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Abstract

Let σ(n) be the sum of divisors of a positive integer n. Robin’s theorem states that the

Riemann hypothesis is equivalent to the inequality σ(n) < eγn log log n for all n > 5040 (γ is

Euler’s constant). It is a natural question in this direction to find a first integer, if exists, which

violates this inequality. Following this process, we introduce a new sequence of numbers and

call it as extremely abundant numbers. Then we show that the Riemann hypothesis is true, if

and only if, there are infinitely many of these numbers. Moreover, we investigate some of their

properties together with superabundant and colossally abundant numbers.

1 Introduction

There are several equivalent statements to the famous Riemann hypothesis(§Introduction). Some

of them are related to the asymptotic behavior of arithmetic functions. In particular, the known

Robin’s criterion (theorem, inequality, etc.) deals with the upper bound of σ(n). Namely,

Theorem. (Robin) The Riemann hypothesis is true, if and only if,

∀n ≥ 5041,
σ(n)

n log logn
< eγ , (1.1)

where σ(n) =
∑

d|n

d and γ is Euler’s constant ([26], Th. 1).

Throughout this paper, as Robin used in [26], we let

f(n) =
σ(n)

n log logn
. (1.2)

In 1913, Gronwall [13] in his study of asymptotic maximal size for the sum of divisors of n,

found that the order of σ(n) is always ”very nearly n” ([14], Th. 323), proving
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Theorem. (Gronwall)

lim sup
n→∞

f(n) = eγ . (1.3)

Ramanujan in his unpublished manuscript [23] proved that if N is a generalized superior

highly composite number, i.e. a number of CA which we introduce in the next section, then

under the Riemann hypothesis

lim inf
N→∞

(

σ(N)

N
− eγ log logN

)

√

logN ≥− eγ(2
√
2 + γ − log 4π) ≈ −1.558,

and

lim sup
N→∞

(

σ(N)

N
− eγ log logN

)

√

logN ≤− eγ(2
√
2− 4− γ + log 4π) ≈ −1.393.

Later in 1984, Robin [26] demonstrated that

f(n) ≤ eγ +
0.6482 . . .

(log logn)2
, (n ≥ 3), (1.4)

where 0.6482 . . . ≈ (73−eγ log log 12) log log 12 and the left hand side of (1.4) attains its maximum

at n = 12. In the same spirit, Lagarias [18] proved that the Riemann hypothesis is equivalent to

σ(n) ≤ eHn logHn +Hn, (n ≥ 1),

where Hn =
∑n

j=1 1/j and it is called the n-th harmonic number. Investigating upper and lower

bounds of arithmetic functions, Landau ([19], pp. 216-219) obtained the following limits:

lim inf
n→∞

ϕ(n) log log n

n
= e−γ , lim sup

n→∞

ϕ(n)

n
= 1,

where ϕ(n) is the Euler totient function, which is defined as the number of positive integers not

exceeding n that are relatively prime to n, and can also be expressed as a product extended over

the distinct prime divisors of n (see [3, Th. 2.4]); i.e.

ϕ(n) = n
∏

p|n

(

1− 1

p

)

.

Furthermore, Nicolas [20] proved that, if the Riemann hypothesis is true, then we have for all

k ≥ 2,
Nk

ϕ(Nk) log logNk
> eγ , (1.5)

where Nk =
∏k

j=1 pj and pj is the j-th prime. On the other hand, if the Riemann hypothesis

is false, then there are infinitely many k for which (1.5) is true, and infinitely many k for which

(1.5) is false.
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Compared to numbers Nk which are the smallest integers that maximize n/ϕ(n), there are

integers which play this role for σ(n)/n and they are called superabundant numbers. In other

words, n is a superabundant number ([2], see also [23]) if

σ(n)

n
>
σ(m)

m
for all m < n.

Briggs [4] describes a computational study of the successive maxima of the relative sum-of-

divisors function σ(n)/n. He also studies the density of these numbers. Wójtowicz [30] showed

that the values of f are close to 0 on a set of asymptotic density 1. Another study on Robin’s

inequality can be found in [7]; it was shown that Riemann hypothesis(RH) holds true, if and only

if, every natural number divisible by a fifth power greater than 1 satisfies Robin’s inequality.

In 2009, Akbary and Friggstad [1] established the following interesting theorem which enables

us to limit our attention to a narrow sequence of positive integers to find a probable counterex-

ample to (1.1).

Theorem ([1], Th. 3). If there is any counterexample to Robin’s inequality, then the least such

counterexample is a superabundant number.

Unfortunately, to our knowledge, there is no known algorithm to compute superabundant

number. Also (see [2]) the number of superabundants not exceeding x is more than

c
log x log log x

(log log log x)2
,

and in [12] it was even proved that for every δ < 5/48 this number exceeds

(log x)1+δ, (x > x0).

As a natural question in this direction, it is interesting to determine the least number, if exists,

that violates inequality (1.1) which belongs to a thinner sequence of positive integers, and study

its properties. Following this process, we introduce a new sequence of numbers and call its

elements as extremely abundant numbers. We will present in the sequel some of their properties.

Surprisingly enough, it will be proved that the least number, if any, should be an extremely

abundant number. Therefore, we will establish another criterion, which is equivalent to the

Riemann hypothesis.

Before starting the main definition and results we mention the recent paper by Caveney et

al. [5]. They defined a positive integer n as an extraordinary number, if n is composite and

f(n) ≥ f(kn) for all

k ∈ N ∪ {1/p : p is a prime factor of n}.

Under these conditions, they showed that the smallest extraordinary number is n = 4. Then they

proved that the Riemann hypothesis is true, if and only if, 4 is the only extraordinary number.

For more properties of these numbers and comparison them with superabundant and colossally

abundant numbers we refer the reader to [6].
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2 Extremely abundant numbers

Definition 2.1. A positive integer n is an extremely abundant number, if either n = 10080 or

n > 10080 and

∀m s.t. 10080 ≤ m < n,
σ(m)

m log logm
<

σ(n)

n log logn
.

Here 10080 has been chosen as the smallest superabundant number greater than 5040. In

Table 1 we list the first 20 extremely abundant numbers. To find them we used a list of super-

abundant numbers provided in [17] and [21].

First let us call a positive integer n (cf. [2] and [23])

(i) colossally abundant, if for some ε > 0,

σ(n)

n1+ε
>
σ(m)

m1+ε
, (m < n) and

σ(n)

n1+ε
≥ σ(m)

m1+ε
, (m > n);

(ii) highly composite, if d(n) > d(m) for all m < n, where d(n) =
∑

d|n 1;

(iii) generalized superior highly composite, if there is a positive number ε such that

σ−s(n)

nε
≥ σ−s(m)

mε
, (m < n) and

σ−s(n)

nε
>
σ−s(m)

mε
, (m > n),

where σ−s(n) =
∑

d|n d
−s.

The study of these classes of numbers was initiated by Ramanujan, in an unpublished part of

his 1915 work on highly composite numbers ([22], [23], [24]). More precisely, he defined rather

general classes of these numbers. For instance, he defined generalized highly composite numbers,

containing as a subset superabundant numbers ([22], section 59). Moreover, he introduced the

generalized superior highly composite numbers, including as a particular case colossally abun-

dant numbers. For more details about these numbers see [2], [12] and [23].

We denote the following sets of integers by

SA = {n : n is superabundant},
CA = {n : n is colossally abundant},
XA = {n : n is extremely abundant}.

We also use SA, CA and XA as abbreviations of the corresponding sets. Clearly, XA 6= CA (see

Table 1). Indeed, we shall prove that infinitely many numbers of CA are not in XA and, that if

RH holds, then infinitely many numbers of XA are in CA.

As an elementary result from the definition of extremely abundant numbers we have

Proposition 2.2. The inclusion XA ⊂ SA holds.
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Proof. First, 10080 ∈ SA. Further, if n > 10080 and n ∈ XA, then, for 10080 ≤ m < n, we have

σ(n)

n
= f(n) log logn > f(m) log logm =

σ(m)

m
.

In particular, for m = 10080, we get

σ(n)

n
>
σ(10080)

10080
.

So that, for m < 10080, we have

σ(n)

n
>
σ(10080)

10080
>
σ(m)

m
,

since 10080 ∈ SA. Therefore, n belongs to SA.

Next, motivating our construction of extremely abundant numbers, we will establish the first

main result of the paper.

Theorem 2.3. If there is any counterexample to Robin’s inequality (1.1), then the least one is

an extremely abundant number.

Proof. By doing some computer calculations we observe that there is no counterexample to

Robin’s inequality (1.1) for 5040 < n ≤ 10080. Now let n > 10080 be the least counterexample

to inequality (1.1). For m satisfying 10080 ≤ m < n we have

f(m) < eγ ≤ f(n).

Therefore, n is an extremely abundant.

As we mentioned in Introduction, we will prove an equivalent criterion to the Riemann

hypothesis for which the proof is based on Robin’s inequality (1.1) and Gronwall Theorem.

Let #A denote the cardinal number of a set A. The second main result is

Theorem 2.4. The Riemann hypothesis is true if and only if #XA = ∞.

Proof. Sufficiency. Assume that RH is not true, then from Theorem 2.3, f(m) ≥ eγ for some

m ≥ 10080. FromGronwall’s theorem,M = supn≥10080 f(n) is finite and there exists n0 such that

f(n0) = M ≥ eγ (if M = eγ then set n0 = m). An integer n > n0 satisfies f(n) ≤ M = f(n0)

and n can not be in XA so that #XA ≤ n0.

Necessity. On the other hand, if RH is true, then Robin’s inequality (1.1) is true. If #XA

is finite, then there exists an m such that for every n > m, f(n) ≤ f(m). Then

lim sup
n→∞

f(n) ≤ f(m) < eγ ,

which is a contradiction to Gronwall’s theorem.
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There are some primes, which cannot be the largest prime factors of any extremely abundant

number. For example, referring to Table 1, there is no extremely abundant number with the

largest prime factor p(n) = 149. This can be deduced from Theorem 4.32.

3 Auxiliary Lemmas

Before we state several properties of SA, CA and XA numbers, we give the following lemmas

which will be needed in the sequel.

Lemma 3.1. Let a, b be positive constants and x, y positive variables for which

log x > a,

and

x

(

1− a

log x

)

< y < x

(

1 +
b

log x

)

,

Then

y

(

1− c

log y

)

< x < y

(

1 +
d

log y

)

,

where

c ≥ b

(

1−
b− b

log x

log x+ b

)

, d ≥ a

(

1 +
a+ b

log x

log x− a

)

.

Proof. Dividing by x, inverting both sides and multiplying by y, we get

y

1 + b/ logx
< x <

y

1− a/ logx
.

We are looking for constants c and d such that

1− c

log y
<

1

1 + b/ logx
,

or equivalently

c > (log y)
b

log x+ b
,

and
1

1− a/ log x
< 1 +

d

log y
,

or equivalently

d > (log y)
a

log x− a
.

First we determine c. Since

y < x

(

1 +
b

log x

)

,

then

log y < log x+ log

(

1 +
b

log x

)

< log x+
b

log x
.
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So that if

c >

(

log x+
b

log x

)

b

log x+ b

=b

(

log x+ b− b+
b

log x

)

1

log x+ b

=b

(

1−
b− b

log x

log x+ b

)

,

then

c > log y
b

log x+ b
,

and hence

x > y

(

1− c
log log y

log y

)

.

Similarly, if

d >

(

log x+
b

log x

)

a

log x− a

=

(

log x− a+ a+
b

log x

)

a

log x− a

=a

(

1 +
a+ b

log x

log x− a

)

,

then

d > log y
a

logx− a
,

and therefore

x < y

(

1 +
d

log y

)

.

By elementary differential calculus one can prove

Lemma 3.2. Let h(x) = log log x. Then

g(y) =
yh(y)− xh(x)

(y − x)h(x)
, (y > x > e).

is increasing. Especially, if c > 1 and e < x < y < c x, we have g(y) < g(c x).

We will need in the sequel the following inequality

1

c− 1

(

c
log log cx

log log x
− 1

)

< 1 +
c

c− 1

log c

log x log log x
. (3.1)
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Indeed, since

1

c− 1

(

c
log log cx

log log x
− 1

)

=
1

c− 1

(

c
log log cx− log log x

log log x
+ c− 1

)

=
1

c− 1

(

c

log log x
log

(

1 +
log c

log x

)

+ c− 1

)

<
1

c− 1

(

c

log log x

(

log c

log x

)

+ c− 1

)

=1 +
c

c− 1

log c

log x log log x
.

Lemma 3.3. Let x ≥ 11. For y > x we have

log log y

log log x
<

√
y√
x
.

Chebyshev’s functions ϑ(x) and ψ(x), which are respectively, the logarithm of the product of

all primes ≤ x, and the logarithm of the least common multiple of all integers ≤ x; namely

ϑ(x) =
∑

p≤x

log p, ψ(x) =
∑

pm≤x

log p =
∑

p≤x

⌊

log x

log p

⌋

log p,

where ⌊x⌋ is the largest integer not greater than x. The prime number theorem is equivalent to

([14], Th. 434; [16], Th. 3, 12)

ψ(x) ∼ x. (3.2)

Lemma 3.4. For x > 1, we have

(i) x

(

1− 1.25

log x

)

< ϑ(x) < x

(

1 +
0.021

log x

)

,

(ii) x

(

1− 0.9

log x

)

< ψ(x) < x

(

1 +
0.5

log x

)

.

Proof. (i) We combined Corollary 2∗ and Theorem 7∗ (5.6a∗) of [29].

(ii) We appeal Corollary 2∗ of [29] for x ≥ 41 and the fact ψ(x) ≥ ϑ(x) and Computation for

x < 41. Using the inequality in Corollary of Theorem 14 [27]; i.e.

ψ(x)− ϑ(x) < 1.02
√
x+ 3 3

√
x

and (i) we have

ψ(x) − x =ψ(x)− ϑ(x) + ϑ(x) − x

<1.02
√
x+ 3 3

√
x+ (0.021)

x

logx

=

(

1.02
logx√
x

+ 3
log x
3
√
x2

+ 0.021

)

x

log x

<
1

2

x

log x
, (x ≥ 780).
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For x < 780 we use computation.

Lemma 3.5. (i)

ϑ(x) > x

(

1− 0.068

log x

)

, (x ≥ 89, 909),

(ii)

ψ(x) < x

(

1 +
0.045

log x

)

, (x ≥ 43, 730),

(iii)

ψ(x) > x

(

1− 0.0221

log x

)

, (x ≥ 89, 909).

Proof. (i) By Theorem 7∗ (5.5b∗) of [29], Theorems 2, 4 of [8], for 89, 909 = x0 < x < 1016 we

have

ϑ(x) − x =ϑ(x) − ψ(x) + ψ(x) − x

>−√
x− 4

3
3
√
x− 0.0220646

x

logx

=−
(

log x√
x

+
4

3

log x
3
√
x2

+ 0.0220646

)

x

log x

≥−
(

log x0√
x0

+
4

3

log x0
3
√

x20
+ 0.0220646

)

x

log x

>− 0.068
x

logx
,

and by Theorem 7∗ (5.5b∗) of [29], Theorem 5 of [8] for x ≥ x0 = 1016

ϑ(x)− x =ϑ(x) − ψ(x) + ψ(x) − x

>− 1.001
√
x− 1.1 3

√
x− 0.0220646

x

logx

=−
(

1.001
logx√
x

+ 1.1
logx
3
√
x2

+ 0.0220646

)

x

log x

≥−
(

1.001
logx0√
x0

+ 1.1
logx0
3
√

x20
+ 0.0220646

)

x

log x

>− 0.068
x

logx
.
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(ii) By Theorem 3 of [8], for 43, 730 = x0 ≤ x ≤ 108

ψ(x) − x <0.656
√
x+

4

3
3
√
x

=

(

0.656
logx√
x

+
4

3

log x
3
√
x2

)

x

log x

≤
(

0.656
logx0√
x0

+
4

3

log x0
3
√

x20

)

x

log x

<0.045
x

logx

By Theorem 7∗ (5.6a∗) of [29] and Theorem 4 of [8], for 108 = x0 ≤ x ≤ 1016

ψ(x) − x =ψ(x)− ϑ(x) + ϑ(x) − x

<
√
x+

6

5
3
√
x+ 0.0201384

x

logx

=

(

log x√
x

+
6

5

log x
3
√
x2

+ 0.0201384

)

x

log x

≤
(

log x0√
x0

+
6

5

log x0
3
√

x20
+ 0.0201384

)

x

log x

<0.0229
x

logx

Again by Theorem 7∗ (5.6a∗) of [29] and Theorem 5 of [8], for x ≥ x0 = 1016

ψ(x) − x =ψ(x) − ϑ(x) + ϑ(x) − x

<1.001
√
x+ 1.1 3

√
x+ 0.0201384

x

logx

=

(

1.001
logx√
x

+ 1.1
logx
3
√
x2

+ 0.0201384

)

x

log x

≤
(

1.001
logx0√
x0

+ 1.1
logx0
3
√

x20
+ 0.0201384

)

x

log x

<0.020139
x

logx

(iii) By Theorem 7∗ (5.5b∗) of [29].

Lemma 3.6 ([11], [10]). We have

π(x) >
x

log x

(

1 +
1

log x

)

, (x ≥ 599),

π(x) <
x

log x

(

1 +
1.2762

log x

)

, (x > 1).

where π(x) is the number of primes ≤ x.
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Littlewood oscillation for Chebyshev ψ function is given by

Lemma 3.7 ([16], Th. 34). We have

ψ(x) − x = Ω±(x
1/2 log log log x), as x→ ∞.

More precisely,

lim
x→∞

ψ(x)− x

x1/2 log log log x
≥ 1

2
, lim

x→∞

ψ(x)− x

x1/2 log log log x
≤ −1

2
.

Lemma 3.8 ([27], Th. 13).

ψ(x) − ϑ(x) < 1.42620
√
x, (x > 0)

Combining Lemmas 3.7 and 3.8

Corollary 3.9. We have

ϑ(x) − x = Ω±(x
1/2 log log log x), as x→ ∞.

Lemma 3.10 ([15]). The number of primes in the interval (q, q+c qθ) is asymptotic to c qθ/ log q,

where θ ≥ 5/8.

Lemma 3.11 ([10], Prop. 1.10). For k ≥ 463,

pk+1 ≤ pk

(

1 +
1

2 log2 pk

)

.

Lemma 3.12 ([9], Th. 6.12). We have

∏

p≤x

(

p

p− 1

)

< eγ(log x)

(

1 +
0.2

log2 x

)

, (x ≥ 2973),

and
∏

p≤x

(

p

p− 1

)

> eγ(log x)

(

1− 0.2

log2 x

)

, (x > 1).

We will use the following inequality frequently

t

1 + t
< log(1 + t) < t, (t > 0), (3.3)

4 Some properties of SA, CA and XA numbers

This section is divided to three paragraphs, which we will exhibit several properties of super-

abundant, colossally abundant and extremely abundant numbers, respectively. When there is no

ambiguity, we simply denote by p the largest prime factor of n.

Definition 4.1. Let g be a real-valued function and A = {an} be an increasing sequence

of integers. We say that g is an increasing (decreasing) function on A (or for an ∈ A), if

g(an) ≤ g(an+1) (g(an) ≥ g(an+1)) for all n ∈ I.

11



Superabundant Numbers A positive integer n is said to be superabundant if

σ(n)

n
>
σ(m)

m
for all m < n.

In the starting point, we show that for any real positive x ≥ 1, there is at least one superabundant

number in the interval [x, 2x). In other words

Proposition 4.2. Let n < n′ be two consecutive superabundant numbers. Then

n′

n
≤ 2.

Proof. Let n = 2k2 · · · p. We compare n with 2n. In fact

σ(2n)/(2n)

σ(n)/n
=

2k2+2 − 1

2k2+2 − 2
> 1.

Hence, n′ ≤ 2n.

Proposition 4.3 ([2], Th. 2). Let n = 2k2 · · · qkq · · · rkr · · · p be a superabundant number, q < r,

and

β :=

⌊

kq log q

log r

⌋

,

where ⌊x⌋ is the greatest integer less than or equal to x. Then kr has one of the three values :

β − 1, β + 1, β.

In the next theorem we give a lower bound for the exponent kq related to the largest prime

factor of n.

Theorem 4.4. Let n = 2k2 · · · qkq · · · p be a superabundant number with 2 ≤ q ≤ p. Then
⌊

log p

log q

⌋

≤ kq.

Proof. Let kq = k and suppose that k ≤ [log p/ log q]− 1. Hence

qk+1 < p. (4.1)

Now we compare values of σ(s)/s, taking s = n and s = m = nqk+1/p. Since σ(s)/s is

multiplicative, we restrict our attention to different factors. But n is superabundant and m < n.

Thus

1 <
σ(n)/n

σ(m)/m
=
q2k+2 − qk+1

q2k+2 − 1

(

1 +
1

p

)

=
1

1 + 1/qk+1

(

1 +
1

p

)

.

Consequently, p < qk+1, which contradicts (4.1).

Proposition 4.5 ([2], Th. 5). Let n = 2k2 · · · qkq · · · p be a superabundant number. If kq = k

and q < (log p)α, where α is a constant, then

log
qk+1 − 1

qk+1 − q
>

log q

p log p

{

1 + O

(

(log log p)2

log p log q

)}

, (4.2)
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log
qk+2 − 1

qk+2 − q
<

log q

p log p

{

1 + O

(

(log log p)2

log p log q

)}

. (4.3)

Remark 4.6 ([2], p. 453). Let δ denote the error term

δ =
(log log p)2

log p log q
, (q1−θ < log p)

δ =
log p

q1−θ log q
, (q1−θ > log p)

Then

log
qk+1 − 1

qk+1 − q
>

log q

log p
log

(

1 +
1

p

)

{1 +O(δ)} , (4.4)

log
qk+2 − 1

qk+2 − q
<

log q

log p
log

(

1 +
1

p

)

{1 +O(δ)} . (4.5)

Corollary 4.7. Let n = 2k2 · · · p be a superabundant number. Then there exist two positive

constants c and c′ such that

cp log p < 2k2 < c′p log p.

Proof. By inequality (3.3)

log
qk+1 − 1

qk+1 − q
= log

(

1 +
q − 1

qk+1 − q

)

<
q − 1

qk+1 − q
≤ 1

qk

and (4.4), there exists a C ′ > 0 such that

qk < C ′ p log p

log q
.

On the other hand, again from inequality (3.3)

log
qk+2 − 1

qk+2 − q
= log

(

1 +
q − 1

qk+2 − q

)

>
q − 1

qk+2 − 1
>

1

2qk+1

and (4.5), there exists a C > 0 such that

qk > C
p log p

log q
.

Putting c = C/ log q, c ′ = C ′/ log q we get the result.

Remark 4.8. In [2] it was proved that qkq < 2k2+2, and in p. 455, it was remarked that for large

superabundant n, qkq < 2k2 for q > 11.

Corollary 4.9. For large enough superabundant number n = 2k · · · p

p < 2k−1. (4.6)

13



Proposition 4.10. Let n = 2k · · · p be a superabundant number. Then for large enough n
⌊

k log 2

log p

⌋

= 1.

Proof. By Corollary 4.7

log(cp log p) < k log 2 < log(c′p log p).

Hence, for large enough p

1 < 1 +
log(c log p)

log p
<
k log 2

log p
< 1 +

log(c′ log p)

log p
< 2.

Therefore,
⌊

k log 2

log p

⌋

= 1.

Proposition 4.11 ([2], Th. 7). If n = 2k · · · p is a superabundant number, then

p ∼ logn.

From Corollary 4.7 and Proposition 4.11 it follows that

Proposition 4.12. If n = 2k2 · 3k3 · · · p(n) is a superabundant number, then for large enough n

logn < 2k2 .

Proof. We use Remark 4.8, Lemma 3.6 and Corollary 4.9 to get

logn

2k2
=

∑

log qkq

2k2

<
5 log 2k2+2 + (π(p(n)) − 5) log 2k2)

2k2

= π(p(n))
log 2k2

2k2
+

10 log 2

2k2

<
p(n)

log p(n)

(

1 +
1.2762

log p(n)

)

log 2k2

2k2
+

10 log 2

2k2

=
p(n)

2k2

log 2k2

log p(n)

(

1 +
1.2762

log p(n)

)

+
10 log 2

2k2

< 1.

Proposition 4.13. Let n = 2k2 · · · qkq · · · p be a superabundant number. Then

ψ(p) ≤ logn. (4.7)

Moreover,

lim
n→∞

ψ(p)

logn
= 1. (4.8)

14



Proof. In fact, by Theorem 4.4

ψ(p) =
∑

q≤p

⌊

log p

log q

⌋

log q ≤
∑

q≤p

kq log q = logn.

In order to prove (4.8) we appeal to (3.2) and Proposition 4.11.

Lemma 4.14. For large enough n = 2k · · · qkq · · · p ∈ SA

logn

ϑ(p)
< 1 +

c
√
2 log p√
p

(

1 +
1.5

log p

)

Proof. Let x2 be the largest prime factor with exponent 2. From the error term in page 453 of

Alaoglu-Erdős x22 < 2p log p for large enough n ∈ SA.

logn− ϑ(p) =
∑

2≤q≤x2

(kq − 1) log q < c ϑ(x2)

≤c ϑ(
√

2p log p) < c
√

2p log p

(

1 +
2(0.021)

log 2p log p

)

So

logn

ϑ(p)
− 1 <

c
√
2p log p

(

1 + 2(0.021)
log 2p log p

)

p
(

1− 1.25
log p

) <
c
√
2 log p√
p

(

1 +
1.5

log p

)

, (p > 5342)

Proposition 4.15. For n = 2k · · · p ∈ SA we have

logn > p

(

1− 0.0221

log p

)

,

and for large enough n ∈ SA

logn < p

(

1 +
0.5

log p

)

.

Proof. The first inequality holds by (4.7) and Lemma 3.5. Concerning the second inequality

logn

p
=
logn

ϑ(p)

ϑ(p)

p

<

{

1 +
c
√
2 log p√
p

(

1 +
1.5

log p

)}(

1 +
0.021

log p

)

<

(

1 +
0.5

log p

)

From Lemma 3.1 and Proposition 4.15, we conclude
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Corollary 4.16. For large enough n = 2k · · · p ∈ SA, it has

log n

(

1− 0.5

log logn

)

< p < log n

(

1 +
0.0222

log logn

)

.

In Sections 18.3 and 18.4 of [14], it was proved that

6

π2
<
σ(n)ϕ(n)

n2
< 1,

and

lim
n→∞

σ(n)ϕ(n)

n2
=

6

π2
, lim

n→∞

σ(n)ϕ(n)

n2
= 1.

Proposition 4.17. For n = 2k2 · · · qkq · · · p ∈ SA, we have

σ(n)

n
> {1− ε(p)} n

ϕ(n)
,

where

ε(p) =
1

log p

(

1 +
1.5

log p

)

.

Proof. It is enough to show that

∏

q≤p

(

1− 1

qkq+1

)

> 1− 1

log p

(

1 +
1.5

log p

)

.

Hence, using logarithmic inequality

log

(

1− 1

t

)

> − 1

t− 1
, (t > 1),

and Theorem 4.4 and Lemma 3.6, we obtain

log
∏

q≤p

(

1− 1

qkq+1

)

=
∑

q≤p

log

(

1− 1

qkq+1

)

> −
∑

q≤p

1

qkq+1 − 1

>−
∑

q≤p

1

qlog p/ log q − 1
= −

∑

q≤p

1

p− 1

=− π(p)

p− 1
> − 1

p− 1

p

log p

(

1 +
1.2762

log p

)

>− 1

log p

(

1 +
1.5

log p

)

, (p ≥ 23).

Therefore, taking the exponential of both sides and using e−x > 1− x we get

∏

q≤p

(

1− 1

qkq+1

)

> 1− 1

log p

(

1 +
1.5

log p

)

, (p ≥ 23).

For p < 23, we use computation.
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Proposition 4.18. Let n = 2k · · · p ∈ SA. Then

lim
n→∞

σ(n)

n log logn
= eγ .

More precisely,
σ(n)

n log logn
< eγ

(

1 +
0.3639 . . .

(log logn)2

)

, (n ≥ 3)

and for large enough n ∈ SA

σ(n)

n log logn
> eγ

(

1− 2

log logn

)

. (4.9)

Proof. The first inequality is exactly (1.4), where 0.3639 . . . = (0.6482 . . .)e−γ .

By using Proposition 4.17, Lemma 3.12 and Corollary 4.16, we have for large enough n

σ(n)

n
> {1− ε(p)} eγ(log p)

(

1− 0.2

log2 p

)

=eγ(log p)

{

1− 1

log p

(

1 +
1.5

log p

)}(

1− 0.2

log2 p

)

>eγ(log logn)

(

1− 2

log log n

)

.

Lemma 4.19. Let

g(n) = σ(n)− n.

Then g is increasing for an ∈ SA.

Proof. Let an, an+1 ∈ SA. By definition of superabundant numbers

σ(an+1)

an+1
>
σ(an)

an
> 1, (n > 1).

Therefore,

σ(an+1)

σ(an)
>
an+1

an
⇒σ(an+1)

σ(an)
− 1 >

an+1

an
− 1

⇒σ(an)

(

σ(an+1)

σ(an)
− 1

)

> an

(

an+1

an
− 1

)

⇒σ(an+1)− an+1 > σ(an)− an.

Proposition 4.20. Let

g(n) =
σ(n)σ(n)

nn
.

Then g is increasing for an ∈ SA.
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Proof. Indeed, from definition of SA numbers and Lemma 4.19

σ(an+1)
σ(an+1)

(an+1)an+1
=

(

σ(an+1)

an+1

)σ(an+1)

(an+1)
σ(an+1)−an+1

>

(

σ(an)

an

)σ(an+1)

(an+1)
σ(an)−an

>

(

σ(an)

an

)σ(an)

(an)
σ(an)−an

=
σ(an)

σ(an)

(an)an
.

Now we give a stronger lemma.

Theorem 4.21. Let

g(n) = σ(n)− n log logn.

Then g is increasing for large enough n ∈ SA.

Proof. Let n, n′ be two consecutive superabundant numbers. By Lemma 3.2, Proposition 4.2

and inequality (3.1), with c = 2, x = n, y = n′, we have

1

n′/n− 1

(

n′

n

log logn′

log logn
− 1

)

≤ 2
log log(2n)

log logn
− 1

<1 + 2
log 2

logn log logn

<
log log 12

log log 6
, (n ≥ 24).

This gives
n′

n
− 1 >

log log 6

log log 12

(

n′

n

log logn′

log logn
− 1

)

. (4.10)

By definition of SA numbers
σ(n′)

σ(n)
>
n′

n
.

Hence, via (4.10) we derive

σ(n′)

σ(n)
− 1 >

n′

n
− 1

=
log log 6

log log 12

n′ log logn′

n log logn
− log log 6

log log 12

n′ log logn′

n log logn
+
n′

n
− 1

>
log log 6

log log 12

(

n′ log logn′

n log logn
− 1

)

. (4.11)

18



On the other hand since log log 12
log log 6 < 1.56077 < eγ , by Proposition 4.18, for large enough n

σ(n) >
log log 12

log log 6
(n log logn). (4.12)

Multiplying both sides of (4.11) and (4.12), we have

σ(n′)− σ(n) > n′ log logn′ − n log logn.

Therefore,

σ(n′)− n′ log logn′ > σ(n)− n log logn.

Proposition 4.22. Let

g(n) =
σ(n)σ(n)

(n log logn)n log log n
.

Then g is increasing for large enough n ∈ SA.

Proof. By Proposition 4.18 we have for large enough n ∈ SA

σ(n) >
3

2
n log logn. (4.13)

We show that for two consecutive superabundant n, n′

σ(n′)σ(n
′)

(n′ log logn′)n′ log log n′
>

σ(n)σ(n)

(n log logn)n log logn
.

Indeed,

σ(n′)σ(n
′)

σ(n)σ(n)
(n log logn)n log logn

(n′ log logn′)n′ log logn′
=

(

σ(n′)

σ(n)

)σ(n′)(
n log logn

n′ log logn′

)n′ log logn′

(4.14)

×
{

σ(n)σ(n
′)−σ(n)

(n log logn)n′ log logn′−n log logn

}

.

By Theorem 4.21, the term inside {} is greater than 1. Moreover,

(

σ(n′)

σ(n)

)σ(n′)(
n log logn

n′ log logn′

)n′ log logn′

>

(

n′

n

)σ(n′)(
n log logn

n′ log logn′

)n′ log logn′

=

(

n′

n

)σ(n′)−n′ log log n′
(

log logn

log logn′

)n′ log logn′

.

However, due to (4.13) the right-hand side of the equality is greater than

(

n′

n

)
1
2
n′ log logn′

(

log logn

log logn′

)n′ log logn′

. (4.15)

Finally appealing to Lemma 3.3 we conclude that (4.15) is > 1.
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Proposition 4.23. Let A = {an} be a sequence for which any prime factor of an be a prime

factor of an+1, and

g(n) =
n

ϕ(n)
,

Then g is increasing for an ∈ A.

Proof. If p(an+1) = p(an), it is clear. Let p(an+1) = pk+1 > pk = p(an)

an+1/ϕ(an+1)

an/ϕ(an)
=

∏k
j=1(1− 1/pj)

∏k+1
j=1 (1− 1/pj)

=
1

1− 1/pk+1
> 1

Proposition 4.24. Let p(an+1) ≥ p(an),

g(n) =
σ(n)

ϕ(n)
,

then g is increasing for an ∈ SA.

Proof. We have

σ(an+1)

ϕ(an+1)
>
an+1

an

σ(an)

ϕ(an+1)
=

an+1

ϕ(an+1)

σ(an)

an
≥ an
ϕ(an)

σ(an)

an
=
σ(an)

ϕ(an)
.

Let Ψ(n) denote Dedekind’s arithmetical function of n which is defined by

Ψ(n) = n
∏

p|n

(

1 +
1

p

)

, Ψ(1) = 1,

where the product is taken over all primes p dividing n.

Proposition 4.25. If p(an+1) ≥ p(an), then

σ(n)Ψ(n)

nn
.

is increasing for an ∈ SA.

Proof. Let p(an+1) ≥ p(an). Then

Ψ(an+1)− an+1 > Ψ(an)− an.

20



So that

σ(an+1)
Ψ(an+1)

(an+1)an+1
=

(

σ(an+1)

an+1

)Ψ(an+1)

a
Ψ(an+1)−an+1

n+1 >

(

σ(an)

an

)Ψ(an+1)

a
Ψ(an+1)−an+1

n+1

>

(

σ(an)

an

)Ψ(an)

a
Ψ(an+1)−an+1

n+1 >

(

σ(an)

an

)Ψ(an)

aΨ(an)−an

n

=
σ(an)

Ψ(an)

(an)an
.

Colossally Abundant Numbers A colossally abundant number is a positive integer N for

which there exists an ε > 0 such that

σ(N)

N1+ε
≥ σ(n)

n1+ε
, (n > 1). (4.16)

It is easily seen that CA ⊂ SA.

For ε > 0, we define x = x1 and

F (x, 1) =
log(1 + 1/x)

log x
= ε, (4.17)

F (xk, k) =
log(1 + 1/(xk + · · ·+ xkk))

log x
= ε.

If N =
∏

p p
νp(N) is a CA number of parameter ε and p divides N with νp(N) = k, then applying

(4.16) with n = Np yields

ε ≥ F (p, k + 1) i.e. p ≥ xk+1

while, if k > 0, applying (4.16) with n = N/p yields

ε ≤ F (p, k), i.e. p ≤ xk (4.18)

Let K be the largest integer such that xK ≥ 2. Then from ((4.18), for all p’s we have 2 ≤ p ≤ xk

and

k = νp(N) ≤ K

Now define the set

E := {F (p, k) : p is prime and k ≥ 1}.

If ε /∈ E , then no xk is a prime and there exists a unique CA number N = N(ε) of parameter ε;

moreover, N is given by either

Nε =

x
∏

p=2

pkp , (xkp+1 < p < xkp
) (4.19)
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or

N =

K
∏

k=1

∏

p<xk

p. (4.20)

If ε ∈ E , then some xk is prime, and it is highly probable that only one xk is prime. But from

theorem of six exponentials it is only possible to show that at most two xk’s are prime. Therefore,

there are either two or four CA numbers of parameter ε, defined by

N =

K
∏

k=1

∏

p<xk
or

p≤xk

p. (4.21)

Here, if xk is a prime p for some k, then p may or may not be a factor in the inner product. (This

can occur for at most two values of k.) In other words, if xk−1 < p < xk, then the exponent

νp(N) of p in N is k, while if p = xk , the exponent may be k or k− 1. In particular, if N is the

largest CA number of parameter ε, then

F (p, 1) = ε⇒ p(N) = p (4.22)

where p(N) is the largest prime factor of N . Note that, since if ε /∈ E , then xk is not prime,

formula (4.20) gives the same value as (4.21). Therefore, for any ε, formula (4.21) gives all

possible values of a CA number N of parameter ε ([6]). For more details we refer to [2], [12],

[26] and [6].

It was proved by Robin ([26], Proposition 1) that the maximum order of the function f

defined by (1.2) is attained in a colossally abundant number.

Theorem ([26], Prop. 1). If 3 ≤ N ≤ n ≤ N ′, where N and N ′ are two successive colossally

abundant numbers, then

f(n) ≤ max{f(N), f(N ′)}. (4.23)

This fact shows, that if there is a counterexample to (1.1), then there exists at list one

colossally abundant number which violates it.

Corollary 4.26. Let N < N ′ be two consecutive CA numbers. If there exists an XA number

n > 10080 satisfying N < n < N ′, then N ′ is also an XA.

Proof. Let N < N ′ be two consecutive CA number. If 10080 < n ∈ XA is such thatN < n < N ′,

then put

X = {m ∈ XA : N < m < N ′}.

By the assumption as n ∈ XA, we have X 6= ∅. Let n′ = maxX . Since n′ ∈ XA and n′ > N ,

then f(n′) > f(N). From inequality (4.23) we must have f(n′) < f(N ′). Hence, N ′ ∈ XA.
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Remark 4.27. In the case N < n = 10080 < N ′, we have N = 5040, N ′ = 55440 and

f(N) ≈ 1.790973367, f(n) ≈ 1.755814339, f(N ′) ≈ 1.751246515.

Hence inequality (4.23) satisfies with f(n) < f(N) = max{f(N), f(N ′)}.

Theorem 4.28. If RH holds, then there exist infinitely many CA numbers that are also XA.

Proof. If RH holds, then by Theorem 2.4, #XA = ∞. Let n be in XA. Since #CA = ∞ (see

[2], [12]), there exist two successive colossally abundant numbers N, N ′ such that N < n ≤ N ′.

If N ′ = n then it is readily in XA, otherwise N ′ belongs to XA via Corollary 4.26.

It can be seen that there exist infinitely many CA numbers N for which the largest prime

factor p is greater than logN . For this purpose, we use the following lemma

Lemma 4.29 ([6], Lemma 3). Let N be a CA number of parameter ε < F (2, 1) = log(3/2)/ log 2

and define x = x(ε) by (4.17). Then

(i) for some constant c > 0

logN ≤ ϑ(x) + c
√
x.

(ii) Moreover, if N is the largest CA number of parameter ε, then

ϑ(x) ≤ logN ≤ ϑ(x) + c
√
x.

Lemma 4.30 ([6], Lemma 4). There exists a constant c > 0 such that for infinitely many primes

p we have

ϑ(p) < p− c
√
p log log log p, (4.24)

and for infinitely many other primes p we have

ϑ(p) > p+ c
√
p log log log p.

Theorem 4.31. There are infinitely many CA numbers Nε, such that logNε < p(Nε).

Proof. Choose p as in (4.24) and Nε the largest CA-number of parameter

ε = F (p, 1).

Then, from (4.22), one has p(Nε) = p. By Lemma 4.29(ii)

logNε − ϑ(p) < c
√
p, (for some c > 0).

On the other hand, by Lemma 4.30, There exists a constant c′ > 0 such that for infinitely many

primes p we have

ϑ(p)− p < −c′√p log log log p, (c′ > 0).

Hence, for any x0, there exists an x > x0 such that

logNε − p < {c− c′ log log log p}√p < 0.

We get the desired result.
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Extremely Abundant Numbers Returning to extremely abundants, we present some prop-

erties of them.

Theorem 4.32. Let n = 2k2 · · · p be an extremely abundant number. Then

p < logn.

Proof. For n = 10080 we have

p(10080) = 7 < 9.218 < log(10080).

Let n > 10080 be an extremely abundant number and m = n/p. Then m > 10080, since the

only superabundant numbers between 10080 and 11 × 10080 are {10080, 15120, 25200, 27720,
55440, 110880} and computation shows that non of them are in XA. Hence by definition

σ(n)/n

σ(m)/m
>

log logn

log logm
.

So

1 +
1

p
>

log logn

log logm
⇒ 1

p
>

log(1 + log p/ logm)

log logm
.

Using inequality (3.3) we have

1

p
>

log p

logn log logm
>

log p

logn log logn
⇒ p < logn.

We mention a similar result proved by Choie et al.

Proposition 4.33 ([7], Lemma 6.1). Let t ≥ 2 be fixed. Suppose that there exists a t-free integer

exceeding 5040 that does not satisfy Robin’s inequality. Let n = 2k2 · · · p be the smallest such

integer. Then p < logn.

In the previous section we showed that, if RH holds, then there exist infinitely many CA

numbers that are also XA. Next theorem is a conclusion of Theorems 4.31 and 4.32 which is

independent of RH.

Theorem 4.34. There exist infinitely many CA numbers that are not XA.

Theorem 4.35. Let

g(n) =
σ(n) + ϕ(n)

n
.

For two consecutive extremely abundant numbers n = 2k · · · p and n′ = 2k
′ · · · p′, if p′ ≥ p and

log(n′/n) > 1/ log p, then g(n) < g(n′) for large enough n, n′ ∈ XA.
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Proof. If the largest primes of n and n′ are equal, it is clear. Let p′ = pk+1 > pk = p. If

n > 10080 is extremely abundant, then

σ(n)

n log logn
>

σ(10080)

10080 log log 10080
> 1.75.

Using inequality (3.3), Proposition 4.15, Lemma 3.12 and Lemma 3.11, we deduce for large

enough n

σ(n′)

n′
+
ϕ(n′)

n′
− σ(n)

n
− ϕ(n)

n

>
σ(n)

n

log log n′ − log logn

log logn
− 1

pk+1

k
∏

j=1

(

1− 1

pj

)

>1.75 log
logn′

logn
− 1

pk+1

k
∏

j=1

(

1− 1

pj

)

>1.75
log(n′/n)

logn′
− 1

pk+1

k
∏

j=1

(

1− 1

pj

)

>1.75
log(n′/n)

logn′
− 1

pk+1

e−γ

log pk

(

1 +
0.2

log2 pk

)

>1.75
log(n′/n)

pk+1(1 +
0.5

log pk+1
)
− 1

pk+1

e−γ

log pk

(

1 +
0.2

log2 pk

)

>
1

pk+1 log pk

{

1.75

(1 + 0.5
log pk+1

)
− e−γ

(

1 +
0.2

log2 pk

)

}

>0.

Remark 4.36. We checked that the assumptions in Theorem 4.35 hold up to 8150-th element of

XA.

5 Numerical experiments

In this section we give some numerical results for the set of extremely abundant numbers up to

its 13770-th element, which is less than C1 = s500,000 (i.e. 500, 000-th superabundant number)

basing on the list provided by T. D. Noe [21]. We examined Property 1 to 4 and Remark 1 below

for the corresponding extremely abundant numbers extracted from the list.

Property 5.1. Let n = 2k2 · · · qkq · · · rkr · · · p be an extremely abundant number, where 2 ≤ q <

r ≤ p. Then for 10080 < n ≤ C1

(i) logn < qkq+1,
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(ii) rkr < qkq+1 < rkr+2,

(iii) qkq < kqp,

(iv) qkq log q < logn log logn < qkq+2.

Property 5.2. Let n = 2k2 · · ·xkk. · · · p be an extremely abundant number, where 2 < xk < p is

the greatest prime factor of exponent k. Then

√
p < x2 <

√

2p, for 10080 < n ≤ C1.

Property 5.3. Let n = 2α2 · · · qαq · · · p and n′ = 2β2 · · · qβq · · · p′ be two consecutive extremely

abundant numbers greater than 10080. Then for 10080 < n ≤ C1

αq − βq ∈ {−1, 0, 1}, for all 2 ≤ q ≤ p′.

Property 5.4. If m,n are extremely abundant and m < n, then for 10080 < n ≤ C1

(i) p(m) ≤ p(n),

(ii) d(m) ≤ d(n).

Remark 5.5. Note that the latter Property does not imply that an extremely abundant number

to be a highly composite one. For example,

n1 = (139♯)(13♯)(5♯)(3♯)2(2)4,

n2 = (149♯)(13♯)(7♯)(5♯)(3♯)(2)5,

n3 = (151♯)(13♯)(5♯)(3♯)2(2)3.

n1, n3 are consecutive extremely abundant numbers and n3 > n2 > n1;

f(n3) > f(n2) , but d(n3) < d(n2).

Remark 5.6. We note that Property 5.4 is not true for superabundant numbers. For example

s47 = (19♯)(3♯)22, s48 = (17♯)(5♯)(3♯)23, p(s48) = 17 < 19 = p(s47).

and

s173 = (59♯)(7♯)(5♯)(3♯)223, s174 = (61♯)(7♯)(3♯)222,
d(s174)

d(s173)
=

35

36
< 1,

where sk denotes k-th superabundant number.
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Using Table of superabundant and colossally abundant numbers in [21] we have

#{n ∈ XA : n < C} = 24, 875,

#{n ∈ CA : n < C} = 21, 187,

#{n ∈ CA ∩XA : n < C} = 20, 468,

#{n ∈ CA \XA : n < C} = 719,

#{n ∈ XA \ CA : n < C} = 4407,

where C = s1000,000.
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n Type f(n) p(n) logn k2

1 (7♯)(3♯)23 = 10080 s 1.75581 7 9.21831 5

2 (113♯)(13♯)(5♯)(3♯)223 c 1.75718 113 126.444 8

3 (127♯)(13♯)(5♯)(3♯)223 c 1.75737 127 131.288 8

4 (131♯)(13♯)(5♯)(3♯)223 c 1.75764 131 136.163 8

5 (137♯)(13♯)(5♯)(3♯)223 c 1.75778 137 141.083 8

6 (139♯)(13♯)(5♯)(3♯)223 c 1.75821 139 146.018 8

7 (139♯)(13♯)(5♯)(3♯)224 c 1.75826 139 146.711 9

8 (151♯)(13♯)(5♯)(3♯)223 s 1.75831 151 156.039 8

9 (151♯)(13♯)(5♯)(3♯)224 c 1.75849 151 156.732 9

10 (151♯)(13♯)(7♯)(3♯)224 c 1.75860 151 158.678 9

Table 1: First 10 extremely abundant numbers ( s is superabundant, c is colossally abundant

and pk♯ =
∏k

j=1 pj).

Remark 5.7. Here the so-called primorial of a prime p is denoted by p♯ and this is an analog of

the usual factorial for primes. The name was suggested by Dubner ([25], p. 12) and it is

pk♯ =

k
∏

i=1

pi.

The following properties has been checked up to C2 (250,000-th element of SA numbers) and

for 8150-th element of XA numbers in this domain.

Property 5.8. If n, n′ ∈ SA are consecutive, then

σ(n′)/n′

σ(n)/n
< 1 +

1

p ′
, (n′ < C2).

Property 5.9. If n, n′ ∈ XA are consecutive, then

n′

n
> 1 + c

(log logn)2

logn
, (0 < c ≤ 4, n′ < C2),

n′

n
> 1 + c

(log logn)2√
logn

, (0 < c ≤ 0.195, n′ < C2).

Property 5.10. If n, n′ ∈ XA are consecutive, then

f(n′)

f(n)
< 1 +

1

p ′
, (n′ < C2).
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The number of distinct prime factors of a number n is denoted by ω(n) ([28]). From Property

5.9 we easily can get

g(n) =
n

ω(n)

is increasing for n ∈ XA, where n < C2.

Property 5.11. The composition

σ

(

n

⌊

σ(n)

n

⌋)

is increasing for n ∈ SA, n < C2.

Property 5.12. Let g be

(1)
σ(n)ϕ(n)

nn
(2)

Ψ(n)ϕ(n)

nn
.

Then, g is decreasing for n ∈ SA, n < C2.

Property 5.13. Let g be

(1)
Ψ(n)σ(n)

nn
(2)

ϕ(n)σ(n)

nn
, (an > a3)

(3)
ϕ(n)Ψ(n)

nn
, (an > a3, p(an+1) ≥ p(an)).

Then, g is increasing for n ∈ SA, n < C2.

Property 5.14. Let g be each of the following arithmetic functions:

(1)
ϕ(n)

ϕ(ϕ(n))
(2)

n

ϕ(ϕ(n))

(3) d(n)ω(n) (4) ω(ϕ(n)).

Then g is increasing for n ∈ XA, n < C2.

Property 5.15. The compositions

(1) ϕ

(

n

⌊

σ(n)

n

⌋)

(2) ϕ

(

n

⌊

n

ϕ(n)

⌋)

(3) ϕ

(

n

⌊

Ψ(n)

n

⌋)

are increasing for n ∈ XA, n < C2.

Property 5.16. Let g(m) = lcm(1, 2, . . . ,m). Let n = 2k2 · · · p ∈ SA, then

f(n) > f(g(p)), (s49 < n < C2)
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