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HURWITZIAN CONTINUED FRACTIONS CONTAINING A

REPEATED CONSTANT AND AN ARITHMETIC PROGRESSION

GÁBOR HETYEI

Abstract. We prove an explicit formula for infinitely many convergents of Hur-
witzian continued fractions that repeat several copies of the same constant and ele-
ments of one arithmetic progression, in a quasi-periodic fashion. The proof involves
combinatorics and formal Laurent series. Using very little analysis we can express
their limits in terms of (modified) Bessel functions and Fibonacci polynomials. The
limit formula is a generalization of Lehmer’s theorem that implies the continuous frac-
tion expansions of e and tan(1), and it can also be derived from Lehmer’s work using
Fibonacci polynomial identities. We completely characterize those implementations
of our limit formula for which the parameter of each Bessel function is the half of an
odd integer, allowing them to be replaced with elementary functions.

Introduction

It is a remarkable property of infinite continued fractions that they often define a
sequence whose limit is easier to describe than the individual entries. Even for [1, 1, . . .],
the simplest example, the limit is easily found by solving a quadratic equation, but it
takes a bit longer to find a formula for the convergents, in terms of Fibonacci numbers.

The subclass of Hurwitzian (see Section 1.2) continued fractions of the form

[α, . . . , α︸ ︷︷ ︸
r

, β0, α, . . . , α, β0 + β1 · n︸ ︷︷ ︸
d

]∞n=1

that we propose investigating seems to be no different in this regard. For the special
case d = 1 and r = 0, D. H. Lehmer [9] proved a formula for the limit in terms of
Bessel functions, that can be verified easily, after having guessed the correct answer.
Using another result from [9] and some Fibonacci polynomial identities, it is not hard
to generalize Lehmer’s formula to Hurwitzian continued fractions of the above form (see
Remark 2.10). The resulting generalization has several famous special cases, the most
famous ones being Euler’s formula for e and the formula for tan(1). On the other hand,
the only research regarding the convergents themselves seems to be the work [8] of D.
N. Lehmer (D. H. Lehmer’s father!), who proved congruences for their numerators and
denominators by induction, in somewhat greater generality, but without stating the
values of the convergents in an explicit fashion.

Our work contains such an explicit formula, stated in Section 2 and proved in Sec-
tion 4. A variant of the Euler-Mindig formulas using shifted partial denominators yields
a summation formula with many vanishing terms. This leads to a compact recurrence
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for the numerators of the (nd + r − 1)st convergents that may be restated as a lin-
ear differential equation for a formal Laurent series. Classical textbooks on differential
equations instruct us to solve the associated homogeneous equation first and then find
the general solution by “variation of parameters”. Unfortunately, in our case the “so-
lution” of the homogeneous equation turns out to be a a two-way infinite formal sum.
After discarding infinitely many terms to have a formal Laurent series, the “spirit” of
the classical method still inspires a good guess for a form of the solution, where the
transformed differential equation encodes a recurrence that is easily solved by inspec-
tion. Returning to the original Laurent series involves using two polynomial summation
formulas that can be shown purely combinatorially, and seem to be interesting by their
own right. These formulas are shown in Section 3. As outlined in Section 2, our explicit
formulas for the (nd + r − 1)st convergents allow us to calculate the limits using very
little analysis. To find only the limits, this approach is a bit more tedious than the
one outlined in Lehmer’s work [9], but we gain a little more insight by also obtaining
asymptotic formulas for the numerators and the denominators of the convergents.

Section 5 is motivated by Komatsu’s recent remark [7] stating that all known exam-
ples of Hurwitzian continued fractions seem to have a short quasi-period and involve
(hyperbolic) trigonometric functions. For our class of Hurwitzian continued fractions,
the limit may be expressed in terms of (modified) Bessel functions, which are only
known to have an elementary form when their order is the half of an odd integer, and
then they are rational expressions of radical and (hyperbolic) trigonometric functions.
We describe all such continued fractions in our class, and find that their quasi-period d
can not be longer than 3. This result illustrates some of the obstacles in the way to an
elementary limit formula for a Hurwitzian continued fraction with a longer quasi-period:
unless an almost miraculous simplification occurs in an expression of Bessel functions of
the “wrong” order, the sequence of partial denominators must be complicated enough
to be outside the class studied in the present work. Finally, in Section 6 we provide
an analogous description of all continued fractions in our class for which the limit is
expressed in terms of Bessel functions of integer order. These Bessel functions are not
known to be elementary, but they are still widely studied. Calculating every third
convergent for a simple example in this class turns out to be equivalent to calculating
all convergents of a generalized continued fraction. This “coincidence” seems worth a
second look in the future.

Our work inspires several questions. Extending the validity of our formulas to all con-
vergents of the same class seems to require much more index management but only a few
more ideas. As indicated by Lehmer [9], the calculation of the limits is easily extended
to the class of Hurwitzian fractions whose quasi-periodic part contains several different
constants and one arithmetic sequence. An explicit formula for the convergents should
be obtained using some multivariate generalization of Fibonacci polynomials. The ideas
used in our calculations of the convergents may also be useful in finding convergents of
other Hurwitzian continued fractions. Finally, as indicated in Sections 3 and 4, there
is combinatorics behind the formulas for the convergents. This combinatorics would
be worth uncovering. A good starting point may be revisiting the weighted lattice-
path model proposed in Flajolet’s work [3], where convergents of generalized continued
fractions arise as weights of infinite lattice paths of limited height.
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1. Preliminaries

1.1. Continued fractions. A good reference on the basic facts of the subject is Per-
ron’s classic work [13, 14]. A generalized finite continued fraction is an expression of
the form

a0 +
b1

a1 +
b2

a2 +
.. .

bn−1

an−1 +
bn

an

, (1.1)

where the initial term a0, the partial denominators a1, . . . , an and the partial numerators
b1, . . . , bn may be numbers or functions. An infinite continued fraction is obtained
by letting n go to infinity. The arising questions of convergence have a reassuring
answer for continued fractions where all bi equal 1, the initial term a0 is an integer,
and the partial denominators ai (for i > 0) are positive integers. Many sources refer
to generalized continued fractions of the form (1.1) as continued fractions and use the
term “simple continued fraction” where we use “continued fraction”. All continued
fractions in the present work are “simple” by default, and we will use the distinguishing
adjective “generalized” at the rare occasion when it is needed. Every rational number
may be written uniquely as a finite continued fraction, subject to the restriction that
the last partial denominator is at least 2 [13, §9, Satz 2.1]. Every infinite continued
fraction converges to an irrational number and every irrational number may be uniquely
written as a (necessarily infinite) continued fraction [13, §12, Satz 2.6]. As usual, for
a finite, respectively infinite, continued fraction we will use the shorthand notations
[a0, a1, . . . , an] and [a0, a1, . . .], respectively. An infinite continued fraction [a0, a1, . . .] is
the limit of its convergents, that is, of the finite continued fractions [a0, . . . , an], obtained
by reading the first n partial denominators. The convergents

[a0, . . . , an] =
pn
qn

(1.2)

may be recursively computed from the initial conditions p−1 = 1, p0 = a0, q−1 = 0 and
q0 = 1, and from the recurrences pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 for n ≥ 1,
cf. [13, §2, Eq. (12), (13)]. The integers pn and qn are relative prime for all n [13, §9,
Satz 2.1]. The Euler-Mindig formulas, derived for generalized continued fractions in
[13, §3], allow to express the numerators pn and the denominators qn directly.

Definition 1.1. We call a set S of integers even if it is the disjoint union of intervals
of even cardinality. Given two sets of integers S and T such that S ⊆ T , we say that
T evenly contains S, denoted by S ⊆e T or T ⊇e S, if T \ S is an even set.

Thus, for example {5} ⊆e {1, . . . , 7} since the difference {1, 2, 3, 4, 6, 7} is the disjoint
union of {1, . . . , 4} and {6, 7}, whereas {4} 6⊆e {1, . . . , 4} as {1, 2, 3} can not be written
as the disjoint union of intervals of even cardinality. The Euler-Mindig formulas for
continued fractions may be restated as

pn =
∑

S⊆e{0,...,n}

∏

i∈S

ai and qn =
∑

S⊆e{1,...,n}

∏

i∈S

ai. (1.3)
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The following observation is an immediate consequence of Eq. (1.3).

Lemma 1.2. The denominator qn associated to [a0, a1, . . .] is the same as the numerator
pn−1 associated to [a1, a2, . . .].

1.2. Hurwitzian continued fractions. A Hurwitzian continued fraction is a contin-
ued fraction of the form [a0, . . . , ah, φ0(λ), . . . , φk−1(λ)]

∞
λ=0, where φ0, . . . , φk−1 are poly-

nomial functions that send positive integers into positive integers. The definition given
in [13, §32] is easily seen to be equivalent. In the most trivial examples of a Hurwitzian
continued fraction all functions φj are constants, we then obtain a periodic continued
fraction. The set of real numbers represented by a periodic continued fraction is exactly
the set of quadratic irrationals [13, §20]. It should be noted that quadratic irrationals
are excluded from the definition of Hurwitzian continued fractions in some recent pa-
pers [7], by requiring that at least one of the repeatedly used polynomial functions be
non-constant. A real number is Hurwitzian if its continued fraction representation is a
Hurwitzian continued fraction. A famous Hurwitzian number is

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .],

see [13, §34, Eq. (10)]. The main result on Hurwitzian numbers is Hurwitz theorem [13,
§33] stating that for a Hurwitzian number ξ0 ∈ R, and any rational numbers a, b, c, d,
satisfying ad − bc 6= 0, the number (aξ0 + b)/(bξ0 + d) is also a Hurwitzian number.
Hurwitz theorem provides also some estimate on the degrees of the polynomial functions
appearing in the continued fraction representation of (aξ0+ b)/(bξ0 + d), remains silent
however on the issue how the length of the period may be affected by the fractional
linear transformation ξ0 7→ (aξ0 + b)/(bξ0 + d). A generalization of Hurwitz theorem
may be found in [16].

Hurwitzian numbers may be computed from their continued fraction representation
in some special cases, the expansion of the set of examples is subject of ongoing research.
A frequently overlooked first attempt may be found in Perron’s book [14, §48, Satz 6.3]
which states (without proof) a formula for generalized continued fractions of the form
(1.1) having the property that the partial numerators bi are all equal, and that the
numbers ai form an arithmetic sequence. For continued fractions, Perron’s result gives

[β0, β0 + β1, β0 + 2β1, β0 + 3β1, . . .] = β1

∞∑
n=0

1

β2n
1 n!Γ

(

β0
β1

+n
)

∞∑
n=0

1

β2n
1 n!Γ

(

β0
β1

+n+1
)

. (1.4)

The same class of Hurwitzian continued fractions was revisited by D. H. Lehmer [9],
who proved the following formula.

[β0, β0 + β1, β0 + 2β1, β0 + 3β1, . . .] = Iβ0/β1−1(2β
−1
1 )/Iβ0/β1

(2β−1
1 ) (1.5)

where Iν(z) is the modified Bessel function of the first kind

Iν(z) =
∞∑

m=0

(z/2)ν+2m

Γ(m+ 1)Γ(ν +m+ 1)
. (1.6)

D. H. Lehmer’s result was generalized in recent papers to other Hurwitzian continued
fractions [5, 7, 11]. Some analogous results were found for Tasoev continued fractions
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[5, 6, 11, 12], defined as continued fractions of the form [a0; a
k, . . . , ak︸ ︷︷ ︸

m

]∞k=1. As pointed

out by T. Komatsu [7], most of these recent results involve Hurwitzian and Tasoev
continued fractions where the length of the quasi-period does not exceed 3, Komatsu’s
work [7] contains some sophisticated examples of longer quasi-periods.

1.3. Bessel functions. Besides the modified Bessel functions Iν(x), our formulas will
also involve the (original) Bessel functions of the first kind

Jν(z) =

∞∑

m=0

(−1)m(z/2)ν+2m

Γ(m+ 1)Γ(ν +m+ 1)
. (1.7)

There is an elementary expression for the functions Iν(z) and Jν(z) respectively, when-
ever ν is the half of an odd integer. Indeed, using Γ(1/2) =

√
π and Γ(z + 1) = zΓ(z),

it is easy to derive directly from the definitions (1.6) and (1.7) that we have

I−1/2(z) =

√
2

πz
cosh(z), I1/2(z) =

√
2

πz
sinh(z), (1.8)

J−1/2(z) =

√
2

πz
cos(z), and J1/2(z) =

√
2

πz
sin(z). (1.9)

(see [10, List of formulæ: 44, 48, 182, 186]). The functions Iν(z) and Jν(z) satisfy very
similar recurrence formulas:

Iν+1(x) = Iν−1(x)−
2ν

x
Iν(x) and Jν+1(x) = −Jν−1(x) +

2ν

x
Jν(x),

see [1, 9.1.27, 9.6.26]. These allow us to find explicit elementary expressions for Iν(z)
and Jν(z), whenever ν is the half of an odd integer. In particular, for ν = 3/2, we
obtain

I3/2(x) =

√
2

πx

(
cosh(x)− sinh(x)

x

)
and J3/2(x) =

√
2

πx

(
sin(x)

x
− cos(x)

)
,

(1.10)
see [10, List of formulæ: 45, 183].

1.4. Fibonacci and Lucas polynomials. The Fibonacci and Lucas polynomials are
q-analogues of the usual Fibonacci and Lucas numbers.

Definition 1.3. We define the Fibonacci polynomials Fn(q) and the Lucas polynomials
Ln(q) by the initial conditions F0(q) = 0, F1(q) = 1, L0(q) = 2 and L1(q) = q; and by
the common recurrence Xn(q) = q · Xn−1(q) + Xn−2(q) for n ≥ 2, where the letter X
should be replaced by either F or L throughout the defining recurrence.

Fibonacci and Lucas polynomials are widely studied, they even have their own Math-
world and Wikipedia entries. As a sample reference on Fibonacci polynomials see Yuang
and Zhang [17], for further generalizations, see Cigler [2].

The coefficients of the Fibonacci and Lucas polynomials are listed as sequences
A102426 and A034807 in the Online Encyclopedia of Integer Sequences [15]. In a
recent work of Foata and Han [4] the coefficient of qn+1−m in Fn+1(q) appears as the
number of t-compositions of n into m parts. Here we record another combinatorial
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interpretation. The coefficient of qn+1−m in Fn+1(q) is the number of m-element even
sets contained in {1, . . . , n}:

Fn+1(q) =
∑

∅⊆eS⊆{1,...,n}

qn−|S| =
∑

S⊆e{1,...,n}

q|S|. (1.11)

Eq. (1.11) may be shown by induction on n, using the defining recurrence. Just like for
the usual Fibonacci and Lucas numbers, a closed formula for Fn(q) and Ln(q) may be
obtained after solving the characteristic equation. We have

Fn(q) =
1√

q2 + 4
(ρn1 − ρn2 ) and (1.12)

Ln(q) = ρn1 + ρn2 (1.13)

where

ρ1 =
q +

√
q2 + 4

2
and ρ2 =

q −
√
q2 + 4

2
. (1.14)

2. Our main result

All our results will be about Hurwitzian continued fractions of the form

ξ(α, β0, β1, d, r) := [α, . . . , α︸ ︷︷ ︸
r

, β0, α, . . . , α, β0 + β1 · n︸ ︷︷ ︸
d

]∞n=1

where α, β0, β1 and d are positive integers and and r is a nonnegative integer. In order
to state them we need to introduce two magic numbers associated to such a continued
fraction.

Definition 2.1. The magic sum associated to ξ(α, β0, β1, d, r) is the sum

σ(α, β0, β1, d, r) =
β0 − α

β1

+
Ld(α)

β1Fd(α)
,

the magic quotient associated to ξ(α, β0, β1, d, r) is the quotient

ρ(α, β0, β1, d, r) =
(−1)d−1

β2
1 · Fd(α)2

.

Whenever this does not lead to confusion, we will omit the parameters (α, β0, β1, d, r)
and denote the magic numbers simply by σ and ρ, respectively. Note that σ does not
depend on r and that ρ depends only on α, β1 and d. Our main result is the following.

Theorem 2.2. The (nd + r − 1)st convergent of ξ(α, β0, β1, d, r) may be written as
pnd+r−1/qnd+r−1 where pnd+r−1 is given by

pnd+r−1

Fd(α)nβn
1

= Fr+1(α)

⌊n/2⌋∑

k=0

(n− k)!

k!

(
n + σ − 1− k

n− 2k

)
ρk + (−1)d−rFd−r−1(α)·

Fd(α)β1

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n+ σ − 1− k

n− 2k − 1

)
ρk+1,
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and qnd+r−1 is given by

qnd+r−1

Fd(α)nβn
1

= Fr(α)

⌊n/2⌋∑

k=0

(n− k)!

k!

(
n + σ − 1− k

n− 2k

)
ρk + (−1)d+1−rFd−r(α)·

Fd(α)β1

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n+ σ − 1− k

n− 2k − 1

)
ρk+1.

We postpone the proof of Theorem 2.2 till Section 4. In this section we only show
how to find an asymptotic formula for the numerator and the denominator, which yields
essentially the same limit formula that can also be derived from Lehmer’s work [9].
This is the only part of our paper where the notion of limits and convergence from
analysis will be used, the proof of Theorem 2.2 will only involve purely algebraic and
combinatorial manipulations. We begin with estimating the magic sum σ.

Lemma 2.3. The magic sum σ is always positive.

Proof. Since β0 and β1 are positive, it suffices to prove that Ld(α) ≥ αFd(α) holds for
all positive integer α and all nonnegative integer d. This may be shown by induction
on d, using the common recurrence of the Fibonacci and Lucas polynomials. �

Corollary 2.4. The falling factorial (σ+n−1)n = (σ+n−1) · · · (σ) is always positive.
As a consequence, we may divide pnd+r−1/(Fd(α)

nβn
1 ), as well as qnd+r−1/(Fd(α)

nβn
1 )

by (σ + n− 1)n and ask whether these quotients converge as n goes to infinity. It will
turn out that they do.

Lemma 2.5. Let σ be any positive real number and ρ be any real number. Then

lim
n→∞

1

(σ + n− 1)n

⌊n/2⌋∑

k=0

(n− k)!

k!

(
n + σ − 1− k

n− 2k

)
ρk =

∞∑

m=0

ρm

m!(σ +m− 1)m
.

Proof. Note first that the series on the right hand side is absolute convergent for any
ρ as each of its term has smaller absolute value than the corresponding term of eρ/σ =∑∞

m=0 ρ
mσ−m/m!, an absolute convergent series. For any ε > 0 there is an M such that

∞∑

m=M+1

∣∣∣∣
ρm

m!(σ +m− 1)m

∣∣∣∣ <
ε

3
. (2.1)

Let us consider now the expression of n on the left hand side. It may be rewritten as

⌊n/2⌋∑

k=0

ρk

k!(σ + k − 1)k
· δn,k where δn,k =

(n− k)k
(σ + n− 1)k

.

The factor δn,k may be estimated as follows:
(
n− 2k + 1

σ + n− k

)k

≤ δn,k =
(n− k) · · · (n− 2k + 1)

(σ + n− 1) · · · (σ + n− k)
≤

(
n− k

σ + n− 1

)k

.

Our upper bound for δn,k is 1 for k = 0 and it is less than 1 for k > 0, since n+σ−1 >
n− 1 > n− k. For fixed k, our lower bound converges to 1 as n goes to infinity. Now,
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for all n > M we may write

⌊n/2⌋∑

k=0

ρk

k!(σ + k − 1)k
· δn,k =

M∑

k=0

ρk

k!(σ + k − 1)k
· δn,k +

⌊n/2⌋∑

k=M+1

ρk

k!(σ + k − 1)k
· δn,k

By our choice of M , and by |δn,k| ≤ 1, the second sum on the right hand side has
absolute value less than ε/3, for all n > M . As n goes to infinity, each of δn,0, . . . , δn,M
converges to 1, so there is an n0 ≥ M such that for all n > n0 we have

∣∣∣∣∣

M∑

k=0

ρk

k!(σ + k − 1)k
· δn,k −

M∑

k=0

ρk

k!(σ + k − 1)k

∣∣∣∣∣ <
ε

3
,

implying ∣∣∣∣∣∣

⌊n/2⌋∑

k=0

ρk

k!(σ + k − 1)k
· δn,k −

M∑

k=0

ρk

k!(σ + k − 1)k

∣∣∣∣∣∣
<

2ε

3
, (2.2)

Combining (2.1) and (2.2), we obtain
∣∣∣∣∣∣

⌊n/2⌋∑

k=0

ρk

k!(σ + k − 1)k
· δn,k −

∞∑

k=0

ρk

k!(σ + k − 1)k

∣∣∣∣∣∣
< ε for all n ≥ n0.

�

Lemma 2.6. Let σ be any positive real number and ρ be any real number. Then

lim
n→∞

1

(σ + n− 1)n

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n+ σ − 1− k

n− 2k − 1

)
ρk+1 =

∞∑

m=0

ρm+1

m!(σ +m)m+1

Proof. The proof is very similar to the proof of Lemma 2.5, thus we omit the details.
We only note that this time we have

1

(σ + n− 1)n

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n + σ − 1− k

n− 2k − 1

)
ρk+1 =

⌊(n−1)/2⌋∑

k=0

ρk+1

k!(σ + k)k+1

· δ′n,k

where

δ′n,k =
(n− k − 1)k
(σ + n− 1)k

.

Again |δ′n,k| ≤ 1 for all n and k and, for any fixed k, the limit of δ′n,k is 1 as n goes to
infinity. �

Combining Lemmas 2.5 and 2.6 with Theorem 2.2, we obtain

lim
n→∞

pnd+r−1

Fd(α)nβn
1 (σ + n− 1)n

= Fr+1(α)
∞∑

m=0

ρm

m!(σ +m− 1)m

+(−1)d−rFd−r−1(α)Fd(α)β1

∞∑

m=0

ρm+1

m!(σ +m)m+1

(2.3)
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and

lim
n→∞

qnd+r−1

Fd(α)nβ
n
1 (σ + n− 1)n

= Fr(α)
∞∑

m=0

ρm

m!(σ +m− 1)m

+(−1)d−r+1Fd−r(α)Fd(α)β1

∞∑

m=0

ρm+1

m!(σ +m)m+1
.

(2.4)
Taking the quotients of the right hand sides of (2.3) and (2.4), we obtain the following
formula for ξ = ξ(α, β0, β1, d, r):

ξ =

Fr+1(α)

∞∑

m=0

ρm

m!(σ +m− 1)m
+ (−1)d−rFd−r−1(α)Fd(α)β1

∞∑

m=0

ρm+1

m!(σ +m)m+1

Fr(α)

∞∑

m=0

ρm

m!(σ +m− 1)m
+ (−1)d−r+1Fd−r(α)Fd(α)β1

∞∑

m=0

ρm+1

m!(σ +m)m+1

.

(2.5)
This is the formula that could have been discovered in a “parallel universe” where
interest in Hurwitzian continued fractions were to arise a long time before defining
Bessel functions. We may restate Eq. (2.5) in terms of Bessel functions using the
following two obvious statements.

Lemma 2.7. For any positive ρ and σ we have

∞∑

m=0

ρm

m!(σ +m− 1)m
=

Iσ−1(2
√
ρ)Γ(σ)

ρ(σ−1)/2
and

∞∑

m=0

ρm+1

m!(σ +m)m+1

=
Iσ(2

√
ρ)Γ(σ)

ρ(σ−2)/2
.

Here Iν(z) is the modified Bessel function defined in (1.6).

Lemma 2.8. For any negative ρ and positive σ we have

∞∑

m=0

ρm

m!(σ +m− 1)m
=

Jσ−1(2
√−ρ)Γ(σ)

(−ρ)(σ−1)/2
and

∞∑

m=0

ρm+1

m!(σ +m)m+1
= −Jσ(2

√−ρ)Γ(σ)

(−ρ)(σ−2)/2
.

Here Jν(z) is the Bessel function given by (1.7).

Using Lemmas 2.8 and 2.7 above we may rephrase Eq. (2.5) as follows.

Theorem 2.9. Let α, β0, β1 and d be positive integers, and let r be nonnegative integers.
Then the Hurwitzian continued fraction

ξ(α, β0, β1, d, r) = [α, . . . , α︸ ︷︷ ︸
r

, β0, α, . . . , α, β0 + β1 · n︸ ︷︷ ︸
d

]∞n=1

is given by

ξ(α, β0, β1, d, r) =
Fr+1(α)Iσ−1(2

√
ρ) + (−1)r+1Fd−r−1(α)Iσ(2

√
ρ)

Fr(α)Iσ−1(2
√
ρ) + (−1)rFd−r(α)Iσ(2

√
ρ)
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if d is odd, and it is given by

ξ(α, β0, β1, d, r) =
Fr+1(α)Jσ−1(2

√−ρ) + (−1)r+1Fd−r−1(α)Jσ(2
√−ρ)

Fr(α)Jσ−1(2
√−ρ) + (−1)rFd−r(α)Jσ(2

√−ρ)
,

if d is even. Here Iν(z) and Jν(z), respectively, denotes the is the modified respectively
original Bessel function defined in (1.6) and (1.7), respectively.

Proof. We work out only the case of odd d in detail, the case of even d is completely
analogous. Direct substitution of Lemma 2.7 into (2.5) yields

ξ(α, β0, β1, d, r) =

Fr+1(α)
Iσ−1(2

√
ρ)

ρ(σ−1)/2
+ (−1)d−rFd−r−1(α)Fd(α)β1

Iσ(2
√
ρ)

ρ(σ−2)/2

Fr(α)
Iσ−1(2

√
ρ)

ρ(σ−1)/2
+ (−1)d−r+1Fd−r(α)Fd(α)β1

Iσ(2
√
ρ)

ρ(σ−2)/2

.

After multiplying the numerator and the denominator by ρ(σ−1)/2 we get

ξ(α, β0, β1, d, r) =
Fr+1(α)Iσ−1(2

√
ρ) + (−1)d−r√ρFd−r−1(α)Fd(α)β1Iσ(2

√
ρ)

Fr(α)Iσ−1(2
√
ρ) + (−1)d−r+1√ρFd−r(α)Fd(α)β1Iσ(2

√
ρ)

.

The first equality in Theorem 2.9 follows from
√
ρ = β−1

1 Fd(α)
−1 and from the fact that

(−1)d = (−1) in this case. A similar reasoning for even d yields

ξ(α, β0, β1, d, r) =
Fr+1(α)Jσ−1(2

√−ρ)− (−1)d−rFd−r−1(α)Jσ(2
√−ρ)

Fr(α)Jσ−1(2
√−ρ)− (−1)d−r+1Fd−r(α)Jσ(2

√−ρ)
,

a final simplification may be made by observing that (−1)d = 1 in this case. �

Remark 2.10. Theorem 2.9 may also be derived from Lehmer’s work [9] directly, using
a few, easily verifiable facts about Fibonacci and Lucas polynomials. Again, we outline
the proof for odd d only, the case of even d being completely analogous. Consider first
the case when d = 1 and r = 0. In this case we get σ = β0/β1, regardless of of α.
Theorem 2.9 takes the form ξ(α, β0, β1, 1, 0) = Iσ−1(2

√
ρ)/Iσ(2

√
ρ), which, by ρ = β−2

1 ,
is exactly Lehmer’s formula (1.5). Consider next the case when d is an arbitrary odd
integer and r = 0. In this case, we may use Lehmer’s [9, Theorem 4] with all constants
being equal to α. Using the fact that

[α, . . . , α︸ ︷︷ ︸
d

] =
Fd+1(α)

Fd(α)
,

the fractions A/B, A′/B′ and A′′/B′′ appearing in [9, Theorem 4] are easily seen to
correspond to ((β0−α)Fd(α)+Fd+1(α))/Fd(α), ((β0−α)Fd−1(α)+Fd(α))/Fd−1(α) and
Fd(α)/Fd−1(α), respectively, in our notation. Lehmer’s (bB+B′+B′′)/(aB) corresponds
to our

β0Fd(α) + 2Fd−1(α)

β1Fd(α)
=

(β0 − α)Fd(α) + (αFd(α) + 2Fd−1(α))

β1Fd(α)
= σ,

since αFd(α) + 2Fd−1(α) = Ld(α) holds for all d. Lehmer’s [9, Theorem 4] gives

ξ(α, β0, β1, d, 0) =
1

Fd(α)

(
−Fd−1(α) +

Iσ−1(2(β1Fd(α))
−1)

Iσ(2(β1FdFd(α))−1)

)
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which is the same as the formula implied by Theorem 2.9, after noting that we have
ρ = (β1Fd(α))

−2. Finally, for arbitrary r we may substitute η := ξ(α, β0, β1, d, 0) into
the formula

[α, . . . , α︸ ︷︷ ︸
r

, η] =
Fr+1(α)η + Fr(α)

Fr(α)η + Fr−1(α)

and obtain

ξ(α, β0, β1, d, r) =
Fr+1(α)

(
1

Fd(α)

(
−Fd−1(α) +

Iσ−1(2(β1Fd(α))
−1)

Iσ(2(β1FdFd(α))−1)

)
+ Fr(α)

)

Fr(α)
(

1
Fd(α)

(
−Fd−1(α) +

Iσ−1(2(β1Fd(α))−1)
Iσ(2(β1FdFd(α))−1)

)
+ Fr−1(α)

) .

(Recall that σ does not depend on r.) Equivalently,

ξ =
Fr+1(α)Iσ−1(2(β1Fd(α))

−1) + (Fr(α)Fd(α)− Fr+1(α)Fd−1(α)) Iσ(2(β1FdFd(α))
−1)

Fr(α)Iσ−1(2(β1Fd(α))−1) + (Fr−1(α)Fd(α)− Fr(α)Fd−1(α)) Iσ(2(β1FdFd(α))−1)
.

Theorem 2.9 now follows after observing that Fr(α)Fd(α) − Fr+1(α)Fd−1(α) and and
Fr−1(α)Fd(α)− Fr(α)Fd−1(α), respectively, may be replaced by (−1)r+1Fd−r−1(α) and
(−1)rFd−r(α) respectively.

3. Two useful lemmas

In this section we provide a combinatorial proof for two polynomial identities which
seem to be interesting by their own right. They will play a crucial role in Section 4 where
we prove Theorem 2.2. Our lemmas will be summation formulas for the polynomials

Rn(x, y) :=
1

n!

n∑

k=0

(
n

k

)(
n+ y

n− k

)
(n− k)!2xk (3.1)

and

Sn(x, y) :=
1

n!

n−1∑

k=0

(
n

k

)(
n+ y

n− k − 1

)
(n− k)!(n− k − 1)!xk+1 (3.2)

Lemma 3.1. The polynomials Rn(x, y) satisfy

n∑

m=0

(−x)n−m

(n−m)!
Rm(x, y) =

1

n!

⌊n/2⌋∑

k=0

(
n

k

)(
n+ y − k

n− 2k

)
(n− k)!2xk for all n ≥ 0.

Proof. We consider both sides of the equation as polynomials in the variable y with
coefficients from the field Q(x). Since a nonzero polynomial has only finitely many
roots, it suffices to show that the two sides equal for any nonnegative integer value of
y.

For y ∈ N, the left hand side may then be rewritten as

1

n!

n∑

m=0

(
n

n−m

)
(−x)n−m

m∑

k=0

(
m

k

)(
m+ y

y + k

)
(m− k)!2xk.

This is 1/n! times the total weight of all quadruplets (π1, π2, γ1, γ2) subject to the
following conditions:
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(1) π1 is a permutation of {1, . . . , n}, π2 is a permutation of {1, . . . , n + y}, the
functions γ1 : {1, . . . , n} → {0, 1, 2} and γ2 : {1, . . . , n + y} → {0, 1, 2} are
colorings;

(2) for i ∈ {1, 2} an element j satisfying γi(j) = 1 must be a fixed point of πi;
(3) for any j, γ1(j) = 2 is equivalent to γ2(j) = 2 and γ1(j) = γ2(j) = 2 implies

that j is a common fixed point of π1 and π2;
(4) the colorings γ1 and γ2 satisfy |{j ∈ {1, . . . , n + y} : γ2(j) > 0}| = |{j ∈

{1, . . . , n} : γ1(j) > 0}|+ y;

We define the weight of (π1, π2, γ1, γ2) as

x|{j∈{1,...,n} : γ1(j)=1}| · (−x)|{j∈{1,...,n} : γ1(j)=2}|.

Indeed, after setting n −m as the number of elements j satisfying γ1(j) = γ2(j) = 2,
there are

(
n

n−m

)
ways to select them. By rule (3) these are common fixed points of π1

and π2 (and thus elements of {1, . . . , n}). Next we set k as the number of elements j ∈
{1, . . . , n} satisfying γ1(j) = 1, and select these elements, in

(
m
k

)
ways. The remaining

elements of {1, . . . , n} satisfy γ1(j) = 0. At this point we have |{j ∈ {1, . . . , n} :
γ1(j) > 0}| = n −m + k. Thus, by rule (4), the set {j ∈ {1, . . . , n + y} : γ2(j) > 0}
must have n−m+ k + y elements. Exactly n−m of these elements satisfy γ2(j) = 2,
therefore the number of elements j ∈ {1, . . . , n+ y} satisfying γ2(j) = 1 must be y+ k.
There are

(
m+y
y+k

)
ways to select them. So far we have selected n−m+ k fixed points of

π1 and n−m+ y + k fixed points of π2. We can complete prescribing the action of π1

and π2 in (m− k)!2 ways.
The same total weight may also be found by fixing the pair (π1, π2) first, and summing

over all allowable pairs of colorings (γ1, γ2). We call the pair (γ1, γ2) allowable, if the
quadruplet (π1, π2, γ1, γ2) satisfies the conditions listed above. Suppose j0 is a common
fixed point of π1 and π2. Observe that the contribution of all allowable pairs (γ1, γ2)
satisfying γ1(j0) = γ2(j0) = 2 cancels the contribution of all allowable pairs satisfying
γ1(j0) = γ2(j0) = 1. Indeed, let (γ1, γ2) an allowable pair satisfying γ1(j0) = γ2(j0) > 0.
Then the pair (γ′

1, γ
′
2) defined by

γ′
i(j) =

{
γi(j) if j 6= j0
3− γi(j) if j = j0

is also allowable and also satisfies γ′
1(j0) = γ′

2(j0) > 0. (Here j ∈ {1, . . . , n} for γ1 and
γ′
1 and j ∈ {1, . . . , n + y} for γ2 and γ′

2.) The map (γ1, γ2) 7→ (γ′
1, γ

′
2) is an involution

that matches canceling terms: the only difference between the respective contribution
is a factor of x or −x associated to j0. Therefore we may restrict our attention to the
total weight of quadruplets (π1, π2, γ1, γ2) satisfying the following additional criteria:

(5) no j satisfies γ1(j) = γ2(j) = 2, in particular, the colorings γ1 and γ2 map into
the set {0, 1};

(6) no j satisfies γ1(j) = γ2(j) = 1, in other words, the sets {j ∈ {1, . . . , n} :
γ1(j) = 1} and {j ∈ {1, . . . , n+ y} : γ2(j) = 1} are disjoint.

When computing the total weight of such quadruplets, we may first select k as the
number of elements j ∈ {1, . . . , n} satisfying γ1(j) = 1 and select them in

(
n
k

)
ways.

By rule (4) there must be y + k elements j ∈ {1, . . . , n + y} satisfying γ2(j) = 1 and,
by rule (6), this set is disjoint of the previously selected k-element set. Thus there are
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(
n+y−k
y+k

)
ways to select them. So far we have selected k fixed points of π1 and y+k fixed

points of π2. There are (n − k)!2 ways to complete prescribing π1 and π2, the weight
of the quadruplet is xk. We obtain a total contribution of

∑n
k=0

(
n
k

)(
n+y−k
y+k

)
(n− k)!2xk

which is exactly n! times the right and side. �

Lemma 3.2. The polynomials Sn(x, y) satisfy

n∑

m=0

(−x)n−m

(n−m)!
Sm(x, y) =

1

n!

⌊(n−1)/2⌋∑

k=0

(
n

k

)(
n+ y − k

n− 2k − 1

)
(n− k)!(n− k − 1)!xk+1

for all n ≥ 0.

Proof. A proof may be obtained by performing slight modifications to the proof of
Lemma 3.1, which we outline below. The left hand side equals

x

n!

n∑

m=0

(
n

n−m

)
(−x)n−m

m∑

k=0

(
m

k

)(
m+ y

y + k + 1

)
(m− k)!(m− k − 1)!xk,

which may be considered as x/n! times the total weight of quadruplets (π1, π2, γ1, γ2),
where the only change to the definition is that, instead of (4), now we require

(4’) the colorings γ1 and γ2 satisfy |{j ∈ {1, . . . , n + y} : γ2(j) > 0}| = |{j ∈
{1, . . . , n} : γ1(j) > 0}|+ y + 1.

Thus we will have to select y+ k+1 elements j (instead of y+ k) satisfying π2(j) = 1,
in

(
m+y
y+k+1

)
. In the last stage, we will have selected n−m+ y+ k+1 fixed points of π2,

thus we will only have (m− k − 1)! ways to complete the selection of π2.
The same involution as before shows that we may again restrict our attention to those

quadruplets which satisfy the additional conditions (5) and (6). Let us set k again as
the number of elements j ∈ {1, . . . , n} satisfying γ1(j) = 1. The only adjustment we
need to make to the reasoning is to observe that now we need to have y+k+1 elements
satisfying |γ2(j) = 1| which may be selected in

(
n+y−k
y+k+1

)
ways, instead of

(
n+y−k
y+k

)
ways.

Finally, we may complete the selection of π2 in (n−k−1)! ways, instead of (n−k)!. The
resulting total weight is exactly x/n! times the right hand side of our stated equality. �

For the sake of use in Section 4 let us note that Rn(x, y) and Sn(x, y) may also be
written in the following shorter form, using falling factorials:

Rn(x, y) =

n∑

k=0

xk(y + n)n−k

k!
and Sn(x, y) =

n−1∑

k=0

xk+1(y + n)n−k−1

k!
(3.3)

A similar simplification yields that Lemma 3.1 is equivalent to

n∑

m=0

(−x)n−m

(n−m)!
Rm(x, y) =

⌊n/2⌋∑

k=0

(n− k)!

k!

(
n + y − k

n− 2k

)
xk for all n ≥ 0, (3.4)

and that Lemma 3.2 has the compact form

n∑

m=0

(−x)n−m

(n−m)!
Sm(x, y) =

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n+ y − k

n− 2k − 1

)
xk+1 for all n ≥ 0. (3.5)
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4. Calculating the convergents

In this section we calculate (nd + r − 1)st convergent of ξ(α, β0, β1, d, r) directly,
from the Euler-Mindig formulas (1.3). We begin by observing that, for an arbitrary
continued fraction [a0, a1, . . .] and an arbitrary positive integer α, the numerator pn in
(1.3) may be rewritten as

pn =
∑

S⊆e{0,...,n}

∏

i∈S

(ai − α + α) =
∑

S⊆e{0,...,n}

∑

T⊆S

∏

i∈T

(ai − α)α|S\T |.

Changing the order of summation gives

pn =
∑

T⊆{0,...,n}

∏

i∈T

(ai − α)
∑

T⊆S⊆e{0,...,n}

α|S|. (4.1)

For ξ(α, β0, β1, d, r) we have ai = α unless i is congruent to r modulo d. Thus, to
compute pnd+r−1 using (4.1), we only need to sum over subsets T whose elements are
all congruent to r modulo d. This observation yields the following recurrence:

pnd+r−1 = Fnd+r+1(α) +

n−1∑

k=0

pkd+r−1 · (β0 + β1 · k − α) · F(n−k)d(α). (4.2)

By Eq. (1.11), the term Fnd+r+1(α) above is the contribution of T = ∅, whereas the
term pkd+r−1 · (β0+β1 · k−α) ·F(n−k)d+1(α) is the total contribution of all sets T whose
largest element is kd+ r. Substituting n = 0 into (4.2) yields the initial condition

pr−1 = Fr+1(α)

which is obviously true for r > 0, and it is also valid when r = 0 after setting p−1 = 1,
as usual. Consider the formal Laurent series

y(t) :=

∞∑

n=0

pnd+r−1 · tβ0+β1·n−α ∈ Q((t)).

For y(t), Eq. (4.2) yields

y(t) :=

∞∑

n=0

Fnd+r+1(α)t
β1n · tβ0−α + t ·

∞∑

n=1

Fnd(α)t
β1n · y′(t), (4.3)

where y′(t) is the formal derivative of y(t) with respect to t. To write (4.3) in a more
explicit form, observe that, by Eq. (1.12), we have

∞∑

n=0

Fnd+r+1(α)t
n =

∞∑

n=0

ρnd+r+1
1 − ρnd+r+1

2√
α2 + 4

tn =
1√

α2 + 4

(
ρr+1
1

1− ρd1t
− ρr+1

2

1− ρd2t

)
.

Using the fact that ρ1ρ2 = −1, the above equation may be rewritten as
∞∑

n=0

Fnd+r+1(α)t
n =

1√
α2 + 4

ρr+1
1 − ρr+1

2 − (ρr+1
1 ρd2 − ρr+1

2 ρd1)t

1− (ρd1 + ρd2)t + (−1)dt2

=
1√

α2 + 4

ρr+1
1 − ρr+1

2 + (−1)r+1(ρd−r−1
1 − ρd−r−1

2 )t

1− (ρd1 + ρd2)t+ (−1)dt2
.
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By Eqs. (1.11) and (1.13), we obtain

∞∑

n=0

Fnd+r+1(α)t
n =

Fr+1(α) + (−1)r+1Fd−r−1(α)t

1− Ld(α)t+ (−1)dt2
. (4.4)

Note that substituting r = d− 1 in Eq. (4.4) yields

∞∑

n=1

Fnd(α)t
n = t ·

∞∑

n=0

Fnd+d(α)t
n =

Fd(α) · t
1− Ld(α)t+ (−1)dt2

,

since F0(α) = 0. Using these last two equations, we may rewrite (4.3) as

y(t) =
Fr+1(α) + (−1)r+1Fd−r−1(α)t

β1

1− Ld(α)tβ1 + (−1)dt2β1
· tβ0−α +

Fd(α) · tβ1+1

1− Ld(α)tβ1 + (−1)dt2β1
· y′(t).

Rearranging to express the derivative of y(t) yields

y′(t) =
y(t) · (t−β1−1 − Ld(α)t

−1 + (−1)dtβ1−1)

Fd(α)

−(Fr+1(α) + (−1)r+1Fd−r−1(α)t
β1) · tβ0−α

Fd(α) · tβ1+1
.

(4.5)

Inspired by the way we solve ordinary differential equations in analysis, we will guess
the solution of (4.5) by “solving” first the corresponding homogeneous equation and
then replace the arbitrary constant by a formal Laurent series. The next few lines will
not make sense, they just indicate how one may come up with a good guess for y(t).
A reader who does not like “obscure reasoning,” should skip ahead to (4.6) and accept
that there is no “rational explanation” as to why introducing the formal Laurent series
z(t) is a good idea.

The homogeneous equation

y′H(t) =
yH(t) · (t−β1−1 − Ld(α)t

−1 + (−1)dtβ1−1)

Fd(α)

“may be rewritten as”

d

dt
ln(yH(t)) =

t−β1−1 − Ld(α)t
−1 + (−1)dtβ1−1

Fd(α)
,

“yielding”

yH(t) = C · t−Ld(α)/Fd(α) exp

(−t−β1 + (−1)dtβ1

β1 · Fd(α)

)
.

where C is an arbitrary constant. This “solution” to the “homogeneous equation”
suggests looking for a solution to Eq. (4.5) of the form

y(t) = z(t) · t−Ld(α)/Fd(α) exp

(−t−β1 + (−1)dtβ1

β1 · Fd(α)

)
.

Equivalently, we would want to set

z(t) := y(t) · tLd(α)/Fd(α) exp

(
t−β1 + (−1)d−1tβ1

β1 · Fd(α)

)
.
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Alas, the resulting formal expression would contain arbitrary large positive and as well
as arbitrary small negative powers of t, it does not resemble a Laurent series at all.
Hoping that a slight change would not upset our calculations irreparably, we define z(t)
by setting

z(t) := y(t) · tLd(α)/Fd(α) exp

(
(−1)d−1tβ1

β1 · Fd(α)

)
. (4.6)

Note that z(t) is a formal Laurent series in the variable t1/Fd(α), an infinite formal sum
of the form

z(t) =
∞∑

n=0

snt
β1·n+β0−α+Ld(α)/Fd(α) ∈ Q((t1/Fd(α))).

Taking the derivative on both sides of (4.6) yields

z′(t) = y′(t) · t
Ld(α)

Fd(α) exp

(
(−1)d−1tβ1

β1 · Fd(α)

)

+y(t) · t
Ld(α)

Fd(α) exp

(
(−1)d−1tβ1

β1 · Fd(α)

)
·
(
Ld(α)t

−1 − (−1)dtβ1−1

Fd(α)

)

= t
Ld(α)

Fd(α) exp

(
(−1)d−1tβ1

β1 · Fd(α)

)
·
(
y′(t) + y(t) · Ld(α)t

−1 − (−1)dtβ1−1

Fd(α)

)
.

(Note that Ld(α)/Fd(α) is always positive.) After substituting the value of y′(t) from
(4.5) and simplifying, we obtain

z′(t) = t
Ld(α)

Fd(α) exp

(
(−1)d−1tβ1

β1 · Fd(α)

)
· y(t)− (Fr+1(α) + (−1)r+1Fd−r−1(α)t

β1)tβ0−α

Fd(α)tβ1+1
.

By (4.6), the last equation is equivalent to

z′(t) =
z(t)

Fd(α)tβ1+1

−t
Ld(α)

Fd(α) exp

(
(−1)d−1tβ1

β1 · Fd(α)

)
· (Fr+1(α) + (−1)r+1Fd−r−1(α)t

β1)tβ0−α

Fd(α)tβ1+1
.

Comparing the coefficients of tβ1·n+β0−α+Ld(α)/Fd(α)−1 on both sides yields

sn ·
(
β1 · n+ β0 − α +

Ld(α)

Fd(α)

)
=

sn+1

Fd(α)
− Fr+1(α)

Fd(α)
·

(
(−1)d−1

β1·Fd(α)

)n+1

(n+ 1)!

+
(−1)rFd−r−1(α)

Fd(α)
·

(
(−1)d−1

β1·Fd(α)

)n

n!
.

Note that the factor (β1 ·n+β0−α+Ld(α)/Fd(α)) in the last equation equals β1 ·(n+σ),
where σ is the magic sum, and that the magic quotient ρ appears twice on the right
hand side. Since, by Corollary 2.4, (σ+ n)n+1 is not zero, we may divide both sides by
Fd(α)

nβn+1
1 (σ+n)n+1, and obtain the following recurrence for s̃n := sn/(Fd(α)

nβn
1 (σ+
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n− 1)n):

s̃n+1 = s̃n + Fr+1(α) ·
ρn+1

(n+ 1)!(σ + n)n+1
− (−1)rFd−r−1(α)

Fd(α)β1
· ρn

n!(σ + n)n+1
.

Considering the fact that s̃0 = s0 = Fr+1(α) and that (−1)rFd−r−1(α)/(Fd(α)β1) =
(−1)d−1−rFd−r−1(α)Fd(α)β1 · ρ, the last recurrence implies

s̃n = Fr+1(α) ·
n∑

k=0

ρk

k!(σ + k − 1)k
+ (−1)d−rFd−r−1(α)Fd(α)β1 ·

n−1∑

k=0

ρk+1

k!(σ + k)k+1
.

Multiplying both sides by (σ + n)n+1 yields

sn
Fd(α)nβn

1

= Fr+1(α) ·
n∑

k=0

ρk(σ + n)n−k

k!

+(−1)d−rFd−r−1(α)Fd(α)β1 ·
n−1∑

k=0

ρk+1(σ + n)n−k−1

k!
.

By the formulas given in Eq. (3.3), we may rewrite the previous equation in terms of
the polynomials Rn(x, y) and Sn(x, y) as follows:

sn
Fd(α)nβn

1

= Fr+1(α)Rn (ρ, σ − 1) + (−1)d−rFd−r−1(α)Fd(α)β1 · Sn (ρ, σ − 1) . (4.7)

By (4.6) we have

y(t) = z(t) · t−Ld(α)/Fd(α) exp

(
−(−1)d−1tβ1

β1 · Fd(α)

)
.

Comparing the coefficients of tβ0+β1·n−α yields

pnd+r−1 =

n∑

m=0

sm ·

(
(−1)d−1

Fd(α)β1

)n−m

(n−m)!
,

hence we have

pnd+r−1

Fd(α)nβn
1

=

n∑

m=0

sm
Fd(α)mβm

1

·

(
(−1)d−1

Fd(α)2β
2
1

)n−m

(n−m)!
=

n∑

m=0

sm
Fd(α)mβm

1

· ρn−m

(n−m)!
.

Substituting Eq. (4.7) into this last equation and using Eqs. (3.4) and (3.5) yields the
formula for pnd+r−1 in Theorem 2.2.

For positive r, the formula for qnd+r−1 stated in Theorem 2.2 is an easy consequence of
the formula for pnd+r−1. Indeed, by Lemma 1.2, the denominator qnd+r−1 is the same as
the numerator pnd+r−2 associated to ξ(α, β0, β1, d, r−1), thus we only need to replace r
by r−1 in the formula stated for pnd+r−2. It only remains to show the following lemma.

Lemma 4.1. The equation stated for qnd+r−1 in Theorem 2.2 remains valid when we
substitute r = 0.
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Proof. Since F0(α) = 0, substituting r = 0 in Theorem 2.2 gives

qnd−1

Fd(α)nβ
n
1

= (−1)d+1Fd(α)
2 · β1

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n+ σ − 1− k

n− 2k − 1

)
ρk+1.

Here we may replace (−1)d+1Fd(α)
2 · β1 by ρ−1β−1

1 . After rearranging, we obtain

qnd−1 = Fd(α)
nβn−1

1

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n+ σ − 1− k

n− 2k − 1

)
ρk. (4.8)

We need to show the validity of this equation. Observe that

ξ(α, β0, β1, d, 0) = [β0, α, . . . , α︸ ︷︷ ︸
d−1

, β0 + β1, . . .] = β0 − α+ [α, . . . , α︸ ︷︷ ︸
d

, β0 + β1, . . .]

= β0 − α + ξ(α, β0 + β1, β1, d, d)

Thus the denominator qnd−1 associated to ξ(α, β0, β1, d, 0) is the same as the same as
the denominator q(n− 1)d− 1 associated to ξ(α, β0 + β1, β1, d, d). We may apply the
already shown part of Theorem 2.2. Since the magic quotient ρ depends only on α, β1

and d, it is the same for ξ(α, β0, β1, d, 0) and for ξ(α, β0 + β1, β1, d, d). For the magic
sums we get

σ(α, β0 + β1, β1, d, d) =
β0 + β1 − α

β1

+
Ld(α)

β1Fd(α)
= σ(α, β0, β1, d, 0) + 1.

Therefore we may obtain an equation for the qnd−1 associated to ξ(α, β0, β1, d, 0) by
replacing n with n−1, r with d and σ with σ+1 in the formula for qnd−1 in Theorem 2.2.
Since F0(α) = 0, the second sum vanishes and we get

qnd+r−1(α, β0, β1, d, 0)

Fd(α)n−1βn−1
1

= Fd(α)

⌊(n−1)/2⌋∑

k=0

(n− 1− k)!

k!

(
n+ σ − 1− k

n− 1− 2k

)
ρk,

which is obviously equivalent to (4.8). �

5. Special cases leading to elementary expressions

In this section we describe all instances of Theorem 2.9 for which the magic sum σ
is the half of an odd integer, forcing all (modified) Bessel functions in the statement
to be known elementary functions. There is not much to say about the case when the
quasi-period d is given by d = 1: as seen in Remark 2.10, we have σ = β0/β1 thus σ
depends only on β0 and β1 in a very simple fashion. In the case when d ≥ 2 we give a
similarly simple description.

Theorem 5.1. If d ≥ 2 then σ is the half of an odd integer if and only if one of the
following conditions holds:

(1) d = 3, α = 1 and (β0 + 1)/β1 is the half of an odd integer;
(2) d = 2, α = 1 and (β0 + 2)/β1 is the half of an odd integer;
(3) d = 2, α = 2 and (β0 + 1)/β1 is the half of an odd integer;
(4) d = 2, α = 4 and (2β0 + 1)/β1 is an integer.
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Proof. First we show that even assuming that σ is the half of an (even or odd) integer
implies that d is at most 3. The fact that σ belongs to (1/2) · Z implies the same for
β1σ + α − β0 = Ld(α)/Fd(α). We may subtract any integer multiple of Fd(α) from
Ld(α) and still have element of (1/2) · Z. Let us select rd(α) := Ld(α) − αFd(α) and
consider the fraction rd(α)/Fd(α) ∈ (1/2) · Z. We claim that

0 <
rd(α)

Fd(α)
< 1 holds for α ≥ 2 and d ≥ 3. (5.1)

Indeed, for d = 3, we have r3(α) = L3(α)− αF3(α) = (α3 + 3α)− α(α2 + 1) = 2α and
F3(α) = α2 + 1. Both r3(α) and F3(α) are positive and r3(α) < F3(α) follows from

F3(α)− r3(α) = (α− 1)2 > 0 for α ≥ 2.

For d = 4 we have r4(α) = L4(α)−αF4(α) = α4 +4α2 +2−α(α3 +2α) = 2α2 +2 and
F4(α) = α3 + 2α. Both r4(α) and F4(α) are positive and r4(α) < F4(α) follows from

F4(α)− r4(α) = α3 − 2α2 + 2α− 2 = α2(α1 − 1) + 2(α− 1) > 0 for α ≥ 2.

For larger values of d, we may show that

0 < rd(α) < Fd(α) holds when d ≥ 3 and α ≥ 2.

by induction on d, using the fact that the statement is valid for d ∈ {3, 4} and that
rd(α) satisfies the same recurrence as Fd(α), allowing to express the inequality for the
next value of d as a positive combination of the inequalities for the current and the
previous values of d. This concludes the proof of (5.1).

As a consequence of the inequality (5.1), whenever d ≥ 3 and α ≥ 2, the only way
for rd(α)/Fd(α) to be an integer is to have rd(α)/Fd(α) = 1/2. In other words, in this
case, we must have 2rd(α) = Fd(α) which is equivalent to 2Ld(α) = (2α+ 1)Fd(α). To
show that α ≥ 2 and d ≥ 3 can not hold simultaneously, it suffices to show that 2Ld(α)
can never be equal to (2α + 1)Fd(α). To do so, first we observe that

2Ld(α) > (2α+ 1)Fd(α) holds for α ∈ {2, 3} and d ≥ 3.

Indeed, for α = 2 we have 28 = 2L3(2) > (2 · 2 + 1)F3(2) = 25 and 68 = 2L4(2) >
(2 · 2 + 1)F4(2) = 60 and we may prove the same inequality for higher values of d by
induction. Similarly, for α = 3 we have 72 = 2L3(3) > (2 · 3 + 1)F3(3) = 70 and
238 = 2L4(3) > (2 · 3 + 1)F4(3) = 231 and we may proceed again by induction on d.
Finally, to exclude α ≥ 4, we will show

2Ld(α) < (2α + 1)Fd(α) holds for α ≥ 4 and d ≥ 3.

For d = 3 we have

(2α + 1)F3(α)− 2L3(α) = α2 − 4α+ 1 = α(α− 4) + 1 > 0,

and for d = 4 we have

(2α + 1)F4(α)− 2L4(α) = α3 − 4α2 + 2α− 4 = α2(α− 4) + 2α(α− 2) > 0,

and again we may proceed by induction on d.
We obtained that, for d ≥ 3, σ ∈ (1/2) · Z is only possible if α = 1. In that case,

for d ≥ 4 we have Ld(1)− 2Fd(1) = Fd−3(1) (this may be shown by induction). Clearly
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Ld(1)/Fd(1) is the half of an integer, if and only if the same holds for Fd−3(1)/Fd(1).
Now we may exclude the case d ≥ 4 completely, after observing that

0 <
Fd−3(1)

Fd(1)
<

1

2
holds for d ≥ 4.

Indeed, the above inequality is equivalent to 0 < 2Fd−3(1) < Fd(1) which may be easily
shown by induction.

We have shown that σ can only be the half of an integer if d = 2 or d = 3. In the
case, when d = 3, we have also shown that only α = 1 is possible, and we get

σ =
β0 − 1

β1

+
L3(1)

β1F3(1)
=

β0 − 1

β1

+
4

2β1

=
β0 + 1

β1

.

Consider finally the case when d = 2. As before, σ ∈ (1/2)Z implies that Ld(2)/Fd(2) =
(α2 + 2)/α ∈ (1/2)Z. This implies that α must be a divisor of 4, that is, an element of
{1, 2, 4}. We have

σ =
β0 − α

β1
+

L2(α)

β1F2(α)
=

αβ0 − α2

β1α
+

α2 + 2

β1α
=

αβ0 + 2

β1α
.

Therefore, for α = 1 we get σ = (β0 + 2)/β1, for α = 2 we get σ = (β0 + 1)/β1 and for
α = 4 we get σ = (2β0+1)/(2β1). Note that, in the case when α = 4, 2σ = (2β0+1)/β1

is necessarily odd, if it is an integer. �

A nice example of the case when d = 3 and α = 1 in Theorem 5.1 above is the case
when d = 3, α = 1, r = 2, β0 = 3m− 1, β1 = 2m, for some m > 0. In this case we get
σ = 3/2 and ρ = 1/(16m2). Theorem 2.9 gives

ξ(1, 3m− 1, 2m, 3, 2) =
2I1/2(1/(2m))

I1/2(1/(2m)) + I3/2(1/(2m))

Using (1.8) and (1.10) we may rewrite the preceding equation as

[1, 1, 3m− 1 + 2mn]∞n=0 =
2 sinh(1/(2m))

cosh(1/(2m))− (2m− 1) sinh(1/(2m))
.

For m = 1, we obtain

[1, 1, 2, 1, 1, 4, . . .] =
e1/2 − e−1/2

e−1/2
= e− 1.

A similarly nice example for the case when d = 2 and α = 1 in Theorem 5.1 above is

ξ(1, 3m− 2, 2m, 2, 1) = [1, 3m− 2 + 2mn]∞n=0

for some m > 0. In this example σ = 3/2 and ρ = (−1)/(4m2) hold. Theorem 2.9 gives

ξ =
J1/2(2

√−ρ)

J1/2(2
√−ρ)− J3/2(2

√−ρ)
=

J1/2(1/m)

J1/2(1/m)− J3/2(1/m)
.

Using (1.9) and (1.10) we may rewrite ξ above as

ξ =
sin(1/m)

cos(1/m)− (m− 1) sin(1/m)
.

Substituting m = 1 yields tan(1) = [1, 1, 1, 3, 1, 5, 1, 7, . . .].
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We conclude this section with an example which is not likely to be found in the
literature, due to its “sheer ugliness”. Let us set α = 4, β0 = 7m + 3, β1 = 2m + 1,
d = 2 and r = 1, where m is any nonnegative integer. For this example we have σ = 7/2
and ρ = (−1)/16(2m+ 1)2, yielding 2

√−ρ = 1/(4m+ 2). Using the fact that

J5/2(z) =

√
2

πz

((
3

z2
− 1

)
sin(z)− 3

z
cos(z)

)

and

J7/2(z) =

√
2

πz

((
15

z3
− 6

z

)
sin(z)−

(
15

z2
− 1

)
cos(z)

)

(see [10, List of formulæ: 46, 47]), Theorem 2.9 gives

ξ =
4
(
(12(2m+ 1)2 − 1) sin

(
1

4m+2

)
− 6(2m+ 1) cos

(
1

4m+2

))

(240m2 + 228m+ 53) cos
(

1
4m+2

)
− (960m3 + 1392m2 + 648m+ 97) sin

(
1

4m+2

) .

The above formula was calculated from Theorem 2.9 with the help of Maple. The same
program was used to double-check its correctness for selected values of m. For example,
for m = 0, we obtain

4
(
11 sin

(
1
2

)
− 6 cos

(
1
2

))

53 cos
(
1
2

)
− 97 sin

(
1
2

) = [4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, . . .].

6. Special cases involving an integer magic sum

Another interesting special instance of our main result is the case when the magic
sum σ is an integer. Specializing Theorem 2.9 to this case seems to yield less exciting
formulas, as (modified) Bessel functions of integer order are not known to be elemen-
tary, even though there is a substantial literature on how to compute them. On the
other hand, the binomial coefficients appearing in Theorem 2.2 are all ordinary (not
generalized) binomial coefficients. Motivated by this observation, we state the following
variant of Theorem 5.1.

Theorem 6.1. If d ≥ 2 then σ is an integer if and only if one of the following conditions
holds:

(1) d = 3, α = 1 and (β0 + 1)/β1 is an integer;
(2) d = 2, α = 1 and (β0 + 2)/β1 is an integer;
(3) d = 2, α = 2 and (β0 + 1)/β1 is an integer.

Proof. If σ is an integer than it is also half of an integer, and we have shown in the proof
of Theorem 5.1 that this implies d = 2 or d = 3. Furthermore, in the case when d = 3,
only α = 1 is possible. We omit the completely analogous analysis of the resulting
finitely many cases. We only highlight the fact that, as noted at the end of the proof
of Theorem 5.1, in the case when d = 2 and α = 4, the number 2σ can not be an even
integer, thus σ can not be an integer. �

A nice example of the case when d = 3 and α = 1 in Theorem 6.1 above is the case
when d = 3, α = 1, r = 2, β0 = m− 1 and β1 = m for some m > 1. In this case we get
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σ = 1 and ρ = (2m)−2. Introducing

Pn(x) =

⌊(n−1)/2⌋∑

k=0

(n− k − 1)!

k!

(
n− k

n− 2k − 1

)
xk+1, and (6.1)

Qn(x) =

⌊n/2⌋∑

k=0

(n− k)!

k!

(
n− k

n− 2k

)
xk, (6.2)

Theorem 2.2 may be written in the form

p3n+1 = 2(2m)nQn

(
1

4m2

)
and (6.3)

q3n+1 = (2m)n
(
2mPn

(
1

4m2

)
+Qn

(
1

4m2

))
. (6.4)

The coefficients of the polynomials Pn(x) andQn(x), respectively, are listed as sequences
A221913 and A084950 in [15]. The quotient Pn(x)/Qn(x) is the generalized continued
continued fraction of the form (1.1) where ai = i for all 0 ≤ i ≤ n and bj = x for all
1 ≤ j ≤ n. Entry A084950 states the formula

lim
n→∞

Pn(x)

Qn(x)
=

√
x · I1(2

√
x)

I0(2
√
x)

(6.5)

with a proof outlined by Wolfdieter Lang. Eqs. (6.3) and (6.4), combined with Theo-
rem 2.9, yield the equation

lim
n→∞

2Qn

(
1

4m2

)

2mPn

(
1

4m2

)
+Qn

(
1

4m2

) =
2I0

(
1
m

)

I0
(

1
m

)
+ I1

(
1
m

) .

After dividing the numerator and the denominator of the fraction on the left hand side
by Qn(x) we may easily deduce from the last equation that

lim
n→∞

Pn

(
1

4m2

)

Qn

(
1

4m2

) =
1

2m

I1
(

1
m

)

I0
(

1
m

) , holds for m > 1.

This is a special instance of (6.5) above for real numbers x of the form x = 1/(4m2),
where m > 1 is an integer. It seems possible that, with some effort, the definition of the
continued fraction [1, 1, m− 1, 1, 1, 2m− 1, 1, 1, 3m− 1, . . .] may be generalized to and
shown convergent for an arbitrary positive real m and then, after extending the validity
of our main results to this setting, we may obtain another (certainly more complicated)
proof of (6.5). Departing on this journey for the sake of this single formula is certainly
not worth the effort. On the other hand, it seems worth looking at in the future, why
each third convergent of the continued fraction [1, 1, m−1, 1, 1, 2m−1, 1, 1, 3m−1, . . .]
can be matched up with a convergent of the generalized continued fraction x/(1+x/(2+
x/3 + · · · for x = 1/(4m2) and how far this “coincidence” could be generalized.
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