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Abstract. We pose many new conjectures involving primes and quadratic

forms, which might interest number theorists and stimulate further research.
Below are five typical examples:

(i) For any positive integer n, there exists k ∈ {0, . . . , n} such that n+k and
n+ k2 are both prime.

(ii) Every integer n = 12, 13, . . . can be written as p+ q with p, p+6, 6q− 1

and 6q + 1 all prime.
(iii) For any integer n > 6 there is a prime p < n such that 6n−p and 6n+p

are both prime.

(iv) Any integer n > 3 can be written as p+ q, where p is a prime with p− 1
and p + 1 both practical, and q is either prime or practical. Also, each even

number n > 8 can be written as p + q + r, where p is a prime with p − 1 and
p+1 both practical, q is a prime with q− 1 and q+1 both practical, and r is a

practical number with r − 1 and r + 1 both prime.

(v) Each n = 3, 4, . . . can be written as p+
∑

m

k=1
(−1)m−kpk, where p is a

Sophie Germain prime and pk is the kth prime.

1. Introduction

Primes have been investigated for over two thousand years. Nevertheless,
there are many problems on primes remain open. The famous Goldbach con-
jecture (cf. [CP] and [N]) states that any even integer n > 2 can be represented
as a sum of two primes. Lemoine’s conjecture (see [L]) asserts that any odd
integer n > 6 can be written as p+2q with both p and q prime; this is a refine-
ment of the weak Goldbach conjecture (involving sums of three primes) proved
by Vinogradov [V] for large odd numbers. Legendre’s conjecture states that
for any positive integer n there is a prime between n2 and (n + 1)2. Another
well known conjecture asserts that for any positive even number d there are
infinitely many prime pairs {p, q} with p− q = d.
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A positive integer n is said to be practical if every m = 1, . . . , n can be
written as the sum of some distinct divisors of n. In 1954 B.M. Stewart [St]
showed that if p1 < · · · < pr are distinct primes and a1, . . . , ar are positive
integers then m = pq11 · · · par

r is practical if and only if p1 = 2 and

ps+1 − 1 6 σ(pa1

1 · · · pas

s ) for all 0 < s < r,

where σ(n) stands for the sum of all divisors of n. The behavior of practi-
cal numbers is quite similar to that of primes. For example, G. Melfi [Me]
proved the following Goldbach-type conjecture of M. Margenstern [Ma]: Each
positive even integer is a sum of two practical numbers, and there are infin-
itely many practical numbers m with m − 2 and m + 2 also practical. Similar
to Firoozbakht’s conjecture that ( n

√
pn)n>1 is strictly decreasing (where pn

is the nth prime), we conjecture that ( n
√
an)n>3 is strictly decreasing to the

limit 1, where an stands for the nth practical number. We also guess that
( n+1

√

S(n+ 1)/ n

√

S(n))n>7 is strictly increasing to the limit 1, where S(n) is
the sum of the first n practical numbers. For the author’s various conjectures
on sequences involving primes, the reader may consult [S13a].

In this paper we formulate many conjectures on primes (and/or practical
numbers) as well as binary quadratic forms related to primes. In particular,
we find some surprising refinements of Goldbach’s conjecture, Lemoine’s con-
jecture, Legendre’s conjecture and the twin prime conjecture, and some of our
conjectures imply that any positive even integer can be written as difference of
two primes infinitely many times. Section 4 contains some conjectures on repre-
sentations of new types, and Section 5 consists of various conjectures involving
alternating sums of consecutive primes. Section 6 is devoted to conjectures
involving binary quadratic forms.

Throughout this paper we set N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}. For
a ∈ Z and n ∈ Z+, by {a}n we mean the least nonnegative residue of a modulo
n.

For numbers of representations related to some conjectures in Sections 3-5,
the reader may consult [S] for certain sequences in the OEIS.

Many of the conjectures in this paper are certain concrete cases of our fol-
lowing general hypothesis (related to Schinzel’s Hypothesis).

General Hypothesis (2012-12-28). Let f1(x, y), . . . , fm(x, y) be non-constant
polynomials with integer coefficients. Suppose that for large n ∈ Z+, those
f1(x, n − x), . . . , fm(x, n − x) are irreducible, and there is no prime dividing
all the products

∏m
k=1 fk(x, n− x) with x ∈ Z. If n ∈ Z+ is large enough, then

we can write n = x + y (x, y ∈ Z+) such that |f1(x, y)|, . . . , |fm(x, y)| are all
prime.

2. Conjectures involving one prime variable

Conjecture 2.1 (2012-11-08 and 2012-11-10). Let n be a positive integer.
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(i) If n 6= 1, 2, 4, 6, 10, 22, 57, then there is a prime p 6 n such that both
2n − p and 2n + p − 2 are prime. If n 6= 1, 2, 3, 5, 8, 87, 108, then there is a
prime p ∈ (n, 2n) such that 2n− p and 2n+ p− 2 are both prime.

(ii) If n 6= 1, 2, 9, 21, 191, then there is a prime p 6 n such that both 2n − p
and 2n+p+2 are prime. If n 6= 1, 2, 4, 6, 10, 15, then there is a prime p ∈ (n, 2n)
such that 2n− p and 2n+ p+ 2 are both prime.

(iii) If n > 3, then there is a prime p < n such that both 2n − 2p + 1 and
2n+2p−1 are prime. If n > 3 and n 6= 7, 8, 10, 32, then there is a prime p < n
such that both 2n− 2p− 1 and 2n+ 2p+ 1 are prime.

Remark 2.1. Clearly parts (i)-(ii) and (iii) are stronger than Goldbach’s conjec-
ture and Lemoine’s conjecture respectively. Surprisingly no others have found
this conjecture before. We have verified both parts for n up to 7×107. Conjec-
ture 2.1 can be further strengthened, for example, we guess that for any integer
n > 60000 with n 6= 65022, 73319, 107733 there is a prime p < n such that
2n± (2p− 1) and 2n± (2p+ 5) are all prime.

Conjecture 2.2 (2012-11-09). (i) For any integer n > 475 there is a prime
p 6 n such that both 2n − p and n + (p + 1)/2 are prime. For each integer
n > 415 there is a prime p ∈ (n, 2n) such that 2n − p and n + (p + 1)/2 are
both prime.

(ii) For any integer n > 527 there is a prime p 6 n such that both 2n+p and
n− (p+1)/2 are prime. For each integer n > 1133 there is a prime p ∈ (n, 2n)
such that 2n+ p and n− (p+ 1)/2 are both prime.

(iii) For any positive integer n 6= 1, 2, 7, 12, 91, there is a prime p 6 n such
that n+ {n}2 − p and 2n+ 2p+ 1 are both prime. For each n = 6, 7, . . . there
is a prime p 6 n such that n+ {n}2 + p and 2n− 2p+ 1 are both prime.

(iv) For any positive integer n 6= 1, 2, 7, 8, 91, 92, there is a prime p 6 n such
that n + {n}2 − p and 2n + 2p− (−1)n are both prime. For each n = 7, 8, . . .
there is a prime p 6 n such that n + {n}2 + p and 2n − 2p − (−1)n are both
prime.

Remark 2.2. We have verified Conjecture 2.2 for n up to 107.

Conjecture 2.3 (2012-11-19). (i) For any integer n > 2720 there is a prime
p < n such that 2n− p and 2n+ 2p± 3 are all prime.

(ii) For any integer n > 9075 there is a prime p < n such that 2n + 1− 2p,
2n+ p− 2 and 2n+ p+ 4 are all prime.

Remark 2.3. Conj. 2.3 implies that for any integer n > 6 there are primes p and
q < n/2 such that p− (1+ {n}2)q = n; this is similar to Goldbach’s conjecture
and Lemoine’s conjecture. Conj. 2.3 also implies that there are infinitely many
sexy prime pairs. (If p and p + 6 are both prime, then {p, p+ 6} is said to be
a sexy prime pair.) We have verified Conj. 2.3 for n up to 107.
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Conjecture 2.4 (2012-11-10). (i) For each n = 6, 7, . . . there is a prime p < n
such that both 6n− p and 6n+ p are prime.

(ii) For any given non-constant integer-valued polynomial P (x) with positive
leading coefficient, if n ∈ Z+ is sufficiently large then there is a prime p < n
such that 6P (n)± p are both prime.

Remark 2.4. We have verified part (i) for n up to 108. If we take P (x) in part
(ii) to be x(x+1)/2, x2, x3, x4, then it suffices to require that n is greater than
1933, 2426, 6772, 24979 respectively.

Conjecture 2.5 (2012-11-10). (i) For any integer n > 2733, there is a prime
p 6 n such that n2 − n + p and n2 + n − p are both prime. For any integer
n > 3513, there is a prime p ∈ (n, 2n) such that n2 − n+ p and n2 + n− p are
both prime.

(ii) For any integer n > 1829 there is a prime p 6 n such that n2 ± (n+ p)
are both prime. For any integer n > 4518 there is a prime p ∈ (n, 2n) such that
n2 ± (n+ p) are both prime.

Remark 2.5. Oppermann’s conjecture states that for any integer n > 1 both of
the intervals (n2 − n, n2) and (n2, n2 + n) contain primes; this is a refinement
of Legendre’s conjecture. Clearly part (i) of Conj. 2.5 implies the Oppermann
conjecture. We have verified both parts of Conj. 2.6 for n up to 107.

Conjecture 2.6 (2012-11-08). (i) For any positive integer n 6= 1, 2, 3, 10, 28, 40,
218, there is a prime p 6 n such that (2n)2 + p is prime. For any positive in-
teger n 6= 1, 5, 12, 21, 28, there is a prime p 6 n such that (2n − 1)2 + 2p is
prime.

(ii) For any integer n 6= 1, 2, 3, 6, 7, 57, there is a prime p 6 n such that
(2n)2 + p2 is prime. For any integer n 6= 1, 2, 4, 17, 19, 57, there is a prime
p 6 n such that (2n− 1)2 + (2p)2 is prime.

(iii) For any integer n > 142 there is a prime p 6 n such that (2n)4 + p2 is
prime. For any integer n 6= 1, 24, 39, 47, 89, there is a prime p 6 n such that
(2n− 1)4 + (2p)2 is prime.

(iv) For any integer n > 1, 2, 3, 5, 6, 11, 22, 35, 40, there is a prime p 6 n
such that (2n)4 + p4 is prime. For any integer n 6= 1, 33 there is a prime p 6 n
such that (2n− 1)4 + (2p)4 is prime.

Remark 2.6. We have verified all the parts of Conj. 2.6 for n up to 5×106. Part
(iii) is stronger than the celebrated theorem of J. Friedlander and H. Iwaniec
[FI] which asserts that there are infinitely many primes of the form x4+y2 with
x, y ∈ Z+.

Conjecture 2.7 (2012-12-19). For any odd integer n > 1 different from 9 and
189, there is a prime p 6 n with n+ (n− p)4 also prime.

Remark 2.7. We have some other conjectures similar to Conj. 2.7.
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Conjecture 2.8 (2012-12-29). For any positive integer n there is a prime
p between n2 and (n + 1)2 with (n

p
) = 1, where (−) denotes the Legendre

symbol. Also, for any integer n > 1 we have (n(n+1)
p ) = 1 for some prime

p ∈ (n2, (n+ 1)2).

Remark 2.8. We have verified this refinement of Legendre’s conjecture for n up
to 109. We also have some similar conjectures including the following (a) and
(b):

(a) For any integer n > 2 different from 7 and 17, there is a prime p between
n2 and (n + 1)2 with (np ) = (n+1

p ) = 1. If n ∈ Z+ \ {3, 5, 11} is not a square,

then (np ) = −1 for some prime p ∈ (n2, (n+ 1)2).

(b) For any integer n > 2 not among 6, 12, 58, there is a prime p ∈ (n2, n2+
n) with (np ) = 1. If n > 20 is not a square and different from 37 and 77, there

is a prime p ∈ (n2, n2 + n) with (np ) = −1.

Conjecture 2.9 (2012-12-29). (i) For each integer n > 8 with n 6= 14, there
is a prime p between n and 2n with (n

p
) = 1. If n ∈ Z+ is not a square, then

there is a prime p between n and 2n with (np ) = −1.

(ii) For any integer n > 5 there is a prime p ∈ (n, 2n) with ( 2np ) = 1. For

any integer n > 6 there is a prime p ∈ (n, 2n) with (−n
p
) = −1.

Remark 2.9. We have verified this refinement of Bertrand’s postulate for n up
to 5× 108.

Conjecture 2.10 (2013-01-07). Let n be a positive integer. Then the interval
[n, 2n] contains a Sophie Germain prime. Moreover, whenever n > 90 there is
a prime p ∈ [n, 2n] such that p+ 2 and 2p+ 1 are also prime.

Remark 2.10. Recall that p is called a Sophie Germain prime if p and 2p + 1
are both prime. We have verified Conj. 2.10 for n up to 5× 108.

Now we introduce two kinds of sandwiches. If p is a prime and p − 1 and
p + 1 are both practical, then we call {p − 1, p, p + 1} a sandwich of the first
kind. If {p, p + 2} is a twin prime pair and p + 1 is practical, then we call
{p, p+ 1, p+ 2} a sandwich of the second kind. For example, {88, 89, 90} is a
sandwich of the first kind, while {59, 60, 61} is a sandwich of the second kind.
For the list of those primes in sandwiches of the first kind, see [S, A210479].
We conjecture that ( n

√
sn)n>9 is strictly decreasing to the limit 1, where sn

denotes the central prime in the nth sandwich of the first kind.

Conjecture 2.11 (2013-01-12). (i) For any integer n > 8 the interval [n, 2n]
contains a sandwich of the first kind.

(ii) For each n = 7, 8, . . . the interval [n, 2n] contains a sandwich of the
second kind.
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(iii) For any integer n > 231 the interval [n, 2n] contains four consecutive
integers p− 1, p, p+1, p+2 with {p, p+2} a twin prime pair and {p− 1, p+1}
a twin practical pair.

(iv) There are infinitely many quintuples {m − 2, m − 1, m,m + 1, m + 2}
with {m− 1, m+ 1} a twin prime pair and m,m± 2 all practical.

Remark 2.11. For those middle terms m described in part (iv), the reader may
consult [S, A209236].

Conjecture 2.12 (2013-01-20). (i) For any integer n > 911 there is a practical
number k < n with {kn− 1, kn, kn+ 1} a sandwich of the second kind.

(ii) For each integer n > 200, the interval [1, n] contains four consecutive
integers k − 1, k, k+ 1, k + 2 with k − 1 and k + 1 both prime, and k, k + 2, kn
all practical. Moreover, for any integer n > 26863 the interval [1, n] contains
five consecutive integers m − 2, m − 1, m,m+ 1, m+ 2 with m − 1 and m + 1
both prime, and m− 2, m,m+ 2, mn all practical.

Remark 2.12. If p is a prime greater than σ(m)+1 (where m ∈ Z+), then mp is
not practical. Thus, part (ii) implies that there are infinitely many quintuples
{m − 2, m − 1, m,m + 1, m + 2} with {m − 1, m + 1} a twin prime pair and
m,m± 2 all practical.

The following conjecture is similar to Conj. 2.4.

Conjecture 2.13 (2013-01-19). For any integer n > 2, there is a practical
number p < n such that n− p and n+ p are both prime or both practical.

Remark 2.13. We have verified this conjecture for n up to 108.

Now we propose a conjecture of the Collatz type.

Conjecture 2.14 (2013-0-28). (i) For n ∈ Z+ define

f(n) =

{

(p+ 1)/2 if 4 | p+ 1,

p otherwise,

where p is the least prime greater than n with 2(n + 1) − p prime. If a1 ∈
{3, 4, . . .} and ak+1 = f(ak) for k = 1, 2, 3, . . . , then aN = 4 for some positive
integer N .

(ii) (2013-02-27) For n ∈ Z+ define

g(n) =

{

q/2 if 4 | q,
q if 4 | q − 2,

where q is the least practical number greater than n with 2(n+1)− q practical.
If b1 ∈ {4, 5, . . .} and bk+1 = g(bk) for k = 1, 2, 3, . . . , then bN = 4 for some
positive integer N .
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Remark 2.14. For example, if in part (i) we start from a1 = 45 then we get the
sequence

45, 61, 36, 37, 24, 16, 17, 10, 6, 4, 5, 4, . . . ;

if in the second part we start from b1 = 316 then we obtain the sequence

316, 330, 342, 378, 190, 110, 126, 64, 66, 78,

40, 42, 54, 28, 30, 16, 18, 10, 8, 6, 4, 6, 4, . . .

3. Conjectures on representations involving two prime variables

Conjecture 3.1 (2012-11-11). (i) Every n = 12, 13, . . . can be written as p+
(1 + {n}2)q with q 6 n/2 and p, q, q + 6 all prime. Moreover, for any even
n > 8012 and odd n > 15727, there are primes p and q < p with p−6 and q+6
also prime such that p+ (1 + {n}2)q = n.

(ii) If d1 and d2 are integers divisible by 6, then any sufficiently large integer
n can be written as p+(1+ {n}2)q with p > q and p, q, p− d1, q+ d2 all prime.

Remark 3.1. Recall that {p, p + 6} is called a sexy prime pair if p and p + 6
are both prime. We have verified the first assertion and the second assertion
in part (i) for n up to 109 and 108 respectively. If we take (d1, d2) in part (ii)
to be (−6, 6), (−6,−6), (6,−6), (±12,±6), then it suffices to require that n is
greater than 15721, 15733, 15739, 16349 respectively.

Conjecture 3.2. (i) (2012-11-12) Any integer n > 62371 with n 6≡ 2 (mod 6)
can be written as p + (1 + {−n}6)q, where p and q < p are primes with p − 2
and q + 2 also prime. Also, any integer n > 6896 with n ≡ 2 (mod 6) can be
written as p− q with q < n/2 and p, q, p− 2, q + 2 all prime.

(ii) (2012-11-13) Any integer n > 66503 with n 6≡ 4 (mod 6) can be written
as p + (1 + {n}6)q, where p and q < p are primes with p − 4 and q + 4 also
prime. Also, any integer n > 7222 with n ≡ 4 (mod 6) can be written as p− q
with q < n/2 and p, q, p− 4, q + 4 all prime.

Remark 3.2. Clearly part (i) of Conj. 3.2 implies the twin prime conjecture.
{p, p+ 4} is said to be a cousin prime pair if p and p + 4 are both prime. We
have verified Conj. 3.2 for n up to 5 × 107. Maybe it’s possible to establish
partial results for Conjectures 3.1 and 3.2 similar to Chen’s theorem [C] for
Goldbach’s conjecture.

Conjecture 3.3 (2012-11-13). (i) For any odd n > 4676 and even n > 30986,
there are primes p and q < p such that {3(p− q)± 1} is a twin prime pair and
p+ (1 + {n}2)q = n.

(ii) For any odd n > 7658 and even n > 41884, there are primes p and
q < n/2 such that {3(p+ q)± 1} is a twin prime pair and n = p− (1+ {n}2)q.

(iii) Any even number n > 160 can be written as p+ q with p, q, p− q− 1 all
prime. Also, any even number n > 280 can be written as p+q with p, q, p−q+1
all prime.
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Remark 3.3. We have verified part (i) for n up to 108. Those numbers n ∈
[10000, 30986] not having the described property in part (i) are 15446, 21494,
23776, 30986. Those numbers n ∈ [18000, 41884] not having the described
property in part (ii) are 21976, 23584, 41884.

Conjecture 3.4 (2012-11-11). (i) For any integer n > 14491 there are primes
p and q < p with pq + 6 prime such that p + (1 + {n}2)q = n. For any
integer n > 22093 there are primes p and q < p with pq − 6 prime such that
p+ (1 + {n}2)q = n.

(ii) Let d be any nonzero multiple of 6. Then any sufficiently large integer n
can be written as p+ (1 + {n}2)q with p > q and p, q, pq + d all prime.

Remark 3.4. We have verified part (i) for n up to 5 × 107. Here is a weaker
version of part (i): Any integer n > 9 with n 6= 13, 14, 41 can be written as
p + (1 + {n}2)q, where q is a positive integer not exceeding n/2, and p and
pq + 6 are both prime.

Conjecture 3.5 (2012-12-04). (i) Any integer n > 6782 can be written as
p+(1+{n}2)q with p > q and p, q, q±6 all prime. In general, for any d1, d2 ∈ Z
divisible by 6, all sufficiently large integers n can be written as p+ (1+ {n}2)q
with p > q and p, q, q + d1, q + d2 all prime.

(ii) Any even n > 8070 and odd n > 18680 can be written as p+(1+ {n}2)q
with p > q and p, q, 6q ± 1 all prime.

(iii) Any integer n > 4410 can be written as p+ (1 + {n}2)q with p > q and
p, q, 2q ± 3 all prime.

(iv) Any integer n > 16140 can be written as p+(1+ {n}2)q with p > q and
p, q, 3q ± 2 all prime.

Remark 3.5. We have verified the first assertion in part (i) and the second part
for n up to 2× 107 and 4× 107 respectively. All the four parts can be further
strengthened, for example, we guess that any integer n > 186272 can be written
as p+ (1 + {n}2)q with p > q and p, q, q ± 6, q + 30 all prime.

Conjecture 3.6 (2012-11-11). (i) Any integer n > 785 can be written as p +
(1 + {n}2)q with p, q, p2 + q2 − 1 all prime.

(ii) Let d be any odd integer with d 6≡ 1 (mod 3). Then large even numbers
can be written as p+q with p, q, p2+q2+d all prime. If d 6≡ 0 (mod 5), then all
large odd numbers can be represented as p+ 2q with p, q, p2 + q2 + d all prime.

Remark 3.6. We have verified part (i) for n up to 1.4× 108.

Conjecture 3.7 (2012-11-05). For any integer n > 1188 there are primes p
and q with p2 + 3pq + q2 prime such that p+ (1 + {n}2)q = n.

Remark 3.7. Clearly this conjecture is stronger than Goldbach’s conjecture
and Lemoine’s conjecture. We have verified it for n up to 3 × 108. Those
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1 6 n 6 1187 not having the required property are listed below:

1, 2, 3, 4, 5, 6, 10, 32, 38, 40, 51, 56, 61, 66, 91, 119, 131, 148, 188, 191,

193, 223, 226, 248, 296, 356, 373, 398, 428, 934, 964, 1012, 1136, 1187.

In view of Conjecture 3.7, those primes in the form p2+3pq+q2 are particularly
interesting; the reader may consult [S, A218771] for information about such
primes.

Conjecture 3.8 (2012-11-07). For any a ∈ N with a 6= 2, the set E(a) of
positive integers n not in the form p+(1+{n}2)q with p, q, (2a+2)(p+q)2+pq
all prime, is finite! In particular,

E(0) = {1 ∼ 8, 10, 13, 14, 15, 22, 59, 61, 62, 68, 104},
E(1) = {1 ∼ 7, 9, 12, 14, 15, 20, 21, 27, 32, 38, 61, 68, 146, 188, 212, 383, 746},

and

E(3) = {1 ∼ 9, 11, 12, 15, 16, 18, 19, 21, 22, 28,

39, 46, 52, 62, 63, 121, 131, 158, 226, 692},
E(4) = {1 ∼ 15, 17, 19, 20, 22, 25, 28, 35, 39,

46, 56, 58, 68, 73, 122, 124, 205, 227}.

Moreover,

maxE(5) = 2468, maxE(6) = 476, maxE(7) = 796, maxE(8) = 4633,

maxE(9) = 1642, maxE(10) = 2012, maxE(11) = 3400, maxE(12) = 1996.

Remark 3.8. For each a = 0, 1, 3, 4, . . . , 12 we have verified the conjecture for
n up to 107. Note that the conjecture implies that for each a = 0, 1, 3, 4, . . .
there are infinitely many primes in the form (2a + 2)(p+ q)2 + pq with p and q
prime.

Conjecture 3.9 (2012-11-07 and 2012-11-08).
(i) Each odd integer n > 15 can be written as p+ 2q with p, q, p2 + 60q2 all

prime. Any odd integer greater than 1424 can be represented as p + 2q with
p, q, p4 + (2q)4 all prime.

(ii) For any give a, b ∈ Z+ sufficiently large odd numbers can be represented

as p + 2q with p, q and p2
b

+ (2a − 1)(2q)2
b

all prime. Let E∗(a) denote the
set of positive odd integers not of the form p+ 2q with p, q, p2 + 4(2a − 1)q2 all
prime. Then

E∗(3) = {1, 3, 5, 7, 31, 73},
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and

maxE∗(1) = 3449, maxE∗(2) = 1711, maxE∗(5) = 6227, maxE∗(6) = 1051,

maxE∗(7) = 2239, maxE∗(8) = 2599, maxE∗(9) = 7723,

maxE∗(10) = 781, maxE∗(11) = 1163, maxE∗(12) = 587.

Remark 3.9. We have verified part (i) for n up to 108. It is still open whether
there are infinitely many primes in the form x4 + y4 with x, y ∈ Z+.

Conjecture 3.10 (2012-11-11). For any integer n > 7830 there are primes p
and q < p with p4 + q4 − 1 prime such that p+ (1 + {n}2)q = n.

Remark 3.10. This is similar to Conjecture 3.5(i).

Conjecture 3.11 (2012-11-08). For any integer n > 9608 there are primes p
and q with (p+ q)4 + (pq)2 prime such that p+ q = 2n.

Remark 3.11. We have verified the conjecture for n up to 3 × 107. As pq 6

( p+q
2

)2, Conjecture 3.10 implies that for any integer n > 9608 there is a positive

integer m 6 n2 such that (2n)4+m2 is prime (compare this with Conj. 2.6(iii)).
This also holds for all n 6 9607.

Conjecture 3.12 (joint with Olivier Gerard). For any integer n > 400 with
n 6= 757, 1069, 1238, there are odd primes p and q with ( pq ) = ( qp ) = 1 such

that p+ (1 + {n}2)q = n.

Remark 3.12. We have verified Conj. 3.12 for n up to 108. See [GS] for the
announcement of this conjecture.

Conjecture 3.13. For any integer m define s(m) as the smallest positive in-
teger s such that for any n = s, s + 1, . . . there are primes p > q > 2 with

( p−(1+{n}2)m
q ) = ( q+m

p ) = 1 and p+ (1 + {n}2)q = n; if such a positive integer

s does not exist then s(m) is defined as 0.
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(i) (2012-11-22) We have s(m) > 0 for all m ∈ Z. In particular,

s(0) = 1239, s(1) = 1470, s(−1) = 2192, s(2) = 1034, s(−2) = 1292,

s(3) = 1698, s(−3) = 1788, s(4) = 848, s(−4) = 1458,

s(5) = 1490, s(−5) = 2558, s(6) = 1115, s(−6) = 1572,

s(7) = 1550, s(−7) = 932, s(8) = 825, s(−8) = 2132,

s(9) = 1154, s(−9) = 1968, s(10) = 1880, s(−10) = 1305,

s(11) = 1052, s(−11) = 1230, s(12) = 2340, s(−12) = 1428,

s(13) = 2492, s(−13) = 2673, s(14) = 1412, s(−14) = 1638,

s(15) = 1185, s(−15) = 1230, s(16) = 978, s(−16) = 1605,

s(17) = 1154, s(−17) = 1692, s(18) = 1757, s(−18) = 2292,

s(19) = 1230, s(−19) = 2187, s(20) = 2048, s(−20) = 1372,

s(21) = 1934, s(−21) = 1890, s(22) = 1440, s(−22) = 1034,

s(23) = 1964, s(−23) = 1322, s(24) = 1428, s(−24) = 2042,

s(25) = 1734, s(−25) = 1214, s(26) = 1260, s(−26) = 1230,

s(27) = 1680, s(−27) = 1154, s(28) = 1652, s(−28) = 1808,

s(29) = 1112, s(−29) = 1670, s(30) = 1820, s(−30) = 1284,

s(31) = 1614, s(−31) = 1404, s(32) = 1552, s(−32) = 1808,

s(33) = 1230, s(−33) = 1914, s(34) = 1200, s(−34) = 1832,

s(35) = 1480, s(−35) = 1094, s(36) = 1572, s(−36) = 1397,

s(37) = 1622, s(−37) = 1220, s(38) = 1452, s(−38) = 2064,

s(39) = 1848, s(−39) = 1440, s(40) = 1262, s(−40) = 1397,

s(41) = 2384, s(−41) = 1262, s(42) = 1536, s(−42) = 2838,

s(43) = 1542, s(−43) = 1550, s(44) = 2012, s(−44) = 1683,

s(45) = 1274, s(−45) = 2544, s(46) = 1432, s(−46) = 1368,

s(47) = 1710, s(−47) = 2132, s(48) = 1392, s(−48) = 1734,

s(49) = 1790, s(−49) = 1334, s(50) = 2138, s(−50) = 1364.

(ii) (2012-11-24) For any integer m > 3720 with 8 | m, we have s(−m) =
m+ 1. For any integer a > 10 we have

s(2a) =

{

2a+1 − 2 if 2 | a,
2a + 1 if 2 ∤ a.

(iii) (2012-11-25) For any integer m > 1573 with m ≡ 1 (mod 12), we have
s(m) = 2m− 2.
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Remark 3.13. (i) That s(0) = 1239 is a slight variant of Conjecture 3.11.
(ii) For any positive even integer m, we have s(±m) > m + 1, for, if p and

q < p are odd primes with p+ q = m then

(

p−m

q

)

=

(−q

q

)

= 0 and

(

q + (−m)

p

)

=

(−p

p

)

= 0.

(iii) Let m ∈ Z+ with m ≡ 1 (mod 3). Then s(m) > 2m−2. In fact, if there
are odd primes p and q < p such that p + 2q = 2m − 3 and ( p−2m

q
) = 1, then

(−3
q ) = ( p+2q−2m

q ) = ( p−2m
q ) = 1, hence q ≡ 1 (mod 3) and p = 2(m− q)− 3 ≡

2(m− 1) ≡ 0 (mod 3) which is impossible since p > q > 2.

Conjecture 3.14 (2012-12-30). Any integer n > 5 can be written as p+ (1 +
{n}2)q, where p is an odd prime and q is a prime not exceeding n/2 such that

( qn ) = 1 if 2 ∤ n, and ( (q+1)/2
n+1 ) = 1 if 2 | n, where (−) denotes the Jacobi

symbol.

Remark 3.14. We have verified this refinement of Goldbach’s conjecture and
Lemoine’s conjecture for n up to 109.

Conjecture 3.15 (2013-01-19). (i) Any even integer 2n > 4 can be written as
p + q, where p and q are primes with p + 1 and q − 1 both practical. We may
require additionally that q − p− 1 is prime if n > 29663.

(ii) For each integer n > 8, we can write 2n−1 = p+q = 2p+(q−p), where
p and q − p are both prime, and q is practical.

Remark 3.15. We have verified the first assertion in part (i) and the second
part for n up to 108 and 107 respectively.

4. Conjectures involving representations of new types

Recall that those Tn = n(n+1)/2 (n ∈ N) are called triangular numbers. A
conjecture of the author [S09] states that any positive integer can be written
as p+ Tx with x ∈ N, where p is either zero or prime.

Conjecture 4.1 (2013-01-05). Any integer n > 48624 with n 6= 76106 can be
written as x + y (x, y ∈ N) with {6x − 1, 6x + 1} a twin prime pair and y a
triangular number.

Remark 4.1. We have verified this conjecture for n up to 109 (for numbers of
related representations, see [S, A187785]), and guess that 723662 is the unique
value of n > 76106 which really needs y = 0 in the described representation.

Recall that for two subsets X and Y of Z, their sumset is given by

X + Y = {x+ y : x ∈ X and y ∈ Y }.
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Conjecture 4.2 (2013-01-03). Let

A ={x ∈ Z+ : 6x− 1 and 6x+ 1 are both prime},
B ={x ∈ Z+ : 6x+ 1 and 6x+ 5 are both prime},
C ={x ∈ Z+ : 2x− 3 and 2x+ 3 are both prime}.

Then

A+B = {2, 3, . . .}, B + C = {5, 6, . . .}, and A+ C = {5, 6, . . .} \ {161}.

Remark 4.2. We have verified Conj. 4.2 for n up to 3 × 108. In view of
Conjectures 3.1 and 3.2, we should have 2A = A + A ⊇ {702, 703, . . .}, 2B ⊇
{492, 493, . . .} and 2C ⊇ {4006, 4007, . . .}.
Conjecture 4.3 (2012-12-22). (i) Any integer n > 12 can be written as p+ q
with p, p+ 6, 6q − 1 and 6q + 1 all prime.

(ii) Each integer n > 6 with n 6= 319 can be written as p + q with p, p +
6, 3q − 2 + {n}2 and 3q + 2− {n}2 all prime.

(iii) Any integer n > 3 not among 11, 64, 86, 629 can be written as x +
y (x, y ∈ Z+) with 3x± 2 and 6y ± 1 all prime.

Remark 4.3. We have verified part (i) for n up to 109. For numbers of repre-
sentations related to part (i), see [S, A199920]. Note that part (i) of Conj. 4.3
implies that there are infinitely many twin primes and also infinitely many sexy
primes, because for any m = 2, 3, . . . the interval [m! + 2, m! + m] of length
m− 2 contains no prime.

Conjecture 4.4. (i) (2012-11-30 and 2012-12-01) Any integer n > 7 can be
written as p+q, where q is a positive integer, and p and 2pq+1 are both prime.
In general, for each m ∈ N any sufficiently large integer n can be written as
x+ y (x, y ∈ Z+) with x−m, x+m and 2xy + 1 all prime.

(ii) (2012-11-29) Any integer n > 357 can be written as x + y (x, y ∈ Z+)
with 2xy ± 1 twin primes. In general, for each positive odd integer m, any
sufficiently large integer n can be written as x + y with x, y ∈ Z+ such that
2xy −m and 2xy +m are both prime.

Remark 4.4. (a) We have verified the first assertion in part (i) of Conj. 4.4 for
n up to 109 and the first assertion in part (ii) for n up ro 2× 108. Concerning
the general statement in part (i), for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 it suffices to
require that n is greater than

623, 28, 151, 357, 199, 307, 357, 278, 697, 263

respectively. We also guess that for every odd integer m 6≡ 5 (mod 6), any
sufficiently large integer n can be written as p+ q (q ∈ Z+) with p and 2pq+m
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both primes, e.g., when m = 3 it suffices to require n > 1. Concerning the
general statement in part (ii), for m = 3, 5, 7, 9, 11 it suffices to require that n
is greater than 5090, 222, 1785, 548, 603 respectively. Note that if x, y ∈ Z+

and x+ y = n then 2n− 2 6 2xy 6 n2/2 since

n− 1 = x+ y − 1 6 xy 6

(

x+ y

2

)2

=
n2

4
.

(b) Given finitely many positive integers x1, . . . , xk and distinct odd primes
q1, . . . , qk greater than max{x1, . . . , xk}, by the Chinese Remainder Theorem
there are infinitely many n ∈ Z+ such that qi|2xi(n−xi)+1 for all i = 1, . . . , k.
Thus, part (i) of Conj. 4.4 implies that for any m ∈ N there are infinitely many
positive integers x with x−m and x+m both prime. That any positive even
integer can be expressed as difference of two primes infinitely many times is a
well known unsolved problem.

Conjecture 4.5. (i) (2012-12-01) For each m ∈ N, any sufficiently large in-
teger n with m or n odd can be written as x + y, where x and y are positive
integers with x − m, x + m and xy − 1 all prime. In particular, in the case
m = 0 it suffices to require that n 6= 1, 3, 85; when m = 1 it suffices to require
that n is not among

1, 2, 3, 4, 40, 125, 155, 180, 470, 1275, 2185, 3875;

in the case m = 2 it suffices to require that n > 7 and n 6= 13.
(ii) (2012-11-27) Any integer n > 3120 can be written as x+y with x, y ∈ Z+

and {xy− 1, xy+1} a twin prime pair. In general, for each positive integer m,
any sufficiently large integer n with (m− 1)n even can be written as x+ y with
x, y ∈ Z+ such that xy −m and xy +m are both prime.

Remark 4.5. We have verified the first assertion in part (ii) for n up to 2× 108.
Amarnath Murthy [Mu] conjectured that any integer n > 3 can be written as
x+ y (x, y ∈ Z+) with xy − 1 prime. Concerning part (ii) for m = 2, 3, 4, 5, it
suffices to require n > 696, n > 1037, n > 4682 and n > 2779 respectively.

Conjecture 4.6 (2012-11-27). For any positive integer m, each sufficiently
large integer n with (m− 1)n even can be written as x+ y with x, y ∈ Z+ such
that xy+mn and xy−mn are both prime. In particular, for any integer n > 6
with n 6= 24 there are x, y ∈ Z+ with x+y = n such that xy+n = (x+1)(y+1)−1
and xy − n = (x − 1)(y − 1) − 1 are both prime; for any even integer n > 10
there are x, y ∈ Z+ with x+ y = n such that xy + 2n = (x+ 2)(y + 2)− 4 and
xy − 2n = (x− 2)(y − 2)− 4 are both prime.

Remark 4.6. We also guess that any integer n > 507 can be written as x + y
(x, y ∈ Z+) with xy ± 3n both prime.
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Conjecture 4.7. (i) (2012-11-03 and 2012-11-04) Any integer n > 1 different
from 8 can be written as x + y, where x and y are positive integers with x2 +
xy+ y2 prime. Also, any integer n > 1 can be written as x+ y, where x and y
are positive integers with x2 + 3xy + y2 prime.

(ii) (2012-11-27) Any n ∈ Z+ not among 1, 8, 10, 18, 20, 41, 46, 58, 78, 116, 440
can be written as x + y with x, y ∈ Z+ such that n2 − xy = x2 + xy + y2 and
n2 + xy = x2 + 3xy + y2 are both prime.

(iii) (2012-11-27) For any a = 4, 5, 6, . . . and positive odd integer m, each
sufficiently large integer n can be written as x + y with x, y ∈ Z+ such that
mna−xy and mna+xy are both prime. In particular, for any integer n > 4687
there are x, y ∈ Z+ such that n4 + xy and n4 − xy are both prime.

Remark 4.7. It is known (cf. [IR] and [Cox]) that any prime p ≡ 1 (mod 3)
can be written uniquely in the form x2 + xy + y2 with x, y ∈ Z+, and any
prime p ≡ ±1 (mod 5) can be written uniquely in the form x2 + 3xy+ y2 with
x, y ∈ Z+. Ming-Zhi Zhang (cf. [G, p. 161]) asked whether any odd integer
greater than one can be written as x+ y with x, y ∈ Z+ and x2 + y2 prime.

Conjecture 4.8. (i) (2012-11-28) Any positive integer n 6= 1, 6, 16, 24 can be
written as x + y (x, y ∈ Z+) with (xy)2 + 1 prime. In general, for any a ∈ N,
each sufficiently large integer n can be written as x + y, where x and y are
positive integers with (xy)2

a

+ 1 prime.
(ii) (2012-11-29) Any integer n > 1 can be written as x + y (x, y ∈ Z+)

with (xy)2 + xy + 1 prime. In general, for any prime p, each sufficiently large
integer n can be written as x + y, where x and y are positive integers with
((xy)p − 1)/(xy − 1) prime.

Remark 4.8. We also guess that any integer n > 1157 can be written as x +
y (x, y ∈ Z+) with (xy)2+xy+1 and (xy)2+xy−1 both prime. Concerning the
general assertion in part (i), for a = 2, 3, 4 it suffices to require that n is greater
than 22, 386, 748 respectively. Concerning the general assertion in part (ii),
for p = 5, 7, 11, 13 it suffices to require that n is greater than 28, 46, 178, 108
respectively.

Conjecture 4.9 (2012-12-06). (i) Any integer n > 15000 with n 6= 33142, 37723,
55762 can be written as p+ q, where q is a positive integer, and p, p±6, 2pq+1
are all prime. In general, for any d1, d2 ∈ Z divisible by 6 all sufficiently
large integers n can be written as p + q, where q is a positive integer, and
p, p+ d1, p+ d2, 2pq + 1 are all prime.

(ii) Any integer n > 73179 can be written as p + q, where q is a positive
integer, and p, 6p± 1, 2pq + 1 are all prime.

(iii) Any integer n > 90983 can be written as p + q, where q is a positive
integer, and p, 2p± 3, 2pq + 1 are all prime.

(iv) Any integer n > 92618 can be written as p + q, where q is a positive
integer, and p, 3p± 2, 2pq + 1 are all prime.
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Remark 4.9. Note that if p and p ± 6 are all prime then p − 6, p, p+ 6 form a
three-term AP (arithmetic progression) of primes. In 1939 van der Corput [Co]
proved that there are infinitely many three-term AP of primes. It is interesting
to compare Conj. 4.9 with Conj. 3.5.

Conjecture 4.10 (2012-12-01). (i) Any integer n > 10 can be written as p+ q
(q ∈ Z+) with p, p + 6 and p2 + 3pq + q2 = n2 + pq all prime. Also, any
integer n > 2 with n 6= 8, 37 can be written as p + q (q ∈ Z+) with p and
p2 + pq + q2 = n2 − pq both prime. Moreover, any integer n > 600 different
from 772, 1177, 1621, 2162 can be written as p+ q (q ∈ Z+) with p and n2 ± pq
all prime.

(ii) Any integer n > 2572 with n 6= 6892 can be written as p + q (q ∈ Z+

with p and pq ± n all prime.
(iii) Any integer n 6= 1, 2, 13, 16, 46, 95, 157 can be written as p+q (q ∈ Z+

with p and (pq)2 + pq + 1 all prime. Also, if n > 2 is an integer with n 6= 64
and 5 ∤ n, then we may write n as p + q (q ∈ Z+) with p and (2pq)2 + 1 both
prime.

(iv) Any integer n not among 1, 2, 5, 10, 34, 68 can be written as p+ q (q ∈
Z+ with p and (2pq)4 + 1 both prime.

Remark 4.10. There are some other variants of some statements in Conj. 4.10.

Conjecture 4.11 (2012-12-09). (i) Any integer n > 2 can be written as x2 +
y (x, y ∈ Z+) with 2xy − 1 prime. In other words, for each n = 3, 4, . . . there
is a prime in the form 2k(n− k2)− 1 with k ∈ Z+.

(ii) Let m ∈ Z+ and r ∈ {±1}. Then any sufficiently large integer n can be
written as x2 + y (x, y ∈ Z+) with mxy + r prime.

Remark 4.11. We have verified part (i) for n up to 3 × 109. When n =
1691955723, the number 411 is the only positive integer k with 2k(n− k2)− 1
prime, and 411/ log2 n ≈ 0.910246. The author ever thought that one may re-
quire x < log2 n in part (i), but Jack Brennen found that n = 4630581798
is a counterexample, and the least k ∈ Z+ with 2k(n − k2) − 1 prime is
500 ≈ 1.00943 log2 n.

Conjecture 4.12 (2012-12-15). (i) Each integer n > 3 can be written as x+
y (x, y ∈ Z+) with 3x ± 1 and xy − 1 all prime. Also, any integer n > 2 can
be written as x + y (x, y ∈ Z+) with 3x ± 1 and 3xy − 1 all prime, and any
integer n > 2 not equal to 63 can be written as x + y (x, y ∈ Z+) with 2x ± 1
and 2xy + 1 all prime.

(ii) Each integer n > 7 can be written as x + y (x, y ∈ Z+) with 3x ± 2
and 2xy + 1 all prime. Also, any integer n > 7 with n 6= 17 can be written as
x+ y (x, y ∈ Z+) with 2x± 3 and 2xy + 1 all prime.

(iii) Each integer n > 2 with n 6= 28 can be written as x+y (x, y ∈ Z+) with
2x + 1, 2y − 1 and 2xy + 1 all prime. Also, any integer n > 2 with n 6= 9, 96
can be written as x+ y (x, y ∈ Z+) with 2x+ 1, 2y − 1 and 2xy − 1 all prime.
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Remark 4.12. We have verified the first assertion in part (i) for n up to 109,
and all the remaining statements in Conj. 4.12 for n up to 108. Note that part
(iii) implies the Goldbach conjecture since 2(x+ y) = (2x+ 1) + (2y − 1). By
the argument in Remark 4.4(b), parts (i)-(ii) of Conj. 4.12 imply that there
are infinitely many twin primes, cousin primes and sexy primes.

Conjecture 4.13 (2012-12-16). (i) Each odd integer n > 1 can be written as
x + y (x, y ∈ Z+) with 3x ± 1 and x2 + y2 all prime. Also, any odd integer
n > 3 can be written as x+ y (x, y ∈ Z+) with 3x± 2 and x2 + y2 all prime.

(ii) Each odd integer n > 10 can be written as x + y (x, y ∈ Z+) with
x ± 3 and x2 + y2 all prime. Also, any odd integer n > 3 can be written as
x+y (x, y ∈ Z+) with 2x±3 and x2+y2 all prime, and any odd integer n > 13
not among 47, 209, 239, 253 can be written as x+ y (x, y ∈ Z+) with x, x± 6
and x2 + y2 all prime.

(iii) Any even integer n > 2 can be written as p+ q (q ∈ Z+) with p, 2p+ 1
and (p− 1)2 + q2 prime.

(iv) Each integer n > 2 can be written as x + y (x, y ∈ Z+) with 2xy + 1
and x2 + y2 − 3{n− 1}2 both prime. Also, any integer n > 2 can be written as
x+ y (x, y ∈ Z+ and x < n/2) with x2 + y2 − 3{n− 1}2 prime and

(

x

n+ 3{n− 1}2

)

= 1.

Remark 4.13. We have verified all the assertions in Conj. 4.13 for n up to 108.
Concerning part (iv) we remark that (x + y)2 + 1 = x2 + y2 + (2xy + 1) =
x2 + y2 + 2(xy − 1) + 3.

Conjecture 4.14 (2012-12-14). (i) Every n ∈ Z+ can be written as x +
y (x, y ∈ N) with x3 + 2y3 prime. In general, for each positive odd integer m,
any sufficiently large integer can be written as x+ y (x, y ∈ N) with xm + 2ym

prime.
(ii) Any even integer n > 1194 can be written as x + y (x, y ∈ Z+) with

x3 + 2y3 and 2x3 + y3 both all prime. Also, any integer n > 25537 can be
written as p+ q (q ∈ Z+) with p, p± 6 and p3 + 2q3 all prime.

(iii) Each integer n > 527 can be written as x + y (x, y ∈ Z+) with 2x +
1, 2y− 1 and x3 +2y3 all prime. Also, any integer n > 1544 can be written as
x+ y (x, y ∈ Z+) with 2x− 1, 2y + 1 and x3 + 2y3 all prime.

(iv) Any integer n > 392 can be written as x+y (x, y ∈ Z+) with 3x+2, 3x+4
and x3+2y3 all prime, and any integer n > 1737 can be written as x+y (x, y ∈
Z+) with 6x+ 1, 6x+ 5 and x3 + 2y3 all prime.

(v) Any odd integer n > 2060 can be written as 2p + q with p, q and p3 +
2((q−1)/2)3 all prime. Also, any positive integer not among 1, 49, 53, 567 can
be written as x+ y (x, y ∈ Z+) with 2xy + 1 and x3 + 2y3 both prime.

Remark 4.14. In 2001 D. R. Heath-Brown [HB] proved that there are infinitely
many primes in the form x3 + 2y3 with x, y ∈ Z+. We have verified the first
the assertion in part (i) of Conj. 4.14 for n up to 109.
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Conjecture 4.15 (2012-12-14). (i) Each odd integer n > 1 can be written as
x+ y (x, y ∈ Z+) with x4 + y2 prime. Moreover, any odd integer n > 1621 can
be written as x+ y (x, y ∈ Z+) with x4 + y2 and x2 + y4 both prime.

(ii) Each odd integer n > 15050 can be written as p + 2q with p, q and
p4 + (2q)2 all prime. Also, any odd integer n > 16260 can be written as p+ 2q
with p, q and p2 + (2q)4 all prime.

(iii) Any integer n > 3662 can be written as x+y (x, y ∈ Z+) with 3(xy)3±1
both prime, and each integer n > 7425 can be written as x+ y (x, y ∈ Z+) with
2(xy)4± 1 both prime. Also, any integer n > 22 can be written as x+ y (x, y ∈
Z+) with (xy)4 + 1 prime.

Remark 4.15. Recall that there are infinitely many primes in the form x4 + y2

by [FI].

Conjecture 4.16 (2012-12-16). (i) Any odd integer n > 5 can be written as
p+ q (q ∈ Z+) with p, p+6 and p2+3q2 all prime, and any odd integer n > 35
can be written as p + q (q ∈ Z+) with p, p + 2 and p2 + 3q2 all prime. Also,
any integer n > 1 not among 8, 22, 78 can be written as x+ y (x, y ∈ Z+) with
3xy − 1 and x2 + 3y2 + {n− 1}2 both prime.

(ii) Any odd integer n > 1 with n 6= 47 can be written as x+ y (x, y ∈ Z+)
with 6x± 1 and x4 + 3y4 all prime.

(iii) Any odd integer n > 1 other than 13 and 21 can be written as p+q (p, q ∈
Z+) with p and p6 + 3q6 both prime.

Remark 4.16. We omit some other less elegant conjectures of the same nature.

Conjecture 4.17 (2012-12-16). Let m be a positive integer. Then any suffi-
ciently large odd integer n can be written as x + y (x, y ∈ Z+) with xm + 3ym

prime (and hence there are infinitely many primes of the form xm +3ym), and
any sufficiently large even integer n can be written as x + y (x, y ∈ Z+) with
xm + 3ym + 1 prime (and hence there are infinitely many primes of the form
xm + 3ym + 1). In particular, when m ∈ {1, 2, 3, 6} every positive integer can
be written as x+ y (x, y ∈ N) with xm +3ym+ {n− 1}2 prime; for m = 4, 5, 18
each positive odd integer can be written as x + y (x, y ∈ N) with xm + 3ym

prime.

Remark 4.17. We have verified the conjecture in the case m = 18 for all positive
odd integers not exceeding 2 × 106, and the reader may consult [S, A220572]
for the behavior of the number of ways to write 2n− 1 = x+ y (x, y ∈ N) with
x18+3y18 prime. Conj. 4.17 can be strengthened in various ways, for example,
any sufficiently large odd integer n can be written as p + q (p, q ∈ Z+) with
p, p ± 6 and pm + 3qm all prime, and n > 9 suffices in the case m = 1. Also,
any sufficiently large integer n can be written as x+y (x, y ∈ Z+) with 3xy−1
and xm + 2ym + {n − 1}2 both prime; in particular, for m = 1, 2, 3, 4 any odd
integer n > 1 can be written as x+ y (x, y ∈ Z+) with 3xy − 1 and xm + 3ym

both prime.
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For each m = 1, 2, 3, . . . , let f(m) be the smallest positive odd integer s such
that any odd integer n > s can be written as x+ y (x, y ∈ N) with xm + 3ym

prime, and define f(m) = 0 if such an s does not exist. Our computation lead
us to guess the following 20 initial values of f(m):

f(1) = f(2) = f(3) = f(4) = f(5) = f(6) = 1, f(7) = 33, f(8) = 11,

f(9) = 25, f(10) = 31, f(11) = 49, f(12) = 37, f(13) = 73, f(14) = 147,

f(15) = f(16) = 49, f(17) = 153, f(18) = 1, f(19) = 239, f(20) = 85.

Conjecture 4.18 (2012-12-18). (i) Any integer n > 210 can be written as
x+ y (x, y ∈ Z+) with p = 3xy − 1 and 2p− 1 = 6xy − 1 both prime.

(ii) Any odd integer n > 1 with n 6= 43 can be written as x+ y (x, y ∈ Z+)
with 2xy + 1 and x2 + y both prime.

(iii) For each positive integer m, any sufficiently large integer n can be written
as x+y (x, y ∈ Z+) with (xy)m+3 prime. In particular, for m = 1, 2, 3, 4, 5, 6 it
suffices to require that n is greater than 2, 176, 466, 788, 1058, 440 respectively.

Remark 4.18. We have verified part (i) for n up to 2.7× 107.

Conjecture 4.19 (2012-12-18). (i) For each positive integer n, there is an
integer k ∈ {0, . . . , n} such that n + k and n + k2 are both prime. Moreover,
for any integer n > 971, there is a positive integer k <

√
n logn such that n+k

and n + k2 are both prime. Also, for any integer n > 43181 there is a positive
integer k 6

√
n such that n+ k2 is prime.

(ii) If a positive integer n is not among

1, 16, 76, 166, 316, 341, 361, 411, 481, 556, 656, 766, 866, 1456,

then n± k and n+ k2 are all prime for some k = 0, . . . , n− 1, i.e., there is a
prime p 6 n such that 2n− p and n+ (n− p)2 are both prime.

(iii) For any odd integer n > 1, there is an integer 0 6 k < n such that n+k
and k2+(n−k)2 are both prime. For any odd integer n > 5, there is an integer
0 6 k < n such that n + k2 and k2 + (n − k)2 are both prime. Also, for any
integer n > 146 there is an integer 0 6 k < n such that n+ k2 and k + n2 are
both prime.

(iv) For any integer n > 1 there is an integer 0 6 k < n such that n+ k and
2k(n− k) + 1 are both prime. Also, for any integer n > 182 there is an integer
0 6 k < n such that n+ k2 and 2k(n− k) + 1 are both prime.

Remark 4.19. We have verified this conjecture for n up to 109. Note that
Bertrand’s postulate proved by Chebyshev in 1850 states that for any n ∈ Z+

there is a prime in the interval [n, 2n]. For a(n) = |{0 6 k < n : n+ k and n+
k2 are both prime}|, the reader may consult [S, A185636]. Clearly Part (ii) of
Conj. 4.19 is stronger than the Goldbach conjecture. We also conjecture that
for each n ∈ Z+ there is an integer k ∈ {0, . . . , n − 1} with n + k3 practical,
moreover we may require k 6

√
n logn whenever n 6= 74, 138, 166, 542.
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Conjecture 4.20 (2012-12-18). For each m = 3, 4, 5, . . . , if n ∈ Z+ is suf-
ficiently large, then n + pm(k) is prime for some k = 0, . . . , n − 1, where
pm(k) = (m − 2)k(k − 1)/2 + k is an m-gonal number. In particular, for
m = 3, . . . , 20 it suffices to require that n is greater than

1, 1, 1, 1, 14, 1, 1, 38, 1, 1, 1, 1, 9, 20, 1, 33, 14, 1

respectively.

Remark 4.20. Note that squares are just 4-gonal numbers.

Conjecture 4.21 (2012-12-20). (i) For every positive integer n there exists
k ∈ {1, . . . , n} such that n + k and kn + 1 are both prime. For any integer
n > 101 there is an integer 0 < k < n such that kn − 1 is a Sophie Germain
prime.

(ii) For any integer n > 3, there exists k ∈ {1, . . . , n} such that p = kn + 1
is a prime with (np ) = 1, also k(n− k)− 1 and kn+ 1 are both prime for some

k = 1, . . . , n.
(iii) For any integer n > 1 there exists k ∈ {1, . . . , n} such that 3k ± 1 and

kn+ 1 are both prime.
(iv) For any odd integer n > 1 there exists k ∈ {1, . . . , n} such that kn + 1

and k2 + (n− k)2 are both prime.
(v) For a given positive odd integer m and sufficiently large integer n, there

is an integer k ∈ {1, . . . , n} such that k ± m and kn + 1 are all prime. In
particular, for any integer n > 8 with n 6= 34, there exists k ∈ {1, . . . , n} such
that k ± 3 and kn + 1 are all prime; also, for any integer n > 3 not among
5, 8, 14, 53, 82, there exists k ∈ {1, . . . , n} such that k ± 1 and kn + 1 are all
prime.

Remark 4.21. In 2001 A. Murthy [Mu] conjectured that for any integer n > 1
there is 0 6 k < n with kn+ 1 prime.

Conjecture 4.22 (2013-01-07). (i) For integer n > 17261, there is an integer
0 < k <

√
n logn such that both kn−1 and kn+1 are prime. Consequently, for

each n = 128, 129, . . . there is a positive integer k < n with kn− 1 and kn + 1
both prime.

(ii) For any integer n > 1 there is an integer k ∈ {0, . . . , n − 1} such that
2k + 3, n(n− k)− 1 and n(n+ k)− 1 are all prime.

Remark 4.22. We have verified Conj. 4.22 for n up to 3× 107.

Conjecture 4.23 (2013-01-14). (i) Every n ∈ Z+ can be represented as the
sum of a practical number and a triangular number. Also, for each n ∈ Z+

there is a practical number m ∈ [n, 2n) with m− n a triangular number.
(ii) Each odd number n > 1 can be written as the sum of a Sophie Germain

prime and a triangular number.
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(iii) Any odd number n > 1 can be written as p + q, where p is prime, q is
practical, and p4 + q4 is prime. We may also replace p4 + q4 by p2 + q2.

Remark 4.23. We have verified the first assertion and the second assertion in
part (i) for n up to 108 and 4.2×106 respectively. Parts (ii) and (iii) have been
verified for n below 108.

Conjecture 4.24 (2013-01-28). (i) Any even number greater than 4 can be
written as x+ y (x, y > 0), where {x− 1, x, x+ 1} is a sandwich of the second
kind, and x3+ y3 is practical. In general, for each m = 2, 3, . . . , all sufficiently
large even numbers can be written in the form x + y (x, y > 0), where {x −
1, x, x+ 1} is a sandwich of the second kind, and xm + ym is practical.

(ii) Any positive even integer can be written as p + q, where p and q are
practical numbers with p6 + q6 also practical.

Remark 4.24. It seems that for any m,n ∈ Z+ with m > 1 or n > 337, we may
write 2n = p+ q with p, q, p3m + q3m all practical.

Conjecture 4.25 (2013-01-12). (i) Any integer n > 8 can be written as p+ q,
where p is prime or practical, and q, q ± 4 are all practical. Also, each integer
n > 5 can be written as p+q, where p and p+6 are both prime or both practical,
and q is practical.

(ii) Any integer n > 10 can be written as x+ y with 6x± 1 both prime, and
y and y + 6 both practical.

(iii) Let n > 1 be an integer. Then n can be written as x2 + y (x, y ∈ Z+)
with 2x and 2xy both practical. Also, we may write n = x3+y (x, y ∈ Z+) with
2x and 4xy both practical.

Remark 4.25. Note that if x is practical and y ∈ {1, . . . , x} then xy is also
practical.

Conjecture 4.26 (2013-01-23). (i) Each n = 4, 5, . . . can be written as p+ q,
where p is a prime with p− 1 and p+1 both practical, and q is either prime or
practical.

(ii) Any odd number n > 7 not among 223, 875, 899, 923 can be written as
2p+ q with p and q both prime, and p− 1 and p+ 1 both practical.

(iii) Any odd number n > 5 not equal to 55 can be written as p+ q, where p
and p+ 2 are twin primes, and p+ 1 and q are both practical.

Remark 4.26. (a) We have verified part (i) for n up to 108. For numbers of the
described representations in part (i), see [S, A210480]. It follows from part (i)
that any integer n > 3 can be written as p + q with p prime or practical, and
q and q + 2 both practical. We also conjecture that any integer n > 4 can be
represented by p+ q/2, where p and q are practical numbers smaller than n (cf.
[S, A214841]).
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(b) As there is an interval of any given length containing no primes (or prac-
tical numbers), part (i) or (ii) implies that there are infinitely many sandwiches
of the first kind. Similarly, part (iii) implies that there are infinitely many
sandwiches of the second kind.

Conjecture 4.27 (2013-01-29). Let

S = {prime p : p− 1 and p+ 1 are both practical}
and

T = {practical number q : q − 1 and q + 1 are both prime}.
(i) Any integer n > 11 can be written as (1 + {n}2)p + q + r with p, q ∈ S

and r ∈ T .
(ii) Each integer n > 6 can be written as p+ q+ r with p, q ∈ S and 6r ∈ T .

Also, every n = 3, 4, . . . can be represented as x + y + z with 6x, 6y, 6z ∈ T ,
and any even number greater than 10 is a sum of four elements of S.

(iii) Any integer n > 7 is the sum of an element of S, an element of T and
a square. Also, each n = 3, 4, . . . can be written as the sum of an element of S
and two triangular numbers.

Remark 4.27. Clearly part (i) is much stronger than Goldbach’s weak conjecture
for odd numbers. We have verified part (i) for n up to 107. For numbers of
representations related to part (i), see [S, A210681]. Our calculation suggests
that

∑

p∈S 1/p ≈ 0.994 and that the number of elements of S not exceeding x

is asymptotically equivalent to cx/ log3 x, where c is a constant in the interval
(5.86, 5.87).

Conjecture 4.28 (2013-01-30). (i) Each integer n > 5 can be written as the
sum of a prime p with p− 1 and p+1 both practical, a prime q with q+ 2 also
prime, and a Fibonacci number.

(ii) Any integer n > 10 can be written as (1 + {n}2)p+ q + 2k, where p is a
prime with p− 1 and p+ 1 both practical, {q, q + 2} is a twin prime pair, and
k is a positive integer.

Remark 4.28. We have verified part (i) for n up to 2× 106.

Conjecture 4.29 (2013-01-30). Let a 6 b 6 c be positive integers and let S be
the set of those primes p with p− 1 and p+ 1 both practical. Then all integers
n > 3(a+ b+ c) with n ≡ a+ b+ c (mod 2) can be written as ap+ bq+ cr with
p, q, r ∈ S, if and only if (a, b, c) is among the following six triples:

(1, 2, 3), (1, 2, 4), (1, 2, 8), (1, 2, 9), (1, 3, 5), (1, 3, 8).

In particular, any even number greater than 16 can be written as p + 2q + 3r
with p, q, r ∈ S.

Remark 4.29. Besides the six triples listed in Conj. 4.29, there are also several
triples (a, b, c) such that all sufficiently large integers n ≡ a+ b+ c (mod 2) can
be expressed as ap + bq + cr with p, q, r ∈ S. For example, any even number
greater than 48 can be written as p+ 4q + 9r with p, q, r ∈ S.
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Conjecture 4.30 (2013-01-30). Any odd number n > 8 with n 6≡ ±1 (mod 12)
and n 6= 201, 447 can be written as the sum of three elements of the set S defined
in Conj. 4.27 or 4.29.

Remark 4.30. No element of S can be congruent to 1 or −1 modulo 12. In
fact, if p > 3 and p ≡ 1 (mod 12), then neither 3 nor 4 divides p + 1, hence
p+1 is not practical since 4 cannot be a sum of some distinct divisors of p+1.
Similarly, if p ≡ −1 (mod 12) then p− 1 is not practical.

5. Conjectures involving alternating sums of consecutive primes

For each positive integer n, let pn denote the nth prime. In [S13b] the
author conjectured that for any positive integer m there are consecutive primes
pk, . . . , pn (k < n) not exceeding 2m + 2.2

√
m such that m = pn − pn−1 +

· · ·+ (−1)n−kpk. Here we give a variant of this conjecture involving practical
numbers.

Conjecture 5.1 (2012-02-25). (i) Any integer m can be written in the form
pn − pn−1 + · · ·+ (−1)n−kpk with k < n and pn 6 3m, and pn + 1 and pk − 1
both practical.

(ii) For each m ∈ Z+, let f(m) be the least prime pn with pn + 1 practical
such that m = pn−pn−1+ · · ·+(−1)n−kpk for some k < n with pk−1 practical.
Then

lim
n→∞

f(2n− 1)

2n− 1
= 1 and lim

n→∞

f(2n)

2n
= 2.

Remark 5.1. The reader may consult [S, A222579 and A222580] for related data
and sequences. Here we give a concrete example:

806 = p358 − p357 + · · ·+ p150 − p149

with f(806) = p358 = 2411 < 3× 806, and p358 + 1 = 2412 and p149 − 1 = 858
both practical.

In this section we set sn = pn − pn−1 + · · ·+ (−1)n−kpk for n = 1, 2, 3, . . . .

Conjecture 5.2 (2013-02-27). For any m ∈ Z+ and r ∈ Z, there are infinitely
many positive integers n such that sn ≡ r (mod m).

Remark 5.2. This is an analogy of Dirichlet’s theorem on primes in arithmetic
progressions.

Conjecture 5.3 (2013-02-27). Every n = 3, 4, . . . can be written as p+sk (k >
0), where p is a Sophie Germain prime.

Remark 5.3. Let r(n) be the number of ways to write n in the form p+sk (k > 0)
with p a Sophie Germain prime. The sequence r(n) (n = 1, 2, 3, . . . ) is available
from [S, A213202]. We have verified Conj. 5.3 for n up to 3.35× 107.
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Conjecture 5.4. (i) (2013-03-01) Any integer n > 8 can be written as q +
sk (k > 0), where q is a practical number with q − 4 and q + 4 also practical.

(ii) (2013-02-27) Any integer n > 3 different from 65 and 365 can be written
as p+ sk (k > 0), where p is a prime with p− 1 and p+ 1 both practical.

Remark 5.4. We have verified Conj. 5.4(i) for n up to 5× 106.

Conjecture 5.5. (2013-02-27) Any integer n > 1 can be written as j(j+1)/2+
sk, where j and k are positive integers.

Remark 5.5. We have verified this for n up to 6× 106.

Conjecture 5.6. (2013-03-05) For each λ = 1, 2, 3, any integer n > λ can be
written as sk + λsl with k, l ∈ Z+.

Remark 5.6. We also have some similar conjectures, for example, any integer
n > 12 can be written as sk + 6sl with k, l ∈ Z+.

Conjecture 5.7. (i) (2013-02-27) Each n = 6, 7, . . . can be written as p +
sk (k > 0), where p is a prime with p+ 6 also prime.

(ii) (2013-03-01) Any integer n > 2 can be written as q + sk (k > 0) with
3q − 1 and 3q + 1 both prime. Also, each integer n > 3 can be written as
q + sk (k > 0) with 3q − 2 and 3q + 2 both prime.

6. Some other conjectures involving quadratic forms

Conjecture 6.1. Let d ∈ Z+ and d 6≡ 2 (mod 6).
(i) (2011-11-05) If d is odd, then there is a prime p(d) such that for any

prime p > p(d) there is a prime q < p with p2 + dpq + q2 prime.
(ii) (2011-11-07) If d is even, then there is a prime p(d) such that for any

prime p > p(d) there is a prime q < p with p2 + dq2 prime.
(iii) We may take

p(1) = 5, p(3) = 2, p(4) = 3, p(5) = 61, p(6) = p(7) = 3, p(9) = 13,

p(10) = 5, p(11) = 7, p(12) = p(13) = 3, p(15) = 163, p(16) = 2,

p(17) = 13, p(18) = 3, p(19) = 5, p(21) = 2, p(22) = 11, p(23) = 2,

p(24) = 17, p(25) = 89, p(27) = 3, p(28) = 7, p(29) = 53, p(30) = 7.

Remark 6.1. Actually the least prime q < p having the described property in
Conj. 6.1 is rather small compared with p.

It is well known that any prime p ≡ 1 (mod 4) can be written uniquely in
the form a2p+ b2p with ap, bp ∈ Z+ and ap > bp. (This was found by Fermat and
proved by Euler.) During Oct. 3-4, 2012, Tomasz Ordowski [O] conjectured
that

lim
N→∞

∑

p6N, p≡1 (mod 4) ap
∑

p6N, p≡1 (mod 4) bp
= 1 +

√
2
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and

lim
N→∞

∑

p6N, p≡1 (mod 4) a
2
p

∑

p6N, p≡1 (mod 4) b
2
p

=
9

2
.

The following two conjectures have the same nature.

Conjecture 6.2 (2012-11-03). For any prime p ≡ 1 (mod 3) write p = x2
p +

xpyp + y2p with xp, yp ∈ Z+ and xp > yp. Then

lim
N→∞

∑

p6N, p≡1 (mod 3) xp
∑

p6N, p≡1 (mod 3) yp
= 1 +

√
3

and

lim
N→∞

∑

p6N, p≡1 (mod 3) x
2
p

∑

p6N, p≡1 (mod 3) y
2
p

=
52

9
.

Remark 6.2. It seems that

lim
N→∞

∑

p6N, p≡1 (mod 3) x
3
p

∑

p6N, p≡1 (mod 3) y
3
p

≈ 11.15 and lim
N→∞

∑

p6N, p≡1 (mod 3) x
3
p

∑

p6N, p≡1 (mod 3) y
3
p

≈ 20.6.

Conjecture 6.3 (2012-11-04). For any prime p ≡ ±1 (mod 5) write p =
u2
p + 3upvp + v2p with up, vp ∈ Z+ and up > vp. Then

lim
N→∞

∑

p6N, p≡±1 (mod 5) up
∑

p6N, p≡±1 (mod 5) vp
= 1 +

√
5.

Remark 6.3. It seems that

lim
N→∞

∑

p6N, p≡±1 (mod 5) u
2
p

∑

p6N, p≡±1 (mod 5) v
2
p

≈ 8.185.

Recall that the Fibonacci numbers F0, F1, F2, . . . and the Lucas numbers
L0, L1, L2, . . . are given by

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . . )

and

L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 (n = 1, 2, 3, . . . )

respectively.
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Conjecture 6.4 (2012-11-03). Let p 6= 2, 5 be a prime. If (−1
p ) = ( 5p ) = 1

(i.e., p ≡ 1, 9 (mod 20)) and p = x2 + 5y2 with x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)3

64k
F6k ≡0 (mod p3),

p−1
∑

k=0

(

2k
k

)3

64k
L6k ≡(−1)y(8x2 − 4p) (mod p2),

p−1
∑

k=0

k
(

2k
k

)3

64k
F6k ≡ (−1)y

10
(3p− 4x2) (mod p2).

If (−5
p ) = −1 (i.e., p ≡ 11, 13, 17, 19 (mod 20)), then

p−1
∑

k=0

(

2k
k

)3

64k
F6k ≡

p−1
∑

k=0

(

2k
k

)3

64k
L6k ≡ 0 (mod p2), and

p−1
∑

k=0

k
(

2k
k

)3

64k
F6k ≡ 0 (mod p).

Conjecture 6.5 (2012-11-03). Let p 6= 2, 5 be a prime. If (−2
p ) = ( 5p ) = 1

(i.e., p ≡ 1, 9, 11, 19 (mod 40)) and p = x2 + 10y2 with x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)3

(−64)k
L12k ≡

(−1

p

)

(8x2 − 4p) (mod p2);

if p ≡ 1, 9 (mod 40) then

p−1
∑

k=0

(

2k
k

)3

(−64)k
F12k ≡ 0 (mod p3).

If (−2
p ) = ( 5p ) = −1 (i.e., p ≡ 7, 13, 23, 37 (mod 40)) and p = 2x2 + 5y2 with

x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)3

(−64)k
F12k ≡ 16

(−1

p

)

(4x2 − p) (mod p2)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
L12k ≡ 36

(−1

p

)

(p− 4x2) (mod p2).

If (−10
p

) = −1, then

p−1
∑

k=0

(

2k
k

)3

(−64)k
F12k ≡

p−1
∑

k=0

(

2k
k

)3

(−64)k
L12k ≡ 0 (mod p2).
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Conjecture 6.6 (2012-11-03). Let p 6= 2, 5 be a prime. Then

p−1
∑

k=0

(

2k
k

)3

64k
F24k ≡











0 (mod p3) if p ≡ 1, 9 (mod 20),

0 (mod p2) if p ≡ 3, 7, 11, 19 (mod 20),

288(p− 2x2) (mod p2) if p = x2 + 4y2 ≡ 13, 17 (mod 20),

and

p−1
∑

k=0

k
(

2k
k

)3

64k
F24k ≡











(−1)y(3p− 4x2)/6 (mod p2) if p = x2 + 25y2 ≡ 1, 9 (mod 20),

110x2/3 (mod p) if p = x2 + 4y2 & ( p5 ) = −1,

0 (mod p) if p ≡ 3 (mod 4).

Also,

p−1
∑

k=0

(

2k
k

)3

64k
L24k ≡

{

(81− 80( p5 ))(8x
2 − 4p) (mod p2) if p = x2 + 4y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4),

and

p−1
∑

k=0

k
(

2k
k

)3

64k
L24k ≡











(−1)y(3p− 4x2)/2 (mod p2) if p = x2 + 25y2 ≡ 1, 9 (mod 20),

−82x2 (mod p) if p = x2 + 4y2 & ( p
5
) = −1,

0 (mod p) if p > 3 & p ≡ 3 (mod 4).

The Pell sequence (Pn)n>0 and its companion (Qn)n>0 are given by

P0 = 0, P1 = 1, and Pn+1 = 2Pn + Pn−1 (n = 1, 2, 3, . . . )

and
Q0 = 2, Q1 = 2, and Qn+1 = 2Qn +Qn−1 (n = 1, 2, 3, . . . ).

Conjecture 6.7 (2012-11-02). Let p be an odd prime. When p ≡ 1, 3 (mod 8)
and p = x2 + 2y2 with x, y ∈ Z, we have

p−1
∑

k=0

(

2k
k

)3

(−8)k
Q3k ≡

(

2−
(−1

p

))

(8x2 − 4p) (mod p2),

p−1
∑

k=0

(

2k
k

)3

(−8)k
P3k ≡

{

0 (mod p3) if p ≡ 1 (mod 8),

4p− 8x2 (mod p2) if p ≡ 3 (mod 8),

14

p−1
∑

k=0

k
(

2k
k

)3

(−8)k
P3k ≡

{

3p− 4x2 (mod p2) if p ≡ 1 (mod 8),

20x2 + 21p (mod p2) if p ≡ 3 (mod 8).
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If p ≡ 1 (mod 8), then

p−1
∑

k=0

(7k + 2)

(

2k
k

)3

(−8)k
Q3k ≡ 4p (mod p3);

if p ≡ 3 (mod 8), then

p−1
∑

k=0

(21k + 4)

(

2k
k

)3

(−8)k
Q3k ≡ −132p (mod p3)

and
p−1
∑

k=0

(28k + 5)

(

2k
k

)3

(−8)k
P3k ≡ 62p (mod p3).

If p ≡ 5, 7 (mod 8), then

p−1
∑

k=0

(

2k
k

)3

(−8)k
P3k ≡

p−1
∑

k=0

(

2k
k

)3

(−8)k
Q3k ≡ 0 (mod p2),

14

p−1
∑

k=0

k
(

2k
k

)3

(−8)k
P3k ≡ −p

(

16 + 15

(−1

p

))

(mod p2),

and
p−1
∑

k=0

(21k + 4)

(

2k
k

)3

(−8)k
Q3k ≡ 12p

(

5 + 6

(−1

p

))

(mod p2).

Conjecture 6.8 (2013-03-12). Let p be an odd prime. If (−6
p
) = −1, then

p−1
∑

k=0

(

2k
k

)3

(−64)k
P4k ≡

p−1
∑

k=0

(

2k
k

)3

(−64)k
Q4k ≡ 0 (mod p2).

If p ≡ 1, 7 (mod 24) and p = x2 + 6y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

(−64)k
P4k ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
Q4k ≡ (−1)y(8x2 − 4p) (mod p2).

When p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2 (x, y ∈ Z), we have

p−1
∑

k=0

(

2k
k

)3

(−64)k
P4k ≡ 4

(−1

p

)

(p− 4x2) (mod p2)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
Q4k ≡ 12

(−1

p

)

(4x2 − p) (mod p2).
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Conjecture 6.9 (2013-03-11). Let p be an odd prime. If (−22
p ) = −1, then

p−1
∑

k=0

(

2k
k

)3

(−64)k
P12k ≡

p−1
∑

k=0

(

2k
k

)3

(−64)k
Q12k ≡ 0 (mod p2).

If ( 2
p
) = ( p

11
) = 1 and p = x2 + 22y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

(−64)k
P12k ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
Q12k ≡ (−1)y(8x2 − 4p) (mod p2).

When ( 2p ) = ( p
11) = −1 and p = 2x2 + 11y2 (x, y ∈ Z), we have

p−1
∑

k=0

(

2k
k

)3

(−64)k
P12k ≡ 140

(−1

p

)

(p− 4x2) (mod p2)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
Q12k ≡ 396

(−1

p

)

(4x2 − p) (mod p2).

Let A and B be integers. The Lucas sequence un = un(A,B) (n ∈ N) and
its companion vn = vn(A,B) (n ∈ N) are defined by

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 (n = 1, 2, 3, . . . );

v0 = 2, v1 = A, and vn+1 = Avn −Bvn−1 (n = 1, 2, 3, . . . ).

Conjecture 6.10 (2011-11-03). Let p be an odd prime. If (−13
p ) = −1, then

p−1
∑

k=0

(

2k
k

)3

64k
u6k(3,−1) ≡

p−1
∑

k=0

(

2k
k

)3

64k
v6k(3,−1) ≡ 0 (mod p2).

If (−1
p ) = ( p

13) = 1 and p = x2 + 13y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

64k
u6k(3,−1) ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)3

64k
v6k(3,−1) ≡ (−1)y(8x2 − 4p) (mod p2).
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Conjecture 6.11 (2012-11-03). Let p be an odd prime. If (−58
p ) = −1, then

p−1
∑

k=0

(

2k
k

)3

(−64)k
u12k(5,−1) ≡

p−1
∑

k=0

(

2k
k

)3

(−64)k
v12k(5,−1) ≡ 0 (mod p2).

If (−2
p ) = ( 29p ) = 1 and p = x2 + 58y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

(−64)k
u12k(5,−1) ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
v12k(5,−1) ≡

(−1

p

)

(8x2 − 4p) (mod p2).

If (−2
p
) = ( 29

p
) = −1 and p = 2x2 + 29y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

(−64)k
u12k(5,−1) ≡ 7280

(−1

p

)

(4x2 − p) (mod p2)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
v12k(5,−1) ≡ 39204

(−1

p

)

(p− 4x2) (mod p2).

Conjecture 6.12 (2012-11-03). Let p be an odd prime. If (−37
p ) = −1, then

p−1
∑

k=0

(

2k
k

)3

64k
u6k(12,−1) ≡

p−1
∑

k=0

(

2k
k

)3

64k
v6k(12,−1) ≡ 0 (mod p2).

If (−1
p ) = ( 37p ) = 1 and p = x2 + 37y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

64k
u6k(12,−1) ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)3

64k
v6k(12,−1) ≡ (−1)y(8x2 − 4p) (mod p2).
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Conjecture 6.13 (2013-03-12). Let p be an odd prime. If p ≡ 5, 7 (mod 8),
then

p−1
∑

k=0

(

2k
k

)3

(−64)k
u4k(10, 1) ≡

p−1
∑

k=0

(

2k
k

)3

(−64)k
v4k(10, 1) ≡ 0 (mod p2).

If p ≡ 1, 19 (mod 24) and p = x2 + 2y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

(−64)k
u4k(10, 1) ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
v4k(10, 1) ≡ (−1)y(8x2 − 4p) (mod p2).

If p ≡ 11, 17 (mod 24) and p = x2 + 2y2 (x, y ∈ Z), then

p−1
∑

k=0

(

2k
k

)3

(−64)k
u4k(10, 1) ≡ 20

(−1

p

)

(p− 2x2) (mod p2)

and
p−1
∑

k=0

(

2k
k

)3

(−64)k
v4k(10, 1) ≡ 196

(−1

p

)

(2x2 − p) (mod p2).

Remark 6.4. We also note that for any prime p ≡ ±1 (mod 12) we have the

congruence
∑p−1

k=0

(

2k
k

)3
u4k(4, 1)/(−64)k ≡ 0 (mod p).

Conjecture 6.14 (2013-03-12). Let p be an odd prime. Then

p−1
∑

k=0

(

2k
k

)3

(−212)k
u4k(5, 8) ≡ 0 (mod p2).

When ( p7 ) = 1 (i.e., p ≡ 1, 2, 4 (mod 7)), we even have

p−1
∑

k=0

(

2k
k

)3

(−212)k
u4k(5, 8) ≡ 0 (mod p3).

Also,

p−1
∑

k=0

(

2k
k

)3

(−4096)k
v4k(5, 8) ≡

{

8x2 − 4p (mod p2) if ( p7 ) = 1 & p = x2 + 7y2,

0 (mod p2) if ( p7 ) = −1.
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If ( p7 ) = −1 and p > 3, then

p−1
∑

k=0

k
(

2k
k

)3

(−4096)k
u4k(5, 8) ≡

p−1
∑

k=0

k
(

2k
k

)3

(−4096)k
v4k(5, 8) ≡ 0 (mod p).

If ( p7 ) = 1 and p = x2 + 7y2 (x, y ∈ Z), then

p−1
∑

k=0

k
(

2k
k

)3

(−4096)k
u4k(5, 8) ≡

3p− 4x2

42
(mod p2)

and
p−1
∑

k=0

k
(

2k
k

)3

(−4096)k
v4k(5, 8) ≡

3

2
p− 2x2 (mod p2).

Conjecture 6.15 (2013-03-13). Let p be an odd prime. If p > 3 and ( p
7
) = −1,

then

p−1
∑

k=0

(

2k

k

)3

(−1)ku3k(16, 1) ≡
p−1
∑

k=0

(

2k

k

)3

(−1)kv3k(16, 1) ≡ 0 (mod p2).

When ( p7 ) = 1 and p = x2 + 7y2 (x, y ∈ Z), we have

p−1
∑

k=0

(

2k

k

)3

(−1)ku3k(16, 1) ≡
{

0 (mod p3) if p ≡ 1 (mod 4),

(−1)y32(p− 2x2) (mod p2) if p ≡ 3 (mod 4),

and

p−1
∑

k=0

(

2k

k

)3

(−1)kv3k(16, 1) ≡
(

64

(−1

p

)

− 63

)

(8x2 − 4p) (mod p2).

If ( p
7
) = −1 and p 6= 3, 19, then

p−1
∑

k=0

k

(

2k

k

)3

(−1)ku3k(16, 1) ≡
p−1
∑

k=0

k

(

2k

k

)3

(−1)kv3k(16, 1) ≡ 0 (mod p).

If ( p7 ) = (−1
p ) = 1, then

p−1
∑

k=0

k

(

2k

k

)3

(−1)ku3k(16, 1) ≡
8(3p− 4x2)

399
(mod p2)



CONJECTURES INVOLVING PRIMES AND QUADRATIC FORMS 33

and
p−1
∑

k=0

k

(

2k

k

)3

(−1)kv3k(16, 1) ≡
32(3p− 4x2)

57
(mod p2).

If ( p7 ) = 1 and (−1
p ) = −1, then

p−1
∑

k=0

k

(

2k

k

)3

(−1)ku3k(16, 1) ≡ − 8

3591
(3492x2 + 4535p) (mod p2)

and
p−1
∑

k=0

k

(

2k

k

)3

(−1)kv3k(16, 1) ≡
32

171
(660x2 + 857p) (mod p2).

Conjecture 6.16 (2013-03-14). Let p be an odd prime. If p > 7 and p ≡
3 (mod 4), then

p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−72)k
uk(24,−3) ≡

p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−72)k
vk(24,−3) ≡ 0 (mod p2).

If p ≡ 1 (mod 12) and p = x2 + 9y2 with x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−72)k
uk(24,−3) ≡ 0 (mod p3)

and
p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−72)k
vk(24,−3) ≡ 8x2 − 4p (mod p2).

If p ≡ 5 (mod 12) and p = x2 + y2 with x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−72)k
uk(24,−3) ≡ 8

7

(xy

3

)

xy (mod p2)

and
p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−72)k
vk(24,−3) ≡ −32

(xy

3

)

xy (mod p2).

Remark 6.5. Conjectures 6.4-6.15 are similar to the author’s previous conjec-

tures on
∑p−1

k=0

(

2k
k

)3
/mk modulo p2 mentioned in [S12], and we can prove most

of them modulo p. We also have some other conjectures (involving
(

2k
k

)3
or

(

2k
k

)2(3k
k

)

or
(

2k
k

)2(4k
2k

)

or
(

2k
k

)(

3k
k

)(

6k
3k

)

) similar to Conj. 6.4-6.16.
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