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Abstract

We show that the maximal determinant D(n) for n × n {±1}-
matrices satisfies R(n) := D(n)/nn/2 ≥ κd > 0. Here nn/2 is the
Hadamard upper bound, and κd depends only on d := n − h, where
h is the maximal order of a Hadamard matrix with h ≤ n. Previous
lower bounds on R(n) depend on both d and n. Our bounds are
improvements, for all sufficiently large n, if d > 1.

We give various lower bounds on R(n) that depend only on d. For
example, R(n) ≥ 0.07 (0.352)d > 3−(d+3). For any fixed d ≥ 0 we have
R(n) ≥ (2/(πe))d/2 for all sufficiently large n (and conjecturally for
all positive n). If the Hadamard conjecture is true, then d ≤ 3 and
κd ≥ (2/(πe))d/2 > 1/9.

http://arxiv.org/abs/1211.3248v3


1 Introduction

Let D(n) be the maximal determinant possible for an n × n matrix with
elements drawn from the real interval [−1, 1]. Hadamard [32]1 proved that
D(n) ≤ nn/2, and the Hadamard conjecture is that a matrix achieving this
upper bound exists for each positive integer n divisible by four. The function
R(n) := D(n)/nn/2 is a measure of the sharpness of the Hadamard bound.
Clearly R(n) = 1 if a Hadamard matrix of order n exists; otherwise R(n) < 1.
The aim of this paper is to give lower bounds on R(n).

If h ≤ n is the order of a Hadamard matrix, and d = n − h, then we
show that R(n) is bounded below by a positive constant κd (depending on d
but not on n). When d > 1 this improves on previous results2 for which the
lower bound was (at best) of order n−αd for some constant α ≥ 1/2. Rokicki
et al [50] conjectured that R(n) ≥ 1/2 on the basis of computational results
for n ≤ 120.

We obtain lower bounds on R(n) using the probabilistic method pioneered
by Erdős (see for example [2, 29]). Specifically, we adjoin d extra columns to
the h × h Hadamard matrix, and fill their h × d entries with random signs
obtained by independently tossing fair coins. Then we adjoin d extra rows,
and fill their d×(h+d) entries with ±1 signs chosen deterministically in a way
intended to approximately maximize the determinant of the final matrix. To
do so, we use the fact that this determinant can be expressed in terms of the
d×d Schur complement (see §3). In the proof of Theorem 1 we obtain a lower
bound on the expected value of the determinant in a direct manner. In the
proofs of Theorems 2 and 3 we use a Hoeffding tail bound to show that the
Schur complement is, with high probability, sufficiently diagonally dominant
that its determinant is close to the product of its diagonal elements. We
employ two possibly new inequalities, Lemma 8 and Lemma 10 in §4, that
give lower bounds on the determinant of a diagonally dominant matrix. The
bounds are sharper than the obvious bounds arising from Gerschgorin’s circle
theorem [31, 59], so may be of independent interest.

In the special case d = 1 our argument simplifies, because there is no need
to consider a nontrivial Schur complement or to deal with the contribution of
the off-diagonal elements. This case was (essentially) already considered by

1For earlier contributions by Desplanques, Lévy, Muir, Sylvester and Thomson (Lord
Kelvin), see [44, 56] and [42, pg. 384].

2See [10, Theorem 9] and the references cited there. For example, the well-known bound
of Clements and Lindström [13, Corollary to Thm. 2] only shows that R(n) > (3/4)n/2.
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Brown and Spencer [12], Erdős and Spencer [29, Ch. 15], and (independently)
by Best [8]; see also [2, §2.5] and [3, Problem A4]. The consequence for
lower bounds on R(n) when n ≡ 1 mod 4 was exploited by Farmakis and
Kounias [30], and an improvement using 3-normalized Hadamard matrices
was considered by Orrick and Solomon [47].

In §2 we review previous results that give upper bounds on gaps between
the orders of Hadamard matrices. These are relevant as they enable us to
bound d = n− h as a function of h.

Various preliminary results are proved in §4, and the main results are
proved in §5. Theorem 1 applies for fixed d and h ≥ h0(d), where the
function h0(d) grows rapidly, but this is not significant for the cases d ≤ 3
that arise if we assume the Hadamard conjecture. For d ≤ 3, Corollary 1
shows that R(n) is bounded below by (2/(πe))d/2 > 1/9, coming close to
Rokicki et al ’s conjectured lower bound of 1/2, and improving on earlier
results [10, 13, 14, 39, 40] that failed to obtain a constant lower bound on
R(n) for 2 ≤ d ≤ 3.

At the cost of more complicated proofs, Theorems 2 and 3 apply to larger
regions of (d, h)-space. Theorem 2 applies for h/ lnh ≥ 16d3, and Theorem 3
applies for h ≥ 6d3. In view of known results on gaps between Hadamard
orders, discussed in §2, these theorems give a lower bound on R(n) for all
but a finite set E of positive integers n. We have obtained a lower bound on
R(n) for each n ∈ E by explicit computation, using a probabilistic algorithm
that uses the same construction as the proofs of these theorems. This leads
to Theorem 4, which gives a lower bound R(n) > 3−(d+3) that is valid for all
positive integers n (the constants here are not the best possible).

Acknowledgements

We thank Robert Craigen for informing us of the work of his student Ivan
Livinskyi, and Will Orrick for his comments and for providing a copy of the
unpublished report [50]. Dragomir Ðoković and Ilias Kotsireas shared their
list of known small Hadamard orders, which was very useful for checking the
program that we used in the proof of Lemma 15.
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2 Gaps between Hadamard orders

In order to apply our results to obtain a lower bound on R(n) for given n,
we need to know the order h of a Hadamard matrix with h ≤ n and n − h
preferably as small as possible. Thus, it is of interest to consider the size
of possible gaps in the sequence (ni)i≥1 of Hadamard orders. We define the
Hadamard gap function γ : R → Z by

γ(x) := max{ni+1 − ni |ni ≤ x} ∪ {0} . (1)

In [10] it was shown, using the Paley and Sylvester constructions, that γ(n)
can be bounded using the prime-gap function. For example, if p is an odd
prime, then 2(p+1) is a Hadamard order. However, only rather weak bounds
on the prime-gap function are known. A different approach which produces
asymptotically-stronger bounds employs results of Seberry [60], as subse-
quently sharpened by Craigen [17], Livinskyi [41], and Smith [55]. These
results take the following form: for any odd positive integer q, a Hadamard
matrix of order 2tq exists for every integer

t ≥ α log2(q) + β,

where α and β are author-dependent constants. Seberry [60] obtained α = 2.
Craigen [17] improved this to α = 2/3, β = 16/3, and later obtained α = 3/8
in unpublished work with Tiessen quoted in [37, Thm. 2.27] and [18, 21].3

Livinskyi [41] found α = 1/5, β = 64/5. Smith’s unpublished paper [55]
shows that γ(n) = O(nε) for each ε > 0, but the constants hidden in the “O”
in this result can be very large, so we do not use Smith’s result here.

The connection between these results and the Hadamard gap function
is given by Lemma 1. From the lemma and the results of Livinskyi, the
Hadamard gap function satisfies

γ(n) = O(n1/6). (2)

This is much sharper than γ(n) = O(n21/40) arising from the best current
result for prime gaps (by Baker, Harman and Pintz [4]), although not as sharp
as the result γ(n) = O(log2 n) that would follow from Cramér’s prime-gap
conjecture [10, 23, 53, 54].

3There are typographical errors in [37, Thm. 2.27] and in [21, Thm. 1.43], where the
floor function should be replaced by the ceiling function. This has the effect of increasing
the additive constant β.
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Lemma 1. Suppose there exist constants α, β such that, for any odd positive

integer q, a Hadamard matrix of order 2tq exists for all t ≥ α log2(q) + β.

Then the Hadamard gap function γ(n) satisfies

γ(n) = O(nα/(1+α)) .

Proof. Consider consecutive odd integers q0, q1 = q0 + 2 and corresponding
ni = 2tqi, where t = ⌈α log2(q1) + β⌉. By assumption there exist Hadamard
matrices of orders n0, n1. Also, 2βqα1 ≤ 2t < 2β+1qα1 . Thus

n1 = 2tq1 ≥ 2βq1+α
1

and n1 − n0 = 2t+1 < 2β+2qα1 ≤ 22+β/(1+α)n
α/(1+α)
1 = O(n

α/(1+α)
0 ).

3 The Schur complement

Let

Ã =

[
A B
C D

]

be an n×n matrix written in block form, where A is h×h, and n = h+d > h.
Then the Schur complement [51] of A in Ã is the d× d matrix

D − CA−1B.

The Schur complement is relevant to our problem due to the following lemma.

Lemma 2. If Ã is as above, with A nonsingular, then

det(Ã) = det(A) det(D − CA−1B).

Proof. Using block Gaussian elimination on Ã gives

[
A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 D − CA−1B

]
.

Now take determinants.
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4 Notation and auxiliary results

In this section we define our notation and prove some auxiliary results that
are needed in §5. As above, D(n) is the maximum determinant function and
R(n) := D(n)/nn/2 is its normalization by the Hadamard bound nn/2. The
set of orders of all Hadamard matrices is denoted by H.

We define c :=
√

2/π ≈ 0.7979. Other constants are denoted c1, c2, α,
β, etc. Usually h ∈ H and n = h + d, where d ≥ 0 (the case d = 0 is trivial
because then the Hadamard bound applies). We assume h ≥ 4 to avoid the
cases h ∈ {1, 2}, although in most cases it is easy to verify that the results
also hold for h ∈ {1, 2}.

Matrices are denoted by capital letters A etc, and their elements by the
corresponding lower-case letters, e.g. aij (the comma between subscripts is
omitted if the meaning is clear).

When using the probabilistic method, the probability of an event S (which
is always a discrete set of possible outcomes of a random process) is denoted
by Pr(S), and the expectation of a random variable X is denoted by E(X).

Lemma 3. Suppose that h is an even positive integer.Then

(
h

h/2

)
> 2h

√
2

πh

(
1− 1

4h

)
.

Proof. This follows from Stirling’s asymptotic expansion of ln Γ(x) with the
error bounded by the first term omitted, see for example [11, eqn. (4.38)].

Lemma 4. Let g(h) := 1+2−hh
(

h
h/2

)
, where h ≥ 4 is an even integer. Then

g(h) > ch1/2 + 1− ch−1/2/4 and g(h) > ch1/2 + 0.9, where c =
√

2/π.

Proof. The first inequality follows from Lemma 3. From the condition h ≥ 4,
we have ch−1/2/4 < 1/10. Thus g(h) > ch1/2 + 1− 0.1 = ch1/2 + 0.9.

Lemma 5 is from [10, Lemma 4], and Lemma 6 is similar.

Lemma 5. If α ∈ R, n ∈ N, n > |α| > 0, and h = n− α, then

hh

nn
>

(
1

ne

)α

.
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Proof. Taking logarithms, and writing x = α/n, the inequality reduces to

(1− x) ln(1− x) + x > 0, (3)

or equivalently (since 0 < |x| < 1)

x2

1 · 2 +
x3

2 · 3 +
x4

3 · 4 + · · · > 0.

This is clear if x > 0, and also if x < 0 because then the terms alternate in
sign and decrease in magnitude.

Lemma 6. If α ∈ R, n ∈ N, n > |α| > 0, and h = n− α, then

(h/n)n > exp(−α− α2/h).

Proof. Taking x = α/n, the inequality (3) proved above implies that
ln(1− x) > −x/(1 − x), so

(1− x)n > exp

(
− nx

1 − x

)
.

Since 1− x = h/n, we obtain

(
h

n

)n

> exp

(
− α

1− α/n

)
= exp(−α− α2/h).

Lemma 7. Let A ∈ {±1}h×h be a Hadamard matrix, C ∈ {±1}d×h, and

U = CA−1. Then, for each i with 1 ≤ i ≤ d,

h∑

j=1

u2
ij = 1.

Proof. Since A is Hadamard, ATA = hI. Thus UUT = h−1CCT . Since
cij = ±1, diag(CCT ) = hI. Thus diag(UUT ) = I.

Definition 1. If A ∈ Rd×d satisfies |aij| ≤ ε|aii| for all i 6= j, then we say

that A is DD(ε). (Here “DD” stands for “diagonally dominant”.)
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Lemma 8. If A = I −E ∈ Rd×d, |eij | ≤ ε for 1 ≤ i, j ≤ d, and dε ≤ 1, then

det(A) ≥ 1− dε.

Proof. We first assume that dε < 1. Thus, by Gerschgorin’s theorem, A is
nonsingular. Hence by continuity det(A) > 0. Thus, ln det(A) is well-defined
and real. Write the eigenvalues of X ∈ R

d×d as λi(X) ∈ C, and define the
trace Tr(X) :=

∑
i xii =

∑
i λi(X). Then

ln det(A) = ln

(
d∏

i=1

λi(A)

)
= Tr(ln(A)),

where

ln(A) = ln(I −E) = −
∞∑

k=1

1

k
Ek .

Thus

ln det(A) = −Tr

(
∞∑

k=1

1

k
Ek

)
= −

∞∑

k=1

1

k
Tr(Ek) .

Considering this series term by term, it is clear that Tr(Ek) attains its max-
imum value, subject to the constraints |eij | ≤ ε, when each eij = ε, that is
when E = E1 := ε eeT , where eT := (1, 1, . . . , 1) is the d-vector of all ones.
Using eT e = d, it is easy to prove, by induction on k, that Ek

1 = (dε)k−1E1

for all k ≥ 1. Thus Tr(Ek
1 ) = (dε)k−1Tr(E1) = (dε)k. So we have

ln det(A) ≥ −
∞∑

k=1

(dε)k

k
= ln(1− dε) ,

and it follows that det(A) ≥ 1 − dε. This completes the proof for dε < 1. If
dε = 1 then det(A) ≥ 0 by a continuity argument.

Remark 1. It is easy to show, using a rank-1 updating formula, that

det(I − ε eeT ) = 1− dε .

Thus, the inequality of Lemma 8 is best possible. One may see from the
proof of Lemma 8 that if ε > 0 then tightness occurs only for E = ε eeT .
In this unique extreme case, the eigenvalues of A = I − E are 1 − dε (with
multiplicity 1) and 1 (with multiplicity d− 1).

8



Remark 2. Gerschgorin’s theorem gives |λi(A) − 1| ≤ dε, but this only
implies the much weaker inequality det(A) ≥ (1− dε)d.

If, in addition to the conditions of Lemma 8, we assume that eii = 0, then
in the extreme case the eigenvalues of A are all shifted up by ε. Thus we
obtain the following lemma. The proof is omitted since it is similar to the
proof of Lemma 8.

Lemma 9. If A = I − E ∈ Rd×d, |eij| ≤ ε for 1 ≤ i, j ≤ d, eii = 0 for

1 ≤ i ≤ d, and (d− 1)ε ≤ 1, then

det(A) ≥ (1− (d− 1)ε) (1 + ε)d−1.

The following lemma, which may be of independent interest, gives a lower
bound on the determinant of a diagonally dominant matrix.

Lemma 10. If A ∈ Rd×d is DD(ε), then

| det(A)| ≥
(

d∏

i=1

|aii|
)
(
1− (d− 1)2ε2

)
.

Proof. If ε < 0 then A = 0 and the result is trivial; if (d − 1)ε ≥ 1 then
the inequality is trivial as the right side is not positive. Hence, assume that
0 ≤ (d − 1)ε < 1. If any aii = 0 then the result is trivial. Otherwise, apply
Lemma 9 to SA, where S = diag(a−1

ii ). Since det(A) = det(SA)
∏

i aii and

(1− (d− 1)ε)(1 + ε)d−1 ≥ (1− (d− 1)ε)(1 + (d− 1)ε) = 1− (d− 1)2ε2,

the corollary follows.

Remark 3. Lemma 10 is much sharper than the bound

| det(A)| ≥
(

d∏

i=1

|aii|
)
(1− (d− 1)ε)d

that follows from Gerschgorin’s theorem. For example, if aii = 1 for 1 ≤ i ≤ d
and (d − 1)ε = 1/2, then Lemma 10 gives the lower bound 3/4 whereas
Gerschgorin’s theorem gives 2−d.
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Lemma 11. If κ, ε0 ∈ R, ε0 > 0, |κε0| < 1, then 1 + κε ≥ exp(βε) for all

ε ∈ [0, ε0], where

β =
ln(1 + κε0)

ε0
.

Proof. This follows from the concave-up nature of exp(Kε), and the fact that
1 + κε = exp(βε) at the two endpoints ε = 0 and ε = ε0.

The following lemma is essentially Erdős and Spencer [29, Lemma 15.2],
so we omit the (straightforward) proof.

Lemma 12. If X ∈ [0, 1] is a random variable with E(X) = µ, then for

λ < µ we have

Pr(X ≥ λ) ≥ µ− λ

1− λ
.

We now state a two-sided version of Hoeffding’s “tail inequality.” For a
proof, see [35, Theorem 2].

Proposition 1. Let X1, . . . , Xh be independent random variables with sum

Y = X1 + · · ·+Xh. Assume that Xi ∈ [ai, bi]. Then, for all t > 0,

Pr (|Y −E[Y ]| ≥ t) ≤ 2 exp

(
−2t2

∑h
i=1(bi − ai)2

)
.

5 Lower bounds on D(n) and R(n)

In this section we prove several lower bounds on D(n) and R(n), where
n = h+d and h is the order of a Hadamard matrix. Theorem 1 applies when
h ≥ h0(d) is sufficiently large. If we assume the Hadamard conjecture, then
we can drop the “sufficiently large” restriction (see Corollary 1).

If the Hadamard conjecture is false then it is sometimes necessary to take
d ≥ 4. In this case Theorems 2 and 3 are preferable as they impose weaker
restrictions on h than does Theorem 1, at the cost of a slight weakening of
the lower bound on D(n). The proofs of Theorems 2 and 3 use Lemma 10
and Proposition 1, which are not needed for the proof of Theorem 1.
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Theorem 1. If d ≥ 1, h ∈ H, n = h+ d, and

h ≥ h0(d) :=
(
e(π/2)d/2(d− 1)! + d

)2
, (4)

then
D(n)

hh/2
>

(
2n

π

)d/2

. (5)

Proof. Let A be a Hadamard matrix of order h ≥ 4. We add a border of d
rows and columns to give a larger matrix Ã of order n. The border is defined
by matrices B, C and D as in §3. The matrices A, B, C, and D all have
entries drawn from {±1}. We show that a suitable choice of B, C and D
gives a matrix D−CA−1B with sufficiently large determinant that the result
can be deduced from Lemma 2.

Define M = F −D, where F = CA−1B. Thus −M is the Schur comple-
ment of A in Ã. Note that, since A is a Hadamard matrix, AT = hA−1.

Following Best’s approach, B is allowed to range over the set S(h, d)
of all h × d {±1}-matrices. We give a lower bound on the mean value
µ := E(det(M)) and deduce that a matrix B exists for which det(M) ≥ µ.
We use E(· · · ) to denote a mean value over all possible choices of B ∈ S(h, d),
unless the mean value over some subset of S(h, d) is specified.

The d× h matrix C = (cij) depends on B. We choose

cij = sgn(BTA)ij ,

where

sgn(x) :=

{
+1 if x ≥ 0,

−1 if x < 0.

[Remark. The choice of C ensures that there is no cancellation in the inner
products defining the diagonal entries of hF = C · (ATB). Thus, we expect
the diagonal entries fii of F to be nonnegative and of order h1/2, but the
off-diagonal entries fij (i 6= j) to be of order unity with high probability.]

Best [8, Theorem 1] shows4, using the Cauchy-Schwarz inequality, that
0 ≤ fii ≤ h1/2, and it follows similarly that |fij| ≤ h1/2.

4 In [29, footnote on pg. 68] this result is attributed to J. H. Lindsey. The upper bound
can be achieved infinitely often, in fact whenever a regular Hadamard matrix of order h
exists. For example, this is true if h = 4q2, where q is an odd prime power and q 6≡ 7
(mod 8), see [63].
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We take D = (dij)1≤i,j≤d to be a d × d matrix with diagonal entries
dii = −1 and off-diagonal entries to be specified later.

Let g(h) be as in Lemma 4. Observe that

E(fij) =

{
g(h)− 1 if i = j,

0 otherwise,

where the case i = j follows from Best [8, Theorem 3]. We now show that

E(f 2
ij) = 1 if i 6= j. (6)

To prove this, assume without essential loss of generality that i = 1, j > 1.
Write F = UB, where U = CA−1 = h−1CAT . Now

f1j =
∑

k

u1kbkj ,

where

u1k =
1

h

∑

ℓ

c1ℓakℓ

and

c1ℓ = sgn

(
∑

m

bm1amℓ

)
.

Observe that c1ℓ and u1k depend only on the first column of B. Thus, f1j
depends only on the first and j-th columns of B. If we fix the first column
of B and take expectations over all choices of the other columns, we obtain

E(f 2
1j) = E

(
∑

k

∑

ℓ

u1ku1ℓbkjbℓj

)
.

The expectation of the terms with k 6= ℓ vanishes, and the expectation of
the terms with k = ℓ is

∑
k u

2
1k. Thus, (6) follows from Lemma 7.

Now suppose that i 6= j, k 6= ℓ. We cannot assume that fij and fkℓ are
independent5. However, from the Cauchy-Schwarz inequality, we have

E(|fijfkℓ|) ≤
√

E(f 2
ij)E(f 2

kℓ) = 1. (7)

5For example, f12 and f21 are not independent. Since fij depends on columns i and j
of B, we see that fij and fkℓ are independent iff {i, j} ∩ {k, ℓ} = ∅.
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Since fii depends only on the i-th column of B, the “diagonal” terms fii
are independent; similarly the diagonal terms mii are independent. Now
E(mii) = E(fii)− dii = g(h) by our choice dii = −1, so

E

(
d∏

i=1

mii

)
=

d∏

i=1

E(mii) = g(h)d.

Observe that det(F + I) is the sum of a “diagonal” term
∏

1≤i≤dmii and
(d!− 1) “non-diagonal” terms. If d > 1, the non-diagonal terms each contain
at most d− 2 factors of the form mii (bounded by h1/2 + 1) and at least
two factors of the form fij . The expectations of the non-diagonal terms are
bounded by (h1/2 + 1)d−2. For example, if d = 3, we use

|E(f12f21m33)| ≤ E(|f12f21|)max(|m33|) ≤ h1/2 + 1.

In general, we use an upper bound h1/2 + 1 for d− 2 of the factors, and save
a factor of order h by using (7) once.

Thus
E(det(F + I)) ≥ g(h)d − (d!− 1) (h1/2 + 1)d−2. (8)

We simplify (8) using h1/2 + 1 ≤ h1/2 exp(h−1/2) and, from (4), d < h1/2.
Thus (h1/2 + 1)d−2 ≤ hd/2−1 exp(dh−1/2) ≤ hd/2−1e, and (8) gives

E(det(F + I)) ≥ g(h)d − d! hd/2−1e. (9)

Now, using Lemma 4 gives

E(det(F + I)) > (ch1/2 + 0.9)d − d! hd/2−1e ≥ cdhd/2

(
1 +

0.9d

ch1/2
− d!e

cdh

)
.

(10)
We also have

(
h

n

)d/2

=

(
1 +

d

h

)−d/2

> exp

(
− d2

2h

)
. (11)

Now h ≥ h0(d) implies both d2 < h and dh1/2 ≥ d!e/cd + d2; since c < 0.9
the latter inequality implies

0.9d

ch1/2
>

d!e

cdh
+

d2

h
. (12)
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From d2 ≤ h and the inequalities (10)–(12), we have

E(det(F + I)) > cdnd/2

(
1 +

0.9d

ch1/2
− d!e

cdh

)
exp

(
− d2

2h

)

> cdnd/2

(
1 +

d2

h

)
exp

(
− d2

2h

)
> cdnd/2.

This proves the existence of matrices B and C such that det(F +I) > cdnd/2.
To complete the proof, we choose the off-diagonal elements of D, in an

arbitrary order, in such a manner that det(F − D) ≥ det(F + I). This is
always possible, since det(F − D) is a linear function of each off-diagonal
element dij considered separately, so at least one of the choices dij = +1 and
dij = −1 does not reduce the determinant. The inequality (5) now follows
from Lemma 2.

Remark 4. A variant of Theorem 1 arises if we start, not from an h × h
Hadamard matrix, but from an h× h conference matrix6, that is a {0,±1}-
matrix C, with diag(C) = 0, satisfying CCT = (h−1)I. To prove the variant,
we need only minor alterations to Lemma 7 and to the proof of Theorem 1.
Using this variant, we can improve the constant7 in Theorem C of Neubauer
and Radcliffe [45] from 0.3409 to 0.4484. Another interesting variant allows
all matrices to have entries from the set {±1,±i}; then a 4-sided “coin” and
4-valued “sign” function need to be used.

Corollary 1. If 1 ≤ d ≤ 3, h ∈ H, h ≥ 4, and n = h+ d, then

D(n)

hh/2
>

(
2n

π

)d/2

(13)

and

R(n) >

(
2

πe

)d/2

. (14)

Proof. First consider the inequality (13). This follows from Theorem 1 if
h ≥ h0(d). The inequality (8) in the proof of Theorem 1 covers all cases with

6Similarly for weighing matrices [19], which are also scalar multiples of orthogonal
matrices.

7This constant occurs in the statement that the Ehlich upper bound [27] for D(n) in
the case n ≡ 3 mod 4 is attained up to a constant factor infinitely often.
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h ≥ 16 and d ≤ 3, so we only need check the cases h ∈ {4, 8, 12} and use the
known values (see for example [48]) of D(5), . . . , D(15).

The inequality (14) follows from (13) and Lemma 5 (with α = d).

Remark 5. If the Hadamard conjecture is true, then for 4 < n 6≡ 0 (mod 4),
we can take h = 4⌊n/4⌋ and d = n− h ≤ 3 in Corollary 1. Thus,

1 > R(n) >

(
2

πe

)d/2

≥
(

2

πe

)3/2

> 0.1133 .

The following corollary does not assume the Hadamard conjecture, but
it does require h to be sufficiently large.

Corollary 2. Assume that d > 0, h ∈ H, and h ≥ h0(d), where h0(d) is as

in Theorem 1. If n = h+ d, then

R(n) >

(
2

πe

)d/2

.

Proof. This follows from Theorem 1 and Lemma 5 (with α = d).

Corollary 3. Let d ≥ 0 be fixed. Then

lim inf
n→∞

n−d∈H

R(n) ≥
(

2

πe

)d/2

.

Proof. The result is trivial if d = 0, so suppose that d ≥ 1. Corollary 2
shows that R(n) > (2/(πe))d/2 for n = h + d and all sufficiently large h, so
the result follows.

Corollary 4. There exist positive constants κd such that, if d ≥ 0, h ≥ 4,
h ∈ H, and n = h + d, then R(n) ≥ κd.

Proof. The result is trivial if d = 0. Otherwise, define

κd := min {(2/(πe))d/2} ∪ {R(n) |n ∈ N, n− d ∈ H, 4 ≤ n− d < h0(d)} .

Since κd is the minimum of a finite set of positive values, it is positive, and
by Corollary 2 it is a lower bound on R(n).
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Remark 6. The best (i.e. largest) possible values of the constants κd are
unknown, except for the trivial κ0 = 1. From Corollary 1, we know that

κd ≥
(

2

πe

)d/2

(15)

holds for d ≤ 3, and it is plausible to conjecture that (15) holds for all d ≥ 0.
It is unlikely that this inequality is tight, and plausible that the constant
2/(πe) could be replaced by some greater value.

If the Hadamard conjecture is true, then we can assume that d ≤ 3 and
κd ≥ (2/(πe))3/2 > 1/9. Hence, it is of interest to mention known upper
bounds on the κd for d ≤ 3.

1. We have κ1 ≤ R(9) = 7 × 211/39 < 0.7284, which is sharper than the
value (2/e)1/2 ≈ 0.8578 given by the Barba bound [5] as n → ∞.

2. The Ehlich-Wojtas bound [26, 62] in the limit as n → ∞ shows that
κ2 ≤ 2/e < 0.7358.

3. We have κ3 ≤ R(11) = 5× 216/1111/2 < 0.6135, which is sharper than
the value 2e−3/21137−7/2 ≈ 0.6545 given by Ehlich’s upper bound [27]
as n → ∞.

We now state and prove three similar theorems. In the proofs of Theo-
rems 2 and 3 we need the Schur matrix F to have off-diagonal entries small
compared to its diagonal entries so that we can apply the determinant bound
for diagonally-dominant matrices in Lemma 10. To quantify this we introduce
two sets S0 and S1. Roughly speaking, S0 is the set of coin-tosses yielding
large-enough diagonal entries of F , and S1 is the set of coin-tosses yielding
too-large off-diagonal entries of F . It is necessary to show that S0\S1 6= ∅.
We accomplish this by using Lemma 12 and an independence argument to
show that, with our choice of parameters, S0 is not too small and (by using a
Hoeffding tail bound) S1 is smaller than S0. The two theorems differ in the
choice of parameters and largeness/smallness criteria. Theorem 2 gives the
sharper bound but has more restrictive conditions, in particular the condi-
tion h ≥ 16d3 ln h. Theorem 3 relaxes this condition to h ≥ 6d3, but at the
cost of a weaker bound on R(n). Finally, Theorem 4 removes any restriction
on h, at the cost of a yet weaker bound (but still depending only on d).
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Theorem 2. Let d ≥ 0 be given, and let h ∈ H, h ≥ 656, be such that

16d3 ≤ h

ln h
. (16)

If n = h+ d and

ε =

(
4d lnh

h

)1/2

, (17)

then
D(n)

hn/2
≥
(
2

π

)d/2

exp(−2.31 dε) . (18)

Note that when d → ∞ or h → ∞ then (16)–(17) imply that ε → 0+.
Before proving Theorem 2, we state a lemma which collects some of the
inequalities that are required.

Lemma 13. Under the conditions of Theorem 2, if d ≥ 1 then the following

six inequalities hold:

dε ≤ 1/2 , (19)

ε ≥ 8d/h , (20)

ε ≤ (2/π)1/2 − 0.5

1.1
≈ 0.2704 , (21)

2d2 exp(−ε2h/8) ≤ (2ε)d . (22)

1− 1.1ε

c
≥ exp(−αε), (23)

g(h)− 1 ≥ ((2/π)1/2 − ε/10)h1/2, (24)

where α ≈ 1.7262, c =
√

2/π, and g(h) is as in Lemma 4.

Proof. From (16) and (17) we have

d2ε2 =
4d3 ln h

h
≤ 1

4
,

which proves (19). For (20) use ln h ≥ 1. Thus, from (16), h ≥ 16d3 ≥ 16d,
so

ε2 =
4d lnh

h
≥ 4d

h
≥ 64d2

h2
,
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and taking a square root gives (20). Similarly, using (16) and (17) gives

ε ≤
(
2 ln h

h

)1/3

,

and the condition h ≥ 656 then gives ε ≤ ((2 ln 656)/656)1/3 ≈ 0.2704, which
proves (21).

Taking logarithms shows that the inequality (22) is equivalent to ε2h/8 ≥
ln(2d2) − d ln(2ε), and substituting the definition (17) of ε and simplifying
shows that this is equivalent to

ln(16d lnh) ≥ 2 ln(2d2)/d . (25)

The right side of (25) is bounded above by 4
√
2/e ≈ 2.081, but the left side

exceeds this value for all d ≥ 1 and h ≥ 2. This completes the proof of (22).
To show (23), recall that ε ≤ 0.271. Using Lemma 11 with ε0 = 0.271,

κ = −1.1/c, we see that (23) is valid for α ≥ − ln(1−0.271×1.1/c)/0.271 ≈
1.7262.

Finally, for (24), Lemma 4 gives g(h) > ch1/2 + 0.9. Thus, it is sufficient
to show that ch1/2+0.9−1 ≥ (c−ε/10)h1/2, which is equivalent to εh1/2 ≥ 1.
This follows easily from (17).

Proof of Theorem 2. As usual, we can assume that d ≥ 1, as the result is
trivial if d = 0. We use the same notation as in the proof of Theorem 1. In
particular, c =

√
2/π, F = CA−1B = h−1CATB, and M = F − D, where

diag(D) = −I.
Consider fij for i fixed and j 6= i. To simplify the notation, assume that

i = 1 and j 6= 1. Then

f1j =
1

h

∑

k

∑

ℓ

c1kaℓkbℓj =
∑

ℓ

u1ℓbℓj say,

where

u1ℓ =
1

h

∑

k

c1kaℓk (26)

and

c1k = sgn(BTA)1k = sgn

(
∑

ℓ

bℓ1aℓk

)
.
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We see that c1k depends on column 1 of B and is independent of the other
columns of B. Thus, f1j depends on columns 1 and j of B and is independent
of the other columns of B. Also, from Lemma 7,

∑

ℓ

u2
1ℓ = 1. (27)

Consider fixing the first column of B and allowing the other columns to vary
uniformly at random. Thus, for fixed j ∈ [2, d], we can regard Xℓ := u1ℓbℓj ,
1 ≤ ℓ ≤ h, as h independent random variables having expectation zero and
sum f1j . Also, |Xℓ| ≤ |u1ℓ|. Thus, by (27) and Proposition 1, we have

Pr (|f1j | ≥ t) ≤ 2e−t2/2 for t > 0. (28)

The inequality (28) is valid for any choice of the first column of B, hence it
is valid if the first column is chosen at random. Now allow all columns of B
to vary uniformly at random. Since there are d(d− 1) off-diagonal elements
fij, it follows (without assuming independence of the fij) that8

Pr

(
max
i 6=j

|fij| ≥ t

)
≤ 2d(d− 1)e−t2/2. (29)

[Remark : The inequality (29) shows that the off-diagonal elements of F are
usually “small”, more precisely of order

√
log d. We now consider the diagonal

elements and show that there is a set (not too small) on which they are at
least h1/2/2.]

As in the proof of Theorem 1 (following Best [8, Theorem 3]),

E(fii) = g(h)− 1,

where g(h) ∼ ch1/2 is as in Lemma 4. Choose c1 < c and suppose that h is
sufficiently large that E(fii) = g(h)− 1 ≥ c1h

1/2.
Choose c2 < c1, and consider ρi := Pr

(
fii ≥ c2h

1/2
)
. By our choice of C

and Best [8, Thm. 1], we have 0 ≤ fii ≤ h1/2. Thus, by Lemma 12 applied
to the random variable fii/h

1/2, we have

ρi ≥
c1 − c2
1− c2

.

8 We could sharpen the argument at this point by using the Lovász Local Lemma [28] to

reduce the right-hand-side of (29) to O(de−t2/2), but this would not significantly improve
the final bound (18).
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Note that fii depends only on the i-th column of B, so the fii are inde-
pendent for 1 ≤ i ≤ d. Thus, if S0 = {B | min{fii|1 ≤ i ≤ d} ≥ c2h

1/2}, we
have

Pr(S0) =
∏

i

ρi ≥
(
c1 − c2
1− c2

)d

.

To be definite take c1 = c − ε/10 and c2 = c1 − ε, where ε is as in the
statement of the theorem and, from Lemma 13, ε ≤ (c− 0.5)/1.1 ≈ 0.2704.
Then we have c2 = c− 1.1ε ≥ 1/2, ρi ≥ 2ε, and Pr(S0) ≥ (2ε)d.

Let S1 be the set of B for which maxi 6=j |fij| ≥ t . From (29), we have
Pr(S1) ≤ 2d(d− 1)e−t2/2. For the matrix F to be DD(ε) on a nonempty set
S0\S1 of choices of B, it suffices that

t ≤ c2εh
1/2 and 2d(d− 1)e−t2/2 < (2ε)d . (30)

Thus, choosing t = c2εh
1/2, it is sufficient that

2d2 exp(−c22ε
2h/2) ≤ (2ε)d. (31)

Since c2 ≥ 1/2, part (22) of Lemma 13 shows that the inequality (31) is
satisfied. Thus, Lemma 10 applied to F gives

det(F ) ≥ (c2h
1/2)d(1− (d− 1)2ε2) (32)

on a nonempty set S0\S1. Since dε ≤ 1/2,

1− (d− 1)2ε2 ≥ 1− d2ε2 ≥ 1− dε/2 ≥ exp(−βdε),

where Lemma 11 gives β = 2 ln(4/3) ≈ 0.5755. As in the proof of Theorem 1,
we choose the elements of D so that det(M) = det(F − D) ≥ det(F ). It
follows from Lemma 2 that

D(n) ≥ hn/2cd2 exp(−βdε). (33)

To complete the proof, use (23) of Lemma 13. We have c2/c ≥ exp(−αε),
where α ≈ 1.7262, and

cd2 ≥ cd exp(−αdε). (34)

Now the theorem follows from (33), using α + β < 2.31.
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The inequality in the following Corollary 5 is slightly weaker than the
inequality in Corollary 2, but Corollary 5 is applicable for smaller values
of h. Note that dε ≤ 1

2
from (19), so exp(−2.38dε) ≥ exp(−1.19) > 0.3.

Corollary 5. Under the conditions of Theorem 2,

R(n) >

(
2

πe

)d/2

exp(−2.38 dε).

Proof. We can assume that d > 0. From Lemma 6 with α = d,

(
h

n

)n

> exp(−d) exp(−d2/h).

From (20) of Lemma 13, d2/h ≤ dε/8. Thus

(h/n)n/2 > exp(−d/2) exp(−dε/16). (35)

The result now follows from (18) and (35), since 2.31 + 1/16 < 2.38.

Theorem 3 weakens the condition (16) on h in Theorem 2 by eliminating
the log term; the new condition is h ≥ 6d3. The cost is a weakening of
the result – essentially the constant 2/π in inequality (18) is replaced by a
smaller constant, and we have to introduce a factor 1−O(d3/h).

Theorem 3. Let δ = 6d3/h, and assume that δ ≤ 1, d > 0, h ∈ H, and

n = h + d. Then
D(n)

hn/2
≥ (0.594)d (1− 0.93 δ)

and

R(n) ≥ (0.352)d (1− 0.93 δ) ≥ 0.07 (0.352)d .

Proof. We follow the notation and proof of Theorem 2, but with a different
choice of c1, c2 and ε.

If d ≤ 3 the results follow from Corollary 1, so assume that d ≥ 4. Since
h ≥ 6d3, we can assume that h ≥ 384.

Choose c1 = c(1 − 1/(4h)). By Lemma 4, g(h) − 1 > c1h
1/2. Since

h ≥ 384, we have c1 ≥ 0.797. Now choose c2 = 2c1 − 1 ≥ 0.594 so that
ρi ≥ (c1 − c2)/(1− c2) ≥ 1/2 and Pr(S0) ≥ 2−d.
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For the matrix F to be DD(ε) on a nonempty set S0\S1 of choices of B,
it suffices that

t ≤ c2εh
1/2 and 2d(d− 1)e−t2/2 < 2−d .

Thus, choosing t = c2εh
1/2, it is sufficient that

2d(d− 1) exp(−c22ε
2h/2) < 2−d ,

which is equivalent to

ε2 >
2d ln 2

c22h

(
1 +

log2(2d(d− 1))

d

)
. (36)

Now 2 ln 2/c22 < 3.92, and (36) is satisfied if we choose ε so that

ε2 =
3.92d

h

(
1 +

log2(2d(d− 1))

d

)
.

To obtain a nontrivial bound from Lemma 10 we need (d − 1)2ε2 < 1, or
equivalently

3.92d(d− 1)2

h

(
1 +

log2(2d(d− 1))

d

)
< 1.

We find numerically9 that

max
d∈N, d≥4

[
3.92(d− 1)2

d2

(
1 +

log2(2d(d− 1))

d

)]
< 5.57.

Thus, the condition h ≥ 6d3 is sufficient for F to be DD(ε) on a nonempty
set. Also, we have (d−1)2ε2 < 5.57 δ/6 < 0.93 δ, so 1−(d−1)2ε2 > 1−0.93 δ.
Now (32) and the remainder of the proof follow as in the proof of Theorem 2,
using Lemma 6 with α = d for the inequality involving R, and observing
that

d2

2h
=

d3

2h
· 1
d
≤ 1

12d
≤ 1

48

and

0.594 exp

(
−1

2
− 1

48

)
> 0.352.

9The maximum 5.564 . . . occurs at d = 9.
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We now investigate when the conditions of Theorem 3 are satisfied. First
we state a result of Livinskyi [41, Theorem 5.4]. This result is better for our
purposes than the (asymptotically sharper) result of Livinskyi quoted in §2,
as it has a smaller additive constant.

Proposition 2 (Livinskyi, Theorem 5.4). If p is an odd positive integer and

t = 6⌊ 1
26
log2

(
p−1
2

)
⌋ + 11, then there exists a Hadamard matrix of order 2tp.

Corollary 6. If k ∈ N, q ∈ N, and 1 ≤ q ≤ 226k+1, then there exists a

Hadamard matrix of order 26k+5q.

Proof. If p is odd and 0 ≤ (p− 1)/2 < 226k, then Proposition 2 shows that
26k+5p ∈ H. Thus, if q = 2mp where p is odd, the Sylvester construction
applied m times shows that 26k+5q ∈ H.

Lemma 14. If hi ∈ H, hi+1 ∈ H are consecutive Hadamard orders and

hi ≥ 3× 270, then 6(hi+1 − hi)
3 ≤ hi.

Proof. From Corollary 6 with k ≥ 3, the gaps between consecutive Hadamard
orders hi, hi+1 ≤ 232k+6 are at most 26k+5, and 6× (26k+5)3 = 3× 218k+16, so
the result holds for hi, hi+1 ∈ Ik := [3 × 218k+16, 232k+6]. Now the intervals
I3 = [3×270, 2102], I4 = [3×278, 2134], . . . , overlap and cover the whole region
[3×270,∞). Also, Ik∩Ik+1 = [3×218k+34, 232k+6] is sufficiently large that the
special case hi ∈ Ik, hi+1 ∈ Ik+1 causes no problem, as hi+1−hi ≤ 26(k+1)+5 =
26k+11 and both of hi, hi+1 must belong to one of Ik or Ik+1.

The following lemma shows that the condition δ ≤ 1 (that is 6d3 ≤ h) of
Theorem 3 is always satisfied for n sufficiently large.

Lemma 15. Suppose n ∈ N, n ≥ 60480, h = max{x ∈ H | x ≤ n}, and

d = n− h. Then 6d3 ≤ h.

Sketch of proof. The proof is mainly based on machine computations, so we
can only give an outline here. We split the interval [60480,∞) into several
sub-intervals and consider each such sub-interval separately. We choose a set
of intervals that overlap slightly in order to avoid any difficulties near the
boundaries between adjacent intervals. (Discussion of such minor details is
omitted below.)

First consider [60480, 231]. We wrote a C program to list a subset L of
the known Hadamard orders h ≤ 231 using several (by no means all) known
constructions [1, 6, 7, 20, 22, 24, 25, 33, 34, 36, 38, 43, 49, 52, 57, 58, 61, 64].
The constructions that we used were:
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1. Paley-Sylvester-Turyn: if p is prime (or p = 0) and j, k ≥ 0 are integers,
then h = 2j(pk + 1) ∈ H whenever 4|h.

2. Agaian-Sarukhanyan: if {4a, 4b} ⊂ H, then 8ab ∈ H.

3. Craigen-Seberry-Zhang: if {4a, 4b, 4c, 4d} ⊂ H, then 16abcd ∈ H.

4. Twin-Prime construction: if q and q + 2 are both odd prime powers,
then h = (q + 2)q + 1 ∈ H.

5. Craigen-Holzmann-Kharaghani [20, Cor. 16, pg. 87]: If q = x + y is
a sum of two complex Golay numbers x and y, then h = 8q ∈ H.
It is known that every integer g of the form g = 2a−1 6b 10c 22d 26e,
with a, b, c, d, e ≥ 0 integers, is complex Golay. For example: 659 × 8,
739× 16, 971 × 8, and 1223 × 16 are all in H since 659 = 11 + 648,
739× 2 = 26 + 1452, 971 = 968 + 3, and 1223× 2 = 26 + 2420.

6. Miyamoto-I: if q − 1 ∈ H and q is a prime power, then 4q ∈ H.

7. Miyamoto-II: if q and 2q − 3 are prime powers and q ≡ 3 mod 4, then
8q ∈ H.

8. Yamada/Kiyasu: if q is a prime power, q ≡ 5 mod 8, and (q+3)/2 ∈ H,
then 4(q + 2) ∈ H.

9. Small orders: 1, 2, and all h divisible by 4 with 4 ≤ h ≤ 2056 are in H
except perhaps 668, 716, 892, 1004, 1132, 1244, 1388, 1436, 1676, 1772,
1916, 1948, 1964.

10. Baumert-Hall-Williamson: If w is the order of a quadruple of Williamson
matrices, and 4b is the order of a Baumert-Hall array, then 4bw ∈ H.
Known Williamson numbers include all w with 1 ≤ w ≤ 64 except

{35, 47, 53, 59}. Known Baumert-Hall numbers b include all b with
1 ≤ b ≤ 108 except {97, 103}, and all b = 2k + 1 for k ≥ 0.

11. Seberry-Yamada [52, Cor. 29]: If q and 2q + 3 both are prime powers,
then w = 2q+3 is a Williamson order. For example, 109 is a Williamson
order.

Using the computed L it is easy to check if any given n ≤ 231 corresponds
to a pair (h, d) (with h, d defined as in the statement of the lemma) such
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that 6d3 > h. We found that the largest such n is 60480, corresponding to
the open interval (60456, 60480) which does not intersect our list L of known
Hadamard orders (and 6× 233 = 73002 > 60456). Thus, we have proved the
result claimed for n ≤ 231.

Now consider the interval (2×109, 8×1018]. There is some overlap with the
previous case, since 2× 109 < 231. We use the tables of maximal prime gaps
at [46, 54] (found by e Silva and others) for primes p ≤ 4× 1018. The largest
of these prime gaps is 1476. Using the tables and the fact that 2(p+ 1) ∈ H
for every odd prime p, we find that the claim holds for 2×109 < n ≤ 8×1018.

The tables of maximal prime gaps do not yet extend as far as 2 × 1021.
Hence we deal with the interval (8×1018, 4×1021] in a different manner, but
still using the tables of known maximal prime gaps.

First consider the interval (7 × 1018, 1.2× 1020]. Since 32(p + 1) ∈ H for
prime p, it is sufficient to know prime gaps for primes p ≤ 1.2 × 1020/32 <
4×1018. The largest such prime gap is 1476, corresponding to a gap between
Hadamard orders of at most 32×1476 = 47232. Since 6×472323 < 7×1018,
the claim holds for 7× 1018 < n ≤ 1.2× 1020.

Now consider the interval (1020, 4 × 1021]. Since 1000(p + 1) ∈ H for
prime p, the known prime gaps for p ≤ 4 × 1018 suffice. The largest such
gap, 1476, now corresponds to a gap between Hadamard orders of at most
1476000. Since 6× 14760003 < 1020, the claim holds for 1020 < n ≤ 4× 1021.

Finally, since 3 × 270 < 4 × 1021, Lemma 14 shows that the claim holds
for all n > 4× 1021, which completes the proof.

By considering a small set of exceptional cases, we now show that the
condition 6d3 ≤ h of Theorem 3 can be dropped entirely, if we are satisfied
with a slightly weaker lower bound on R(n).

Theorem 4. Suppose that n ∈ N, h = max{x ∈ H | x ≤ n}, and d = n− h.

Then

R(n) > 0.07 (0.352)d > 3−(d+3).

Proof. For 0 ≤ d ≤ 3, the result follows from Corollary 1. This covers all
n < 668. On the other hand, if n ≥ 60480, the result follows from Theorem 3
and Lemma 15. Thus, we can assume that 668 ≤ n < 60480 and d ≥ 4.

If n + 1 ∈ H then Theorem 9 of [10] gives R(n) ≥ (4/(ne))1/2, and for
n < 60480, d ≥ 4, it is easy to verify that (4/(ne))1/2 > 0.002 > 0.07 (0.352)d.
Thus, if h, h′ are consecutive (known) Hadamard orders, we only have to
consider the cases n = h+ d for 4 ≤ d ≤ h′ − h− 2.
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h h′ d p method
664 672 [5, 6] 331 Paley1
712 720 [5, 6] 709 conference
888 896 6 443 Paley1
1000 1008 6 499 Paley1
1128 1136 6 563 Paley1
1240 1248 6 619 Paley1
2868 2880 [8, 10] 1433 Paley2
5744 5760 [10, 14] 5749 conference
10048 10064 [12, 14] 5023 Paley1
23980 24000 [16, 18] 23993 conference
47964 47988 [20, 22] 47963 Paley1
53732 53760 [21, 26] 53731 Paley1
60456 60480 22 60457 conference

Table 1: Exceptional cases in the proof of Theorem 4.

From the output of the C program described in the proof of Lemma 15, we
find that the cases that are not covered by Lemma 15 or the remarks already
made are those listed in Table 1, which gives 32 cases in 13 intervals. For
each of these 13 intervals [h, h′] we know that h and h′ are Hadamard orders,
but we do not know 10 any Hadamard orders in the open interval (h, h′), and
we need to verify that the inequality

R(n) > 0.07 (0.352)d (37)

is satisfied for each n = h+ d and the values of d listed in the third column
of the table.

Using Magma [9], we wrote a program that implements a randomised
algorithm to obtain a lower bound on R(n). The program constructs a
Hadamard matrix A of order h = (p + 1) or h = 2(p + 1), where p is an
odd prime and in the first case p ≡ 3 mod 4, using the appropriate Paley
construction [49], followed if necessary by the Sylvester construction [56]. The

program then generates a border of width d to obtain a matrix Ã of order n,

10This may just reflect our ignorance. Certainly such orders exist if the Hadamard
conjecture is true. In some cases we know that they exist via constructions that were not
implemented in our C program.
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as in the proof of Theorem 1, and computes | det(Ã)|/nn/2 by computing

the determinant of the Schur complement of A in Ã and using Lemma 2. If
desired, several independent random trials can be performed to improve the
lower bound.

Using our Magma program with the primes p listed in the fourth column
of Table 1, we were able to show that the inequality (37) holds for all the
cases labelled “Paley1” or “Paley2”. In fact, a few trials of our randomised
algorithm were sufficient to show that the stronger inequality

R(n) >

(
2

πe

)d/2

(38)

holds in these cases (this is not surprising, in view of Corollaries 1 and 2).
For the intervals [h, h′] labelled “conference” in Table 1, there is no prime

p for which h = p + 1 or 2(p + 1), but there is a prime p (given in the
fourth column of the table) which can be used to construct a conference
matrix of order p + 1 close to h. Using a slight modification of our Magma
program, we can use this conference matrix to obtain lower bounds on R(n)
for n ≥ p+1 (see Remark 4). In this way we showed that the inequality (38)
holds for all the intervals labelled “conference” with the exception of the
interval [712, 720]. Here there is no suitable prime inside the interval, so we
use p = 709 < h = 712, thus obtaining weaker lower bounds. However, we
still obtain R(712 + d) > 0.352d for d ∈ {5, 6} by this method, and this
bound is sufficient since it is stronger than the desired inequality (37).

There is one further point to consider. We illustrate it for the interval
[5744, 5760] of length 16. It is possible that 5748, 5752 and/or 5756 are
Hadamard orders (although we do not at present know how to construct
Hadamard matrices of these orders). Thus, we need to check that our lower
bound on R(n) holds for h = 5748, d = 10, n = h + d = 5758 (and other
similar cases). The prime p = 5749 gives a conference matrix of order 5750.
Using this conference matrix, our program shows that R(5758) > 0.002115 >
(2/(πe))10/2, so (38) is satisfied. The other, similar, cases that arise if a
Hadamard order exists in the interior of any of the intervals listed in Table 1
can be covered by one of the arguments that we have already used. Thus, the
inequality (37) always holds for the exceptional cases listed in Table 1.
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