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Abstract

The subgroup pattern of a finite group G is the table of marks of G together with

a list of representatives of the conjugacy classes of subgroups of G. In this article we

describe a collection of sequences realized by the subgroup pattern of the symmetric

group.

1 Introduction

The table of marks of a finite group G was introduced by Burnside [2]. It is a matrix
whose rows and columns are indexed by a list of representatives of the conjugacy classes of
subgroups of G, where, for two subgroups H,K ≤ G the (H,K) entry in the table of marks
of G is the number of fixed points of K in the transitive action of G on the cosets of H,
(βG/H(K)). If H1, . . . , Hr is a list of representatives of the conjugacy classes of subgroups of
G, the table of marks is then the (r× r)-matrix

M(G) = (βG/Hi
(Hj))i,j=1.,...,r.

In much the same fashion as the character table of G classifies matrix representations of G
up to isomorphism, the table of marks of G classifies permutation representations of G up
to equivalence. It also encodes a wealth of information about the subgroup lattice of G in
a compact way. The GAP [4] library of tables of marks Tomlib [11] provides ready access to
the tables of marks and conjugacy classes of subgroups of some 400 groups. These tables
have been produced using the methods described in [8] and [7]. The data exhibited in later
sections has been computed using this library. The purpose of this article is to illustrate
how interesting integer sequences related to the subgroup structure of the symmetric group
Sn, and the alternating group An, can be computed from this data. This paper is organized
as follows. In Section 2 we study the conjugacy classes of subgroups of Sn for n ≤ 13. In
Section 3 we examine the tables of marks of Sn for n ≤ 13 and describe how much more
information regarding the subgroup structure of Sn can be obtained. In Section 4 we discuss
the Euler Transform and its applications in counting subgroups of Sn.
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2 Counting Subgroups

Given a list of representatives {H1, . . . , Hr} of Sub(G)/G, the conjugacy classes of subgroups
of G, we can enumerate those subgroups which satisfy particular properties. The numbers of
conjugacy classes of subgroups of Sn andAn are sequences A000638 and A029726 respectively
in Sloane’s encyclopedia [9]. The GAP table of marks library Tomlib provides access to
the conjugacy classes of subgroups of the symmetric and alternating groups for n ≤ 13.
Table 1 records the number of conjugacy classes of subgroups of Sn which are abelian, cyclic,
nilpotent, solvable and supersolvable (SupSol). A similar table for the conjugacy classes of
subgroups of the alternating groups can be found in Appendix A.

A000638 A218909 A000041 A218910 A218911 A218912
n |Sub(Sn)/Sn| Abelian Cyclic Nilpotent Solvable SupSol
1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 4 3 3 3 4 4

4 11 7 5 8 11 9

5 19 9 7 10 17 15

6 56 20 11 25 50 38

7 96 26 15 32 84 65

8 296 61 22 127 268 187

9 554 82 30 156 485 341

10 1593 180 42 531 1418 923

11 3094 236 56 648 2691 1789

12 10723 594 77 3727 9725 6118

13 20832 762 101 4221 18286 11616

Table 1: Sequences in Sn

2.1 Subgroup Orders

A question of historical interest concerns the orders of subgroups of Sn. In [3] Cameron
writes: The Grand Prix question of the Academie des Sciences, Paris, in 1860 asked “How
many distinct values can a function of n variables take?” In other words what are the
possible indices of subgroups of Sn. For n ≤ 13, Table 2 records the numbers of different
orders O(Sn),O(An) of subgroups of Sn and An. One might as well also enumerate the
number of “missing” subgroup orders, that is, the number, d(Sn), of divisors d such that
d | |Sn| but Sn has no subgroup of order d. Table 3 records the number of missing subgroup
orders of Sn and An for n ≤ 13.
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A218913 A218914
n O(Sn) O(An)

1 1 1
2 2 1
3 4 2
4 8 5
5 13 9
6 21 15
7 31 22
8 49 38
9 74 59
10 113 89
11 139 115
12 216 180
13 268 226

Table 2: Subgroup Orders

A218915 A218916
n d(Sn) d(An)

1 0 0
2 0 0
3 0 0
4 0 1
5 3 3
6 9 9
7 29 26
8 47 46
9 86 81
10 157 151
11 401 365
12 576 540
13 1316 1214

Table 3: Missing Subgroup Orders

3 Counting Using the Table of Marks

If in addition to a list of conjugacy classes of subgroups of G, the table of marks of G is
also available, or can be computed, one can say quite a lot about the structure of the lattice
of subgroups of G. We begin this section by giving some basic information about tables of
marks and then go on to describe how we can count incidences and edges in the lattice of
subgroups.

3.1 About Tables of Marks

Let G be a finite group and let Sub(G) denote the set of subgroups of G. By Sub(G)/G we
denote the set of conjugacy classes of subgroups of G. For H,K ∈ Sub(G) let

βG/H(K) = #{Hg ∈ G/H : (Hg)k = Hg for all k ∈ K} = #{g ∈ G : K ≤ Hg}/|H|

denote the mark of K on H. This number depends only on the G-conjugacy classes of H
and K. Note that βG/H(K) 6= 0 ⇒ |K| ≤ |H|. If H1, . . . , Hr is a list of representatives of the
conjugacy classes of subgroups of G, the table of marks of G is then the (r× r)-matrix

M(G) = (βG/Hi
(Hj))i,j=1,...,r.

If the subgroups in the transversal are listed by increasing group order the table of marks
is a lower triangular matrix. The table of marks M(S4) of the symmetric group S4 is shown
in Figure 1.
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S4/1 24

S4/2 12 4

S4/2 12 . 2

S4/3 8 . . 2

S4/2
2 6 6 . . 6

S4/2
2 6 2 2 . . 2

S4/4 6 2 . . . . 2

S4/S3 4 . 2 1 . . . 1

S4/D8 3 3 1 . 3 1 1 . 1

S4/A4 2 2 . 2 2 . . . . 2

S4/S4 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 22 22 4 S3 D8 A4 S4

Figure 1: Table of Marks M(S4)

As a matrix, we can extract a variety of sequences from the table of marks, the most obvious
of which is the sum of the entries. The sum of the entries of M(Sn) for n ≤ 13 is shown in
Figure 4. We can also sum the entries on the diagonal to obtain the sequences in Figure 5.

A218917 A218918
n Sn An

1 1 1
2 4 1
3 18 5
4 146 39
5 681 192
6 7518 1717
7 58633 13946
8 952826 243391
9 11168496 2693043
10 232255571 38343715
11 3476965896 545787051
12 108673489373 15787210045
13 1951392769558 268796141406

Table 4: Sum of M(G)

A218919 A218920
n Sn An

1 1 1
2 3 1
3 10 4
4 47 19
5 165 73
6 950 412
7 5632 2660
8 43772 21449
9 376586 184541
10 3717663 1827841
11 40555909 20043736
12 484838080 240206213
13 6286289685 3119816216

Table 5: Sum of the Diagonal

We will now collect some elementary properties of tables of marks in Lemma 1.

Lemma 1. Let H,K ≤ G. Then the following hold:

(i) The first entry of every row of M(G) is the index of the corresponding subgroup,

βG/H(1) = |G : H|.
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(ii) The entry on the diagonal is,

βG/H(H) = |NG(H) : H|.

(iii) The length of the conjugacy class [H] of H is given by,

|[H]| = |G : NG(H)| =
βG/H(1)

βG/H(H)
.

(iv) The number of conjugates of H which contain K is given by,

|{Ha : a ∈ G,K ≤ Ha}| =
βG/H(K)

βG/H(H)
.

The following formula which follows trivially from Lemma 1 (iv) relates marks to incidences
in the subgroup lattice of G.

βG/H(K) = |NG(H) : H| ·#{Hg : K ≤ Hg, g ∈ G}. (1)

As a first application of Formula 1 we obtain the following lemma which enables us to count
the total number of subgroups of G.

Lemma 2. Given a list {H1, . . . , Hr} of representatives of the conjugacy classes of subgroups
of G, the total number of subgroups of G is

|Sub(G)| =

r∑

i=1

βG/Hi
(1)

βG/Hi
(Hi)

.

Proof. It follows from Formula 1 that for any subgroup H ≤ G,
βG/H(1)

βG/H(H)
is the length of the

conjugacy class of H in G.

Table 6 lists the total number of subgroups of Sn and An for n ≤ 13.

A029725 A005432
n An Sn

1 1 1
2 1 2
3 2 6
4 10 30
5 59 156
6 501 1455
7 3786 11300
8 48337 151221
9 508402 1694723
10 6469142 29594446
11 81711572 404126228
12 2019160542 10594925360
13 31945830446 175238308453

Table 6: Total Number of Subgroups of An and Sn
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3.2 Counting Incidences

Another immediate consequence of Formula 1 is that by dividing each row of the table of
marks of G by its diagonal entry βG/H(H) we obtain a matrix C(G) describing containments
in the subgroup lattice of G, where the (H,K)-entry is

C(H,K) = #{Kg : H ≤ Kg, g ∈ G}. (2)

Figure 2 illustrates the containment matrix of the symmetric group S4.

1 1

2 3 1

2 6 . 1

3 4 . . 1

22 1 1 . . 1

22 3 1 1 . . 1

4 3 1 . . . . 1

S3 4 . 2 1 . . . 1

D8 3 3 1 . 3 1 1 . 1

A4 1 1 . 1 1 . . . . 1

S4 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 22 22 4 S3 D8 A4 S4

Figure 2: Containment Matrix : C(S4)

The conjugacy classes of subgroups of G are partially ordered by [H] ≤ [K] if H ≤ Kg for
some g ∈ G i.e. if C(H,K) 6= 0. Therefore we can easily obtain the incidence matrix, I(G), of
the poset of conjugacy classes of subgroups of G by replacing each nonzero entry in C(G), (or
M(G) ) by an entry 1. Figure 3 shows the incidence matrix I(S4) of the poset of conjugacy
classes of subgroups of S4.
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1 1

2 1 1

2 1 . 1

3 1 . . 1

22 1 1 . . 1

22 1 1 1 . . 1

4 1 1 . . . . 1

S3 1 . 1 1 . . . 1

D8 1 1 1 . 1 1 1 . 1

A4 1 1 . 1 1 . . . . 1

S4 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 22 22 4 S3 D8 A4 S4

Figure 3: Incidence Matrix : I(S4)

For comparison with Figure 3 we illustrate the poset of conjugacy classes of subgroups of S4

in Figure 4.

1

22

3

2222 4

S3

D8

A4

S4

Figure 4: Poset of Conjugacy Classes of Subgroups of S4

Lemma 3. The number of incidences in the poset of conjugacy classes of subgroups of G is
given by ∑

I(G).
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Proof. The incidence matrix I(G) is obtained by replacing every nonzero entry in the table
of marks by an entry 1. By Formula 1 I(H,K) = 1 if and only if K is subconjugate to H in
G, i.e. if and only if H and K are incident in the poset of conjugacy classes of subgroups of
G.

Table 7 lists the number of incidences in the poset of conjugacy classes of subgroups of
An and Sn for n ≤ 13.

Lemma 4. The total number of incidences in the entire subgroup lattice of G is given by

∑
C(G).

Proof. For H,K ∈ Sub(G)/G the H,K entry in C(G) is the number of incidences between
H,K in the subgroup lattice of G. Thus summing over the entries in C(G) yields the total
number of incidences in the entire subgroup lattice of G.

Table 8 records the number of incidences in the subgroup lattices of Sn and An for n ≤ 13.

A218921 A218922
n Sn An

1 1 1
2 3 1
3 9 3
4 44 13
5 101 32
6 523 128
7 1195 330
8 6751 2309
9 16986 4271
10 87884 12468
11 248635 33329
12 1709781 196182
13 4665651 490137

Table 7: Incidences in Poset

A218924 A218923
n An Sn

1 1 1
2 1 3
3 3 11
4 18 68
5 85 262
6 657 2261
7 4374 14032
8 55711 176245
9 530502 1821103
10 6603007 30883491
11 82736601 415843982
12 2032940127 10779423937
13 32102236563 177718085432

Table 8: Incidences in Subgroup Lattice

3.3 Counting Edges in Hasse Diagrams

The table of marks also allows us to count the number of edges in both the Hasse diagrams
of the poset of conjugacy classes of subgroups and the subgroup lattice of G. Computing
such data requires careful analysis of maximal subgroups in the subgroup lattice.

Formula 1 describes containments in the poset of conjugacy classes of subgroups looking
upward through the subgroup lattice of G. But we can also view marks as containments
looking downward through the subgroup lattice of G.
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Lemma 5. Let H,K ∈ Sub(G)/G. Then the number of conjugates of H contained in K is
given by

E↑(H,K) = |{Hg, g ∈ G : Hg ≤ K}| =
βG/K(H)βG/H(1)

βG/H(H)βG/K(1)

Proof. The total number of edges between the classes [H]G and [K]G can be counted in two
different ways, as the length of the class times the number of edges leaving one member of
the class. Thus

|[HG| · |{H
g, g ∈ G : Hg ≤ K}| = |[K]G| · |{K

g, g ∈ G : Kg ≥ H}|.

By Formula 1 |[H]G| =
βG/H(1)

βG/H(H)
and |[K]G| =

βG/K(1)

βG/K(K)
. Thus E↑(H,K) can be expressed in terms

of marks.

3.3.1 Identifying Maximal Subgroups

It will be necessary, for the sections that follow, to identify for Hi ∈ Sub(G)/G which classes
Hj ∈ Sub(G)/G are maximal in Hi.

Lemma 6. Let Hi ∈ Sub(G)/G = {H1, . . . , Hr}. Denote by ρi = {j : Hj <G Hi} the set of
indices in {1, . . . , r} of proper subgroups of Hi up to conjugacy in G. Then the positions of
all maximal subgroups of Hi are given by

Max(Hi) = ρi \
⋃

j∈ρi

ρj (3)

The set of values ρi are easily read off the table of marks of G by simply identifying the
nonzero entries in the row corresponding to G/Hi. Formula 3 is implemented in GAP via the
function MaximalSubgroupsTom.

Lemma 7. Let Sub(G)/G = {H1, . . . , Hr} be a list of representatives of the conjugacy classes
of subgroups of G. The number of edges in the Hasse diagram of the poset of conjugacy classes
of subgroups of G is given by

|E(Sub(G)/G)| =

r∑

i=1

|Max(Hi)|.

Proof. By Lemma 6, Max(Hi) is a list of the positions of the maximal subgroups of Hi up
to conjugacy in G. In the Hasse diagram of the poset Sub(G)/G each edge corresponds to
a maximal subgroup.

Table 9 records the number of edges in the Hasse diagram of the poset of conjugacy
classes of subgroups of Sn and An for n ≤ 13. In order to count the number of edges in the
Hasse diagram of the entire subgroup lattice of G we appeal to Formula 1 and Lemma 5.
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Lemma 8. Let Sub(G)/G = {H1, . . . , Hr} be as above. The total number of edges E(L(G))

in the Hasse diagram of the subgroup lattice of G is given by

E(L(G)) =

r∑

i=1

∑

j∈Max(Hi)

E↑(Hi, Hj).

Proof. By restricting E↑(Hi, Hj) to those classes Hi, Hj which are maximal we obtain the
number of edges connecting maximal subgroups of G.

Table 10 records the total number of edges in the Hasse diagram of the subgroup lattice
of Sn and An for n ≤ 13.

A218925 A218926
n Sn An

1 0 0
2 1 0
3 4 1
4 17 5
5 37 13
6 149 44
7 290 98
8 1080 419
9 2267 722
10 8023 1592
11 17249 3304
12 72390 12645
13 153419 24792

Table 9: Edges in Poset

A218928 A218927
n An Sn

1 0 0
2 0 1
3 1 8
4 15 66
5 168 501
6 2051 6469
7 19305 60428
8 283258 926743
9 3255913 11902600
10 46464854 240066343
11 670282962 3677270225
12 18723796793 108748156239
13 321480817412 1980478458627

Table 10: Edges in Subgroup Lattice

3.4 Maximal Property-P Subgroups

For any property P which is inherited by subgroups of G we can use the table of marks of G
to enumerate the maximal property P subgroups of G.

Lemma 9. Let Sub(G)/G = {H1, . . . , Hr} and let ρ = {i ∈ [1, . . . , r] : Hi is a property P subgroup}.
Then the positions of the maximal property P subgroups of G are given by

P(G) = ρ \
⋃

j∈ρ

Max(Hj) (4)

In Figure 5 the classes of maximal abelian subgroups of S4 are boxed.
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1

22

3

2222 4

S3

D8

A4

S4

Figure 5: Maximal Abelian Subgroups of S4

Table 11 records, for each of the properties listed across the first row of the table, the
numbers of maximal property P classes of subgroups of Sn. A similar table for the alternating
groups can be found in the Appendix.

A218929 A218930 A218931 A218932 A218933
n Solvable SupSol Abelian Cyclic Nilpotent
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 2 2
4 1 2 4 3 2
5 3 3 5 3 3
6 4 4 7 5 5
7 5 5 10 6 6
8 6 6 17 11 7
9 9 8 23 15 9
10 12 11 30 20 12
11 14 14 41 24 15
12 17 19 61 34 20
13 24 23 80 43 25

Table 11: Maximal Property-P Subgroups of Sn
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4 Connected Subgroups and the Euler Transform

The conjugacy classes of subgroups of the symmetric group play an important role in the
theory of combinatorial species as described in [6]. Permutation groups have been used to
answer many questions about species. Every species is the sum of its molecular subspecies.
These molecular species correspond to conjugacy classes of subgroups of Sym(n). Molecular
species decompose as products of atomic species which in turn correspond to connected
subgroups of Sym(n) in the following sense. It will be convenient to denote the symmetric
group on a finite set X by Sym(X).

Definition 1. For each H ≤ Sym(X) there is a finest partition of X =
⊔

Yi such that
H =

∏
Hi with Hi ≤ Sym(Yi). We allow Hi = 1 when |Yi| = 1. We say that H is a connected

subgroup of Sym(X) if the finest partition is X.

Example 1. Let X = {1, 2, 3, 4} and consider H = 〈(1, 2), (3, 4)〉 and H ′ = 〈(1, 2)(3, 4)〉.
Partitioning X into Y1 = {1, 2}, Y2 = {3.4} gives H = H1 × H2 where H1 = 〈(1, 2)〉 ≤
Sym({1, 2}), H2 = 〈(3, 4)〉 ≤ Sym({3, 4}), hence H is not connected. On the other hand, H ′ is
connected since there is no finer partition of X which permits us to write H ′ as a product of
connected Hi.

An algorithm to test a group H acting on a set X for connectedness checks each non-trivial
H-stable subset Y of X. If H is the direct product of its action on Y and its action on X \ Y

then H is not connected.
In general a subgroup H ≤ Sym(X) is a product of connected subgroups Hi ≤ Sym(Yi).

Sequence A000638 records the number of molecular species of degree n or equivalently the
number of conjugacy classes of subgroups of Sym(n). Sequence A005226 records the number
of atomic species of degree n or equivalently the number of conjugacy classes of connected
subgroups of Sym(n). These sequences are related by the Euler Transform.

4.1 The Euler Transform

If two sequences of integers {ck} = (c1, c2, c3, . . .) and {mn} = (m1,m2,m3, . . .) are related
by

1+
∑

n≥1

mnx
n =

∏

k≥1

(

1

1− xk

)ck

. (5)

Then we say that {mn} is the Euler transform of {ck} and that {ck} is the inverse Euler
transform of {mn} (see [1]). One sequence can be computed from the other by introducing
the intermediate sequence {bn} defined by

bn =
∑

d|n

dcd = nmn −

n−1∑

k=1

bkmn−k. (6)
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Then

mn =
1

n

(

bn +

n−1∑

k=1

bkmn−k

)

, cn =
1

n

∑

d|n

µ(n/d)bd, (7)

where µ is the number-theoretic Möbius function.
There are many applications of this pair of transforms (see [10]). For example, the

inverse Euler transform applied to the sequence of numbers of unlabeled graphs on n nodes
(A000088) yields the sequence of numbers of connected graphs on n nodes (A001349). To
understand how Formula 5 can be used to count connected graphs we note that the coefficient
of xn in the expansion of the product on the right hand side of Formula 5 is

mn =
∑

1a1 ,2a2 ,...,nan⊢n

∏

i

((

ci

ai

))

(8)

where
((

ci
ai

))

denotes the number of ai-element multisets chosen from a set of ci objects. On
the other hand, an unlabeled graph on n nodes, as a collection of connected components,
can be characterized by a pair (λ, (C1, . . . , Cn)) where λ = 1a1 , 2a2, . . . , nan is a partition of
n and Ci is a multiset of ai connected unlabeled graphs on i nodes, for 1 ≤ i ≤ n. If ci is
the number of connected unlabeled graphs on i nodes then, by Formula 8, mn is the total
number of unlabeled graphs on n nodes.

In the same way, the inverse Euler transform of A000638 (the number of conjugacy classes
of subgroups of Sn) is A005226, (the number of connected conjugacy classes of subgroups of
Sn) as formalized in the following Lemma.

Lemma 10. There is a bijection between the conjugacy classes of subgroups of Sn and the
set of pairs of the form (λ, (C1, . . . , Cn)) where λ = 1a1 , 2a2, . . . , nan is a partition of n and
Ci is a multiset of ai conjugacy classes of connected subgroups of Si for i = 1, . . . , n.

Proof. Given a representative H of the conjugacy class of subgroups [H] ∈ Sub(Sn)/Sn we
associate a pair (λ, (C1, . . . , Cn)) to H as follows. Write H =

∏
Hk where each Hk is a

connected subgroup of Sym(Yk). Then X = {1, . . . , n} =
⊔

Yk. Recording the size of each
Yk yields a partition λ = 1a1, 2a2, . . . , nan . For 1 ≤ i ≤ n,Ci is the multiset of Si-classes of
subgroups Hk with |Yk| = i. Bijectivity follows from the fact that conjugate subgroups yield
the same λ and since Hg =

∏
Hg

k, conjugate subgroups yield conjugate Ci.

4.2 Counting Connected Subgroups of the Alternating Group

In Section 4 we noted that molecular species correspond to conjugacy classes of subgroups
of Sym(n) and that atomic species correspond to conjugacy classes of connected subgroups
of Sym(n) in the sense of Definition 1. In this Section we will count connected conjugacy
classes of subgroups of the alternating group, up to Sn conjugacy and An conjugacy.
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4.2.1 Sn-Orbits of Subgroups of the Alternating Group

In order to count the number of Sn-conjugacy classes of subgroups of the alternating group
we introduce the following notation. Let

B = {H ≤ Sn : H ≤ An and R = {H ≤ Sn : H � An}.

Then Sub(Sn)/Sn = B/Sn ⊔ R/Sn and B/Sn is the set of Sn conjugacy classes of subgroups
of the alternating group. The set R/Sn is the set of conjugacy classes of subgroups of Sn

which are not contained in An. Table 12 illustrates both of these sequences together with
the numbers of conjugacy classes of subgroups of Sn and An. In order to count the number
of connected Sn-conjugacy classes of subgroups of An we apply the inverse Euler transform
to the sequence |B/Sn| in Table 12, to obtain

A218968 : 1, 0, 1, 3, 4, 12, 12, 65, 58, 167, 198, 1207, 1178.

We can also count the number of connected conjugacy classes of subgroups of Sn not con-
tained in An (i.e. corresponding to R/Sn) by subtracting the sequence above from A005226
to obtain

A218969 : 0, 1, 1, 3, 2, 15, 8, 65, 66, 431, 443, 3643, 3594.

A000638 A029726 A218966 A218965
n |Sub(Sn)/Sn| |Sub(An)/An| |B/Sn| |R/Sn|

1 1 1 1 0

2 2 1 1 1

3 4 2 2 2

4 11 5 5 6

5 19 9 9 10

6 56 22 22 34

7 96 40 37 59

8 296 137 112 184

9 554 223 195 359

10 1593 430 423 1170

11 3094 788 780 2314

12 10723 2537 2401 8322

13 20832 4558 4409 16423

Table 12: Red and Blue Subgroups of Sn

4.2.2 Connected Subgroups of the Alternating Group

Every subgroup of An is either connected or not connected with respect to the set {1, . . . , n}
and shares this property with all subgroups in its An-conjugacy class. So we wish to count
the number of An-conjugacy classes of connected subgroups of An. Unfortunately, the Euler
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transform does not apply to An-orbits. We test for connectedness a list of representatives of
Sub(An)/An in GAP and obtain

A218967 : 1, 0, 1, 3, 4, 12, 15, 87, 64, 168, 205, 1336, 1198.

Remark 1. There is a sequence in the encyclopedia, A116653, which currently claims to
count both the number of atomic species based on conjugacy classes of subgroups of the
alternating group (i.e. the number of Sn-conjugacy classes of connected subgroups of An) and
the number of An-conjugacy classes of connected subgroups of An. However this sequence
is merely the inverse Euler transform of sequence A029726, the number of conjugacy classes
of subgroups of the alternating group. The number of Sn-conjugacy classes of connected
subgroups of An is sequence A218968 and the number of An-conjugacy classes of connected
subgroups of An is A216967.

4.3 Connected Subgroups with Additional Properties

Appealing to Definition 1 we can count the connected subgroups of Sn which possess ad-
ditional group theoretic properties. If the property of interest is compatible with taking
direct products we can apply the inverse Euler transform to the sequence of numbers of all
conjugacy classes of subgroups of Sn with this property to obtain the sequence of numbers
of conjugacy classes of connected subgroups of Sn with this property. Table 13 records the
number of connected subgroups of Sn which additionally possess the properties listed in the
first row of the table. Each of the sequences in Table 13 is the inverse Euler transform of
the corresponding sequence in Table 1.

A000638 A218971 A218972 A218973 A218974

n |Sub(Sn)/Sn| Abelian Nilpotent Solvable SupSol
1 1 1 1 1 1

2 2 1 1 1 1

3 4 1 1 2 2

4 11 3 4 6 4

5 19 1 1 4 4

6 56 6 9 23 15

7 96 1 1 16 13

8 296 17 69 122 81

9 554 5 8 109 77

10 1593 40 238 551 352

11 3094 2 2 570 406

12 10723 162 2339 4633 2995

13 20832 5 8 4224 2866

Table 13: Connected Subgroups of Sn
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4.4 Connected Partitions

The number of conjugacy classes of cyclic subgroups of Sn equals the number of partitions of
n. The inverse Euler transform of this sequence yields the all ones sequence. This does not
count the number of conjugacy classes of connected cyclic subgroups of Sn since the direct
product of cyclic groups is not necessarily cyclic.

Definition 2. Let λ = [x1, . . . , xl] be a partition of n. Let Gλ be the simple graph with l

vertices labeled by x1, . . . , xl where two vertices are connected by an edge if and only if their
labels xi, xj are not coprime. We call the partition λ connected if the graph Gλ is connected.

Proposition 1. The number of conjugacy classes of connected cyclic subgroups of Sn equals
the number of connected partitions of n.

Proof. Let C = 〈c〉 ≤ Sn be cyclic. Then the cycle lengths of the permutation c form a
partition λ of n. For simplicity, we assume λ = [x1, x2]. Then c = ab where a is an x1
cycle and b is an x2 cycle. Let d = gcd(x1, x2). If d = 1 then Gλ is not connected and
1 = yx1 + zx2, for some y, z ∈ Z. Then cyx1 = a, czx2 = b and C = 〈a〉 × 〈b〉 is not
connected. If d > 1 then C does not contain a generator of 〈a〉 or of 〈b〉. The case for
general λ follows by a similar argument.

Example 2. There are 3 connected partitions λ of 13. Their graphs Gλ are shown in Figure
6.

13

2 2

3 6

6 4

3

Figure 6: The Graphs of the Connected Partitions of 13

Using Proposition 1 we obtain the sequence of numbers of conjugacy classes of connected
cyclic subgroups of Sn

A218970 : 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3.

Remark 2. There are two sequences in the encyclopedia which are quite similar to this
sequence. Sequence A018783 counts the number of partitions of n into parts all of which
have a common factor greater than 1. Sequence A200976 counts the number of partitions
of n such that each pair of parts (if any) has a common factor greater than 1. For n ≤ 13,
sequence A218970 above differs from both of these sequences when n = 1, 11, 13.
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5 Concluding Remarks

The sequences presented in this article have been computed using GAP. A GAP file contain-
ing the programs can be found at www.maths.nuigalway.ie/~liam/CountingSubgroups.g.
The GAP table of marks library Tomlib can be found here [11] and is a requirement for com-
puting many of the sequences presented. It is worth pointing out that Holt has determined
all conjugacy classes of subgroups of Sn for values of n up to and including n = 18, (see [5]).
The majority of the sequences presented in this article rely on the availability of the table of
marks of Sn and so we restrict our attention to n ≤ 13. We are grateful to Des MacHale for
suggesting many of the sequences that we compute in this article. We thank the anonymous
referees for helpful suggestions.
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Appendix A Additional Sequences

Using the methods described in this article the following additional sequences have been
computed.

A029726 A218934 A218935 A218936 A218937 A218938

n |Sub(An)/An| Abelian Cyclic Nilpotent Solvable SupSol
1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 2 2 2 2 2 2

4 5 4 3 4 5 4

5 9 5 4 5 8 7

6 22 9 6 10 19 14

7 40 12 8 13 33 22

8 137 30 12 53 122 70

9 223 41 17 69 192 122

10 430 60 23 122 364 225

11 788 81 29 160 650 395

12 2537 193 40 734 2194 1240

13 4558 243 52 848 3845 2185

Table 14: Conjugacy classes of subgroups of An

A005432 A062297 A051625 A218939 A218940 A218941

n |Sub(Sn)| Abelian Cyclic Nilpotent Solvable SupSol
1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 6 5 5 5 6 6

4 30 21 17 24 30 28

5 156 87 67 102 154 144

6 1455 612 362 837 1429 1259

7 11300 3649 2039 5119 11065 9560

8 151221 35515 14170 78670 148817 123102

9 1694723 289927 109694 664658 1667697 1371022

10 29594446 3771118 976412 13514453 29103894 23449585

11 404126228 36947363 8921002 137227213 396571224 317178020

12 10594925360 657510251 101134244 4919721831 10450152905 8296640115

13 175238308453 7736272845 1104940280 60598902665 172658168937 136245390535

Table 15: Total number of subgroups of Sn
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A218955 A218956 A218957 A218958 A218959
n Solvable SupSol Abelian Cyclic Nilpotent
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 4 4 4
4 1 7 11 13 7
5 21 31 51 31 31
6 76 101 241 246 211
7 456 491 1506 1296 1156
8 1956 3011 9649 10774 5419
9 12136 18467 80281 83238 40027
10 80836 114983 640741 788820 348331
11 807676 1283723 6196576 6835170 3204796
12 8779816 13380643 66883411 81364944 38422891
13 104127596 148321603 775421219 848378532 467645179

Table 16: Total number of maximal property-P subgroups of Sn

A029725 A218942 A051636 A218943 A218944 A218945

n |Sub(An)| Abelian Cyclic Nilpotent Solvable SupSol
1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 2 2 2 2 2 2

4 10 9 8 9 10 9

5 59 37 32 37 58 53

6 501 207 167 252 488 418

7 3786 1192 947 1507 3664 2894

8 48337 11449 6974 21739 47210 33675

9 508402 93673 53426 186983 498102 369763

10 6469142 892783 454682 2369258 6293475 4769542

11 81711572 8534308 4303532 22872863 78805290 58853842

12 2019160542 148561283 50366912 746597568 1960342409 1395051100

13 31945830446 1740198891 553031624 9157758326 31130243721 21847262156

Table 17: Total no of subgroups of An
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A218946 A218947 A218948 A218949 A218950
n Solvable SupSol Abelian Cyclic Nilpotent
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 2 2 2 2
5 3 3 3 3 3
6 4 3 5 4 3
7 5 4 6 5 5
8 6 6 13 6 6
9 10 8 19 8 7
10 12 10 22 10 9
11 14 13 27 14 12
12 17 18 40 20 17
13 24 22 54 24 20

Table 18: Maximal property-P subgroups of An

A029726 A218951 A218952 A218953 A218954

n |Sub(An)/An| Abelian Nilpotent Solvable SupSol
1 1 1 1 1 1

2 1 0 0 0 0

3 2 1 1 1 1

4 5 2 2 3 2

5 9 1 1 3 3

6 22 3 4 10 6

7 40 1 1 11 6

8 137 14 36 80 42

9 223 5 9 52 39

10 430 12 49 145 85

11 788 2 2 165 104

12 2537 69 489 1208 686

13 4558 3 4 1033 617

Table 19: Connected subgroups of An

The number of connected even partitions of n

A218975 : 1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 2, 8, 2.
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A218960 A218961 A218962 A218963 A218964
n Solvable SupSol Abelian Cyclic Nilpotent
1 1 1 1 1 1
2 1 1 1 1 1
3 3 3 3 3 3
4 1 10 10 9 10
5 36 40 30 30 30
6 225 110 115 100 110
7 686 645 861 665 1001
8 4655 5670 10536 3885 4005
9 28728 47754 78474 33093 45696
10 397005 311850 1008000 371700 379155
11 2210890 3014550 9302964 3790875 4913040
12 26975025 24022845 73024380 37839285 36701280
13 26121667 46950904 563291872 350984414 158538380

Table 20: Total number of maximal property-P subgroups of An
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