An application of a bijection of Mansour, Deng, and Du

David Callan
Department of Statistics, University of Wisconsin-Madison
1300 University Avenue, Madison, WI 53706-1532
callan@stat.wisc.edu

October 24, 2012

Abstract

The large Schröder numbers are known to count several classes of permutations avoiding two 4 -letter patterns. Here we show they count another family of permutations, those whose left to right minima decomposition, when reversed, is 321 -avoiding. The main tool is the Mansour-Deng-Du bijection from 321-avoiding permutations to Dyck paths.

1 Introduction The large Schröder numbers $\left(r_{n}\right)$, sequence A006318 in the OEIS [1], are well known to count Schröder n-paths - nonnegative paths of upsteps $U=(1,1)$, downsteps $D=(1,-1)$, and double flatsteps $F=(2,0)$ from the origin $(0,0)$ to $(2 n, 0)$. Among their other combinatorial interpretations are several involving pattern avoidance in permutations, including separable permutations (i.e., those that avoid the patterns 2413 and 3142) and permutations sortable by an output-restricted deque (equivalently, those that avoid the patterns 2431 and 4231) [2, Ex. $6.39(1, \mathrm{~m})$]. Here we show they count another family of permutations.

The left to right minima decomposition of a permutation (in one-line notation) is obtained by splitting it just before each left to right minimum. Thus $\tau=46523817$ decomposes as $465,238,17$. For a permutation π, we will denote by $f(\pi)$ the permutation obtained by reversing this list of subpermutations and concatenating. Thus $f(\tau)=17238465$. Our result is that r_{n} is the number of permutations π of $[n+1]$ for which $f(\pi)$ is 321 -avoiding. Of course, $f(\tau)$ fails to be 321-avoiding due to the 865 . This family is not closed under containment-consider 3254 in 13254 - and so is not a pattern avoidance class.

2 Outline of proof For a permutation π of $[n+1]$, the first entry of $f(\pi)$ is always 1 ; let $f^{\prime}(\pi)$ denote the result of deleting this initial 1 and decrementing all other entries by 1 . Clearly, $f^{\prime}(\pi)$ is a permutation of $[n]$ and is 321 -avoiding if and only if $f(\pi)$ is.

Now let M denote the Mansour-Deng-Du bijection [3] (see also [4]) from 321-avoiding permutations of $[n]$ to Dyck n-paths (a Dyck n-path is a Schröder n-path with no flatsteps). This bijection is reviewed in somewhat simplified form in the next section. The key to the proof is the fact, noted in [3], that M takes the right to left minima in a 321 -avoiding permutation to the peaks in the corresponding Dyck path, even preserving locations. So, given a permutation π of $[n+1]$ for which $f(\pi)$ is 321-avoiding, apply M to $f^{\prime}(\pi)$ to obtain a Dyck n-path P. Since, from the definitions of f and f^{\prime}, each left to right minimum of π other than 1 is, after decrementing, a right to left minimum of $f^{\prime}(\pi)$, it corresponds to a peak in P. Change this peak, $U D$, to a double flatstep F. As verified in the next section, this mapping is a bijection from the permutations of $[n+1]$ being counted to Schröder n-paths, establishing the desired count.

3 The Mansour-Deng-Du bijection

First, we recall that the ascent-descent code [4, p.3] of a Dyck path (see also [2, Ex. 6.19, item $\left.\left(\mathrm{i}^{6}\right)\right]$) is obtained by recording all but the last of the partial sums of the ascent lengths (resp. descent lengths). For the path shown below, the ascent lengths are ($1,3,3,1,2,1$) , the descent lengths are ($1,1,4,1,2,2$) and so the ascent-descent code is $\left(\begin{array}{ll}1 \\ 1 & 4 \\ 1 & 7 \\ 6\end{array} \frac{8}{7} 9\right)$. Each ascent ends with a peak upstep.

Next, an excedance in a permutation π on [n] is a pair $(i, \pi(i))$ with $\pi(i)>i ; i$ is the excedance location and $\pi(i)$ is the excedance value. Similarly, we have non-excedance locations and values. Reifegerste [5, p. 761] observes that 321-avoiding permutations are
characterized by the condition that the subwords formed by the excedance values and the non-excedance values are both increasing, and thus a 321 -avoiding permutation is uniquely determined by its excedances, and, important for our purposes, also by its nonexcedances.

Now the Mansour-Deng-Du bijection from 321-avoiding permutations of $[n]$ to Dyck n-paths has a simple description as follows, with $n=11$ and

$$
\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
1 & 4 & 5 & 2 & 6 & 9 & 3 & 7 & 11 & 8 & 10
\end{array}\right)
$$

as a working example.

1. Extract the non-excedances:

$$
\left(\begin{array}{cccccc}
1 & 4 & 7 & 8 & 10 & 11 \\
1 & 2 & 3 & 7 & 8 & 10
\end{array}\right)
$$

2. Delete the last entry in the top row and the first entry in the bottom row (necessarily n and 1 respectively), subtract 1 from each remaining entry in the bottom row, and align the rows:

$$
\left(\begin{array}{ccccc}
1 & 4 & 7 & 8 & 10 \\
1 & 2 & 6 & 7 & 9
\end{array}\right)
$$

This is the ascent-descent code of the desired Dyck path. Thus our working example corresponds to the Dyck path shown above.

Reifegerste's characterization above has an equivalent form: a permutation π of $[n]$ is 321-avoiding if and only if its excedance values are increasing and every non-excedance value is a right to left minimum. (Note that an excedance value $\pi(i)$ can never be a right to left minimum because there are too many entries after $\pi(i)$ for them all to be $>\pi(i)$.) This means that the non-excedance locations in a 321-avoiding permutation coincide with the locations of the peak upsteps (among all upsteps) in the corresponding Dyck path, and so one can verify that the mapping of Section 2 is indeed a bijection.

References

[1] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2012.
[2] Richard P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge University Press, 1999. Exercise 6.19 and related material on Catalan numbers are available online at http://www-math.mit.edu/~rstan/ec/
[3] Toufik Mansour, Eva Y. P. Deng and Rosena R. X. Du, Dyck paths and restricted permutations, Discrete Applied Math. 154 (2006), no. 11, 1593-1605. http://www.combinatorics.net.cn/research/Papers_GetFile.aspx?paperID=185
[4] David Callan, Bijections from Dyck paths to 321-avoiding permutations revisited, preprint, 2007. http://arXiv.org/abs/0711.2684v1
[5] Astrid Reifegerste, On the diagram of 132 -avoiding permutations, European J. Combin. 24 (2003), no. 6, 759-776, http://arxiv.org/abs/math.CO/0208006.

