17

The relation (86) can be used recursively to compute the coefficient of the leading
term

∏n
i=1(xiyi)

`(i−1) in Zn,`(x,y) which gives
(

(−1)(
`
2)q(

`
2)(2n−3)[`]q2 !

)n
, (100)

that coincides with the proportionality constant γn,` since, by definition, the Mac-
donald polynomial P`δn(x,y; q, t) has leading coefficient 1. �
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