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Pattern avoidance in matchings and partitions

Jonathan Bloom and Sergi Elizalde ∗

Abstract

Extending the notion of pattern avoidance in permutations, we study matchings and set
partitions whose arc diagram representation avoids a given configuration of three arcs. These
configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case
of matchings, in terms of patterns in full rook placements on Ferrers boards.

We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating func-
tions, in contrast with the known D-finite generating functions for the 321-avoiding (i.e., 3-
noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the
number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-
equivalence of the patterns 321 and 213 which greatly simplifies existing proofs by Backelin–
West–Xin and Jeĺınek, and provides an extension of work of Gouyou-Beauchamps for matchings
with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-
equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting
equivalence classes.

1 Introduction

Pattern avoidance in matchings is a natural extension of pattern avoidance in permutations. Indeed,
a permutation of [n] = {1, 2, . . . , n} can be thought of as matching of [2n] where each element of
[n] is paired up with an element of [2n] \ [n]. The natural translation of the definition of patterns
in permutations to this type of matchings extends to all perfect matchings, and more generally, to
set partitions —which, when all the blocks have size 2, are just perfect matchings. We will use the
term matching to refer to a perfect matching, when it creates no confusion. On the other hand, the
well-studied notions of k-crossings and k-nestings in matchings and set partitions, in our language,
are simply occurrences of the patterns k . . . 21 and 12 . . . k, respectively. Additionally, by viewing
matchings as certain fillings of Ferrers boards, patterns in matchings relate to patterns in Ferrers
boards, and thus to the concept of shape-Wilf-equivalence of permutations.

Motivated by these connections and by the recent work on crossings, nestings, permutation
patterns, and shape-Wilf-equivalence, we study matchings and partitions that avoid patterns of
length 3. We consolidate and simplify recent work on the classification of these patterns, and
we obtain new results on the enumeration of matchings and partitions that avoid some of these
patterns.

1.1 Previous work

Given 2n points on a horizontal line, labeled increasingly from left to right, we represent a matching
of [2n] by drawing n arcs between pairs of points. If i < j < k < ℓ, two arcs (i, k), (j, ℓ) form a cross-
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ing, and two arcs (i, ℓ), (j, k) form a nesting. Similarly, a partition of [n] is represented by drawing,
for each block {i1, i2, . . . , ia} of size a with i1 < i2 < · · · < ia, a−1 arcs (i1, i2), (i2, i3), . . . , (ia−1, ia).
A crossing in the partition is then a pair of arcs (i, k), (j, ℓ), and a nesting is a pair of arcs (i, ℓ),
(j, k), where i < j < k < ℓ.

Crossings and nestings in matchings and partitions have been studied for decades. It is well
known that the number of perfect matchings on [2n] with no crossings (or with no nestings) is the
n-th Catalan number Cn, which also equals the number of partitions of [n] of with no crossings,
and the number of those with no nestings.

More generally, attention has focused on the study of k-crossings (k-nestings), which are sets of
k pairwise crossing (respectively, nesting) arcs. For set partitions, the above definition, which we
use throughout the paper, is the same given by Chen, Deng, Du, Stanley and Yan [11] and Krat-
tenthaler [24]. However, we point out that different definitions of pattern avoidance for partitions
have been introduced by Klazar [22] and Sagan [28], studied also in [25, 21, 19].

Touchard [33] and Riordan [27] considered the distribution of 2-crossings on matchings, which
was shown [14] to be equal to the distribution of 2-nestings. The number of 3-nonnesting matchings
of [2n] (viewed as fixed-point-free involutions with no decreasing sequence of length 6) was found by
Gouyou-Beauchamps [18], who recursively constructed a bijection onto pairs of noncrossing Dyck
paths with 2n steps, counted by CnCn+2 − C2

n+1. More recently, Chen et al. [11] showed that, if
we define the crossing (nesting) number of a matching as the maximum k such that it contains a
k-crossing (resp. k-nesting), then the crossing number and the nesting number have a symmetric
joint distribution on the set of all matchings of [2n]. In particular, the number of k-noncrossing
matchings (i.e., containing no k-crossing) of [2n] equals the number of k-nonnesting (i.e., containing
no k-nesting) ones, for all k. They show that the analogous results hold for partitions as well. Their
proof, which uses vacillating tableaux and a variation of Robinson-Schensted insertion and deletion,
also provides a bijection between k-noncrossing matchings and certain (k − 1)-dimensional closed
lattice walks, from where a determinant formula for the generating function in terms of hyperbolic
Bessel functions follows.

Less is known about the enumeration of k-noncrossing set partitions. Bousquet-Mélou and
Xin [9] settled the case k = 3 using a bijection into lattice paths to derive a functional equation
for the generating function, which then is solved by the kernel method. They showed that the
generating function for 3-noncrossing set partitions is D-finite, that is, it satisfies a linear differential
equation with polynomial coefficients. This is conjectured not to be the case for k > 3. For k-
nonnesting set partitions, additional functional equations for the generating functions have been
obtained by Burrill et al. [10] using generating trees for open arc diagrams.

By interpreting matchings and partitions as rook placements on Ferrers boards and using the
growth diagram construction of Fomin [17], Krattenthaler [24] gave a simpler description of the
bijections in [11] proving the symmetry of crossing and nesting number on matchings and partitions.
He extended the results to fillings of Ferrers boards with nonnegative integers. Other extensions
have been given by de Mier [13] to fillings with prescribed row and column sums.

As mentioned before, k-crossings (respectively, k-nestings) in matchings have a simple interpre-
tation as occurrences of the monotone decreasing (respectively, increasing) pattern of length k. In
this paper we study and enumerate matchings that avoid other patterns of length 3, and in some
cases, we extend our results to the enumeration of pattern-avoiding partitions. The translation
of crossings and nestings to the language of permutation patterns becomes natural via a bijection
between matchings and certain fillings of Ferrers boards, called full rook placements, described in
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Section 2.2. For such fillings, the definitions of pattern containment and avoidance in permuta-
tions generalize routinely, and they have been widely studied in the literature. In this setting,
Stankova and West [31] introduced the concept of shape-Wilf-equivalence, and they showed that
the patterns 231 and 312 are shape-Wilf-equivalent. A simpler proof of this fact was later given
by Bloom and Saracino [4]. As we will see, if two patterns are shape-Wilf-equivalent, then the
number of matchings avoiding one is the same as the number of those avoiding the other, and
the same is true for partitions. Backelin, West and Xin [2] showed that 12 . . . k and k . . . 21 are
shape-Wilf-equivalent. A more direct proof of their result, which implies again that k-nonnesting
and k-noncrossing matchings are equinumerous, was given by Krattenthaler [24]. It also follows
from [2] that 123 and 213 are shape-Wilf-equivalent. Thus, there are three shape-Wilf-equivalence
classes of patterns of length 3, namely 123 ∼ 321 ∼ 213, 231 ∼ 312, and 132.

Jeĺınek [20] reproved some of these results independently in the context of matchings, by giv-
ing bijections between 231-avoiding matchings and 312-avoiding ones, and between 213-avoiding
matchings and 123-avoiding (i.e. 3-nonnesting) ones.

Finally, let us mention that Stankova [30] compared, for each one of the three shape-Wilf-
equivalence classes of patterns of length 3, the number of full rook placements on any given Ferrers
board avoiding each a pattern in the class. She showed that the number of 231-avoiding placements
is no larger than the number of 321-avoiding placements (this is also proved in [20]), which is in
turn no larger than the number of 132-avoiding ones.

1.2 Structure of the paper

In Section 2 we define patterns in matchings, in set partitions, and in rook placements on Ferrers
boards, and we set the notation for the rest of the paper. In Sections 3, 4 and 5 we study each one of
the three shape-Wilf-equivalence classes of patterns of length 3. In Section 3 we give a new simple
bijection between 123-avoiding matchings and 213-avoiding ones, as well as a generalization to
matchings with fixed points (i.e., not necessarily perfect) which relates to the main result from [18].
In Section 4 we enumerate 231-avoiding (equivalently, 312-avoiding) matchings and partitions,
and we show that their generating functions are algebraic, in contrast to the case of 123-avoiding
matchings [18] and partitions [9]. We then use our techniques for matchings to obtain a new proof
of Bóna’s formula for the generating function for 1342-avoiding permutations [5]. In Section 5 we
discuss 132-avoiding matchings, for which no enumeration formula is known, and we argue that
counting them is closely related to counting 1324-avoiding permutations, which is an outstanding
open problem. Finally, in Section 6 we enumerate matchings and partitions that avoid pairs of
patterns of length 3.

2 Matchings, partitions, and rook placements

2.1 Ferrers boards

A Ferrers board is a left-justified array of unit squares so that the number of squares in each row
is less than or equal to the number of squares in the row below. To be precise, consider an n × n
array of unit squares in the xy-plane, whose bottom left corner is at the origin (0, 0). The vertices
of the unit squares are lattice points in Z

2. For any vertex V = (a, b), let Γ(V ) be the set of unit
squares inside the rectangle [0, a]× [0, b]. Then, a subset F of the n×n array with the property that
Γ(V ) ⊆ F for each vertex in F is a Ferrers board. Equivalently, F is bounded by the coordinate
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lines and by a lattice path from (0, n) to (n, 0) with east steps (1, 0) and south steps (0,−1). We call
this path the border of F , and we denote its vertices by V0, . . . , V2n, where V0 = (0, n), Vn = (n, 0)
and Vi+1 is immediately below or to the right of Vi.

Definition 1. A full rook placement is a pair (R,F ) where F is a Ferrers board and R is a subset
of squares of F (marked by placing a rook in each one of them) such that each row and each column
of F contains exactly one rook. Let RF denote the set of full rook placements on F .

Figure 1 gives an example of a full rook placement, where rooks are indicated by the symbol ×.
In this paper, the term placement will always refer to a full rook placement. For a Ferrers board
F to admit a full rook placement, the number or non-empty rows must equal the number of non-
empty columns, and the coordinates (x, y) of the vertices in the border of F must satisfy x ≥ y.
We denote by Fn the set of Ferrers boards satisfying this condition and having n non-empty rows
and columns. The border of F ∈ Fn, which we denote by DF , is a lattice path from (0, n) to (n, 0)
with steps east and south that remains above the line y = n− x. We denote by Dn the set of such
paths, which we call Dyck paths of semilength n (despite being rotated from other standard ways
of drawing them). The map F 7→ DF is a trivial bijection between Fn and Dn. A peak on a Dyck
path D is an occurrence of an east step immediately followed by a south step. Likewise, a valley is
an occurrence of a south step immediately followed by an east step. We write peak(D) and val(D)
for the number of peaks and valleys on D respectively, and note that peak(D) = val(D) + 1 for
D ∈ Dn with n ≥ 1. Analogously, we define a peak (respectively, a valley) on F ∈ Fn to be a
vertex Vi that is above (respectively, to the right) Vi+1 and to the left of (respectively, below) Vi−1.
We write peak(F ) and val(F ) to denote the number of peaks and valley on F respectively. Clearly,
peak(F ) = peak(DF ) and val(F ) = val(DF ).

We let
Rn =

⋃

F∈Fn

RF .

be the set of all placements on boards in Fn. Denote by Sn the set of permutations of {1, 2, . . . , n}.
To each full rook placement (R,F ) where F ∈ Fn, one can associate a permutation πR ∈ Sn by
letting πR(i) = j if R has a rook in column i and row j (our convention here is to number the columns
of F from left to right and its rows from bottom to top, as in the usual cartesian coordinates).
In the case that F ∈ Fn is the square Ferrers board, this map is a bijection between full rook
placements on F and Sn. More generally, given a vertex V of the border of F , the restriction of the
placement R to the rectangle Γ(V ), which consits of the squares R ∩ Γ(V ), determines a unique
permutation in Sk, where k = |R ∩ Γ(V )|. This permutation is obtained by disregarding empty
rows and columns, and then applying the above map. Under this correspondence it makes sense to
consider concepts such as the longest increasing sequence in R ∩ Γ(V ).

Recall that a permutation π ∈ Sn avoids another permutation τ ∈ Sk (usually called a pattern)
if there is no subsequence π(i1) . . . π(ik) with i1 < · · · < ik that is order-isomorphic to τ(1) . . . τ(k).
The number of τ -avoiding permutations in Sn is denoted by Sn(τ). Viewing permutations as full
rook placements on the square Ferrers board, π avoids τ if the placement corresponding to τ cannot
be obtained from the placement corresponding to π by removing rows and columns. This definition
has been generalized [2] to rook placements as follows.

Definition 2. A full rook placement (R,F ) avoids τ ∈ Sk if and only if for every vertex V on
the border of F , the permutation given by R ∩ Γ(V ) avoids τ . Let RF (τ) be the set of full rook
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Figure 1: A rook placement (R,F ) with F ∈ F8 and πR = 17863254. For the selected vertex
V on the border (the thicker path), Γ(V ) is the shaded rectangle and R ∩ Γ(V ) determines the
permutation 132.

placements on F that avoid τ . Similarly, let

Rn(τ) =
⋃

F∈Fn

RF (τ).

Definition 3. Two patterns σ and τ are said to be shape-Wilf-equivalent, denoted σ ∼ τ , if for
any Ferrers board F we have |RF (σ)| = |RF (τ)|.

Clearly, if two patterns are shape-Wilf-equivalent, then they are also Wilf-equivalent, meaning
that they are avoided by the same number of permutations. The converse is not true, as shown
by the fact that there is one Wilf-equivalence class for patterns of length 3, but three shape-Wilf-
equivalence classes: 123 ∼ 321 ∼ 213 (see [2, 24]), 231 ∼ 312 (see [31, 20, 4]), and 132.

We point out that there are two definitions of shape-Wilf-equivalence in the literature, one
of which is obtained by complementation of the other. This arises from the fact that Ferrers
boards can be drawn in French notation or English notation, depending on whether column widths
weakly decrease from bottom to top or from top to bottom, respectively, and also the fact that
entry (i, π(i)) can describe cartesian coordinates (i-th column from the left, π(i)-th row from
the bottom) or matrix coordinates (i-th row from the top, π(i)-th column from the left). Our
convention of using French notation and cartesian coordinates gives the same definition of shape-
Wilf-equivalence from [2], which uses English notation and matrix coordinates, and [8, 4], which
use the same conventions as in this paper. However, the definition from [31, 30, 20], which uses
English notation and cartesian coordinates, would give the complemented shape-Wilf-equivalence
classes 321 ∼ 123 ∼ 231, 213 ∼ 132, and 312.

Regarding shape-Wilf-Equivalence of patterns of arbitrary length, two important results are
due to Backelin, West and Xin [2]. One states that 12 . . . k ∼ k . . . 21 for all k, and the other one
is the following.

Proposition 2.1 ([2]). Let σ, τ ∈ Sk and ρ ∈ Sℓ. If σ ∼ τ , then σρ′ ∼ τρ′, where ρ′ is obtained
from ρ by adding k to each of its entries.

Denote by D2
n the set of pairs (D0,D1) of Dyck paths D0,D1 ∈ Dn such that D0 never goes

above D1. We say that D0 and D1 are noncrossing, and we call D0 the bottom path and D1 the
top path. For any F ∈ Fn, we denote by D2

F the set of pairs (D0,DF ) ∈ D2
n, that is, those where

the top path is the border of F .

5



2.2 Matchings

Denote by Mn the set of perfect matchings on [2n]. Recall that a perfect matching is a set of n pairs
(i, j), with i < j such that each element in [2n] appears in exactly one of the pairs. If (i, j) is such a
pair, we say that vertices i and j are matched, and we call i an opener and j a closer. As mentioned
before, we will use the term matching to mean perfect matching. We represent matchings as arc
diagrams as follows: place 2n equally spaced points on a horizontal line, numbered from left to
right, and draw an arc between the two vertices of each pair. The picture on the left of Figure 2
corresponds to the matching (1, 6), (2, 12), (3, 4), (5, 7), (8, 10), (9, 11).

The following natural bijection between Mn and Rn, which we denote κ, has been used in [13,
20]. Given a matching M ∈ Mn, construct a path from (0, n) to (n, 0) by reading the vertices of M
in increasing order, and adding an east step (1, 0) for each opener, and a south step (0,−1) for each
closer. This path is clearly a Dyck path, so it is the border of a Ferrers board F ∈ Fn, which we
call the shape of M . Each column of F is naturally associated to an opener of M (the vertex that
produced the east step at the top of the column), and each row is naturally associated to a closer.
Now define a full rook R placement on F by placing a rook in the column associated to i and the
row associated to j for each matched pair (i, j). An example of the bijection κ : M 7→ (R,F ) is
given in Figure 2.

1 2 3 4 5 6 7 8 9 10 11 12

κ

×

×

×

×
×

×

1 2 3

4 5

6

7 8 9

10

11

12

Figure 2: An example of the bijection κ : Mn → Rn.

In light of this bijection, the definition of pattern avoidance in Ferrers boards translates naturally
to matchings.

Definition 4. We say that a matching M ∈ Mn avoids the pattern τ ∈ Sk if the corresponding
full rook placement κ(M) does. Equivalently, directly in terms of matchings, M avoids τ if there
are no 2k vertices 1 ≤ i1 < . . . < i2k ≤ n such that M contains all the pairs (ia, i2k+1−τ(a)) for
1 ≤ a ≤ k.

For fixed F ∈ Fn, denote by MF = κ−1(RF ) the set of matchings of shape F , and by MF (τ) =
κ−1(RF (τ)) those that avoid τ . Analogously, denote by Mn(τ) = κ−1(Rn(τ)) the set of τ -avoiding
matchings in Mn. Note that

Mn =
⋃

F∈Fn

MF and Mn(τ) =
⋃

F∈Fn

MF (τ).

This definition extends the notions of k-noncrossing and k-nonnesting matchings studied in [11,
24]. Recall that a matching is k-nonncrossing if it contains no k mutually crossing arcs. In our ter-
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minology, this is equivalent to avoiding the pattern k . . . 21. Similarly, a matchings is k-nonnesting
if it contains no k mutually crossing arcs, which is equivalent to avoiding 12 . . . k.

For patterns τ ∈ S3, which are the focus of this paper, we can describe Mn(τ) as the set of
matchings M ∈ Mn containing no three arcs whose endpoints occur in the same order as in the
corresponding configuration in Figure 3.

321 123 132

231 312 213

Figure 3: Forbidden configurations corresponding to τ ∈ S3.

Since κ is a bijection, it is clear that |MF (τ)| = |RF (τ)| for any τ . Thus, shape-Wilf-equivalence
can be interpreted in terms of pattern-avoiding matchings: σ ∼ τ if and only if |MF (σ)| =
|MF (τ)| for every Ferrers board F (or equivalently, for every F ∈ ⋃nFn, since the condition is
void otherwise). In particular, if σ ∼ τ , then |Mn(σ)| = |Mn(τ)| for all n. No counterexample for
the converse statement is known.

Question 2.2. Are there patterns σ, τ that satisfy |Mn(σ)| = |Mn(τ)| for all n, but are not
shape-Wilf-equivalent?

In the case of simultaneous avoidance of a pair of patterns, we answer the above question in
the affirmative in Section 6.2.

2.3 Set partitions

Denote by Pn the set of partitions of [n]. Similarly to what we did for matchings, we represent
partitions of [n] as arc diagrams on n points on a horizontal line, numbered from left to right. For
each block {i1, i2, . . . , ij} with i1 < i2 < · · · < ij , we draw j − 1 arcs (i1, i2), (i2, i3), . . . , (ij−1, ij)
(see Figure 4). If j ≥ 2, we call i1 an opener, ij a closer, and we say that i2, . . . , ij−1 are transitory
vertices. If j = 1, the vertex i1 is called a singleton.

1 2 3 4 5 6 7 8

Figure 4: The arc diagram of the partition {{1, 3, 5}, {2}, {4, 7}, {6, 8}}. Vertices 1, 4, 6 are openers,
5, 7, 8 are closers, 3 is transitory, and 2 is a singleton.

We will use the term partition to refer to a set partition when it creates no confusion. Note
that matchings are partitions where all blocks have size 2. The definition of pattern avoidance for
matchings extends to partitions as follows.
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Definition 5. We say that a partition P ∈ Pn avoids the pattern τ ∈ Sk if there are no 2k vertices
1 ≤ i1 < . . . < i2k ≤ n such that P contains all the arcs (ia, i2k+1−τ(a)) for 1 ≤ a ≤ k. Denote by
Pn(τ) the set of τ -avoiding partitions in Pn.

Note that in the above definition, singleton blocks of P do not contribute to occurrences of any
pattern τ .

To enumerate partitions avoiding a pattern, we will use the following construction that associates
a matching to each partition. Given a partition P represented as an arc diagram, remove all
singleton vertices, and split each transitory vertex into two vertices: a closer followed by an opener
(see Figure 5).

1 3′3′′ 4 5 6 7 8

Figure 5: The matching associated to the partition in Figure 4. Vertex 2 has been removed, and
vertex 3 has been split into two vertices 3′ and 3′′.

This operation produces a matchingMP , and the transformation P 7→ MP preserves occurrences
of every pattern τ . In particular, P avoids τ if and only if MP does. If P ∈ Pn has b blocks, then
MP ∈ Mn−b.

The above construction can be reversed to generate all τ -avoiding set partitions
⋃

n Pn(τ) from
the set of all τ -avoiding matchings

⋃

nMn(τ). Given such a matching M , one can first choose, for
each closer immediately followed by an opener, either to merge them into one transitory vertex or
to leave them as they are; then one can insert singleton vertices in any position.

Given a matching M , let val(M) denote the number of closers immediately followed by openers
in M . We call these valleys of M because, if κ(M) = (R,F ), they correspond directly to the valleys
of F , that is, val(M) = val(F ). From the above construction, if

A(v, z) =
∑

n≥0

∑

M∈Mn(τ)

uval(M)zn

is the generating function for τ -avoiding matchings with respect to the number of valleys, then

B̃(z) = A

(

1 +
1

z
, z2
)

is the generating function for τ -avoiding set partitions without singleton blocks, and

B(z) =
1

1− z
B̃

(

z

1− z

)

=
1

1− z
A

(

1

z
,

z2

(1 − z)2

)

(1)

is the generating function for all τ -avoiding set partitions.
If two patterns satisfy σ ∼ τ , then |MF (σ)| = |MF (τ)| for every Ferrers board F , and so the

above generating function A(v, z) is the same for σ-avoiding as for τ -avoiding matchings. It follows
that |Pn(σ)| = |Pn(τ)| for all n in this case.
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2.4 Numerical data

In the next three sections we discuss in detail matchings and partitions avoiding a pattern in
each one of the three shape-Wilf-equivalence classes of patterns of length 3: 123 ∼ 321 ∼ 213,
231 ∼ 312, and 132. Some numerical data for matchings and partitions avoiding each pattern is
given in Tables 1 and 2. The sequences for |Mn(231)|, |Mn(132)|, |Pn(231)| and |Pn(132)| did not
appear in the OEIS [26]. No generating functions for the two sequences involving the pattern 132
are known.

n 1 2 3 4 5 6 7 8 9 10

|Mn(231)| 1 3 14 83 570 4318 35068 299907 2668994 24513578

|Mn(123)| 1 3 14 84 594 4719 40898 379236 3711916 37975756

|Mn(132)| 1 3 14 84 595 4750 41541 390566 3895957 40835749

Table 1: The first values of the sequences counting matchings that avoid a pattern of length 3.

n 0 1 2 3 4 5 6 7 8 9 10 11

|Pn(231)| 1 1 2 5 15 52 202 858 3909 18822 94712 493834

|Pn(123)| 1 1 2 5 15 52 202 859 3930 19095 97566 520257

|Pn(132)| 1 1 2 5 15 52 202 859 3930 19096 97593 520694

Table 2: The first values of the sequences counting set partitions that avoid a pattern of length 3.

3 The patterns 123 ∼ 321 ∼ 213

3.1 Background

As mentioned in the introduction, the shape-Wilf-equivalences 123 ∼ 321 and 123 ∼ 213 were first
proved by Backelin, West and Xin [2] using complicated arguments. In the context of matchings,
the statement 123 ∼ 321 ∼ 213 is equivalent to the fact that |MF (123)| = |MF (321)| = |MF (213)|
for every Ferrers board F . Recall that 12 . . . k-avoiding (resp. k . . . 21-avoiding) matchings are also
known as k-nonnesting (resp. k-noncrossing) matchings. A shape-preserving bijection between
k-noncrossing and k-nonnesting matchings (which also extends to partitions) was given by Chen et
al [11] via vacillating tableaux, providing a simpler proof of the equivalence 12 . . . k ∼ k . . . 21. This
bijection was later reformulated by Krattenthaler [24] in terms of full rook placements and growth
diagrams.

Chen et al [11] also give a bijection between k-noncrossing matchings and certain lattice walks
which, in the case k = 3, can be interpreted as pairs of noncrossing Dyck paths. It follows that the
number of 321-avoiding matchings on [2n] is the determinant of Catalan numbers CnCn+2 −C2

n+1.
This formula was first found by Gouyou-Beauchamps [18] via a recursive bijection from 123-avoiding
matchings and pairs of noncrossing Dyck paths. Thus, the enumeration sequence for 123-avoiding
matchings is P-recursive, which is equivalent to the corresponding generating function being D-
finite, but it is not algebraic. A recurrence for the number of 123-avoiding partitions was found by
Bousquel-Mélou and Xin [9], who prove that this sequence is also D-finite but not algebraic.
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Another proof of the equivalence 123 ∼ 213 was given by Jeĺınek [20] by means of a bijection
between 213-avoiding matchings and pairs of noncrossing Dyck paths. In Section 3.2 we provide a
much simpler bijection between these two sets.

3.2 A simple bijection between 321-avoiding and 213-avoiding matchings

The main goal of this section is to provide a simple bijective proof of the fact that 321 ∼ 213,
which is stated in Theorem 3.1 below. For the rest of this section, we fix a Ferrers board F ∈ Fn,
and we let Vi denote the ith vertex on the border of F . Recall that D2

F denotes the set of pairs of
noncrossing Dyck paths where DF is the top path.

Theorem 3.1. There are explicit bijections

∆321 : MF (321) → D2
F

and
∆213 : MF (213) → D2

F .

Therefore, 321 ∼ 213.

This theorem will follow from Theorems 3.4 and 3.5 below. The bijection ∆321 was first con-
structed by Chen et al. in [11] using vacillating tableaux. Here we provide a short description of
this bijection in our language. Recall that matchings can be viewed as full rook placements via the
bijection κ : MF → RF described in Section 2.2.

It will be convenient to identify a Dyck path D ∈ Dn with the sequence d0d1 . . . d2n that records
the distances from its vertices to the diagonal y = n− x (recall that our Dyck paths start at (0, n)
and end at (n, 0)). More precisely, define d0 = 0 = d2n, and for each 0 ≤ i < 2n, let di+1 = di + 1
if Vi+1 is to the right of Vi, and di+1 = di − 1 if Vi+1 is below Vi. We call d0d1 . . . d2n the height
sequence of D. Fix h0h1 . . . h2n to be the height sequence of DF . Recall that R ∩ Γ(Vi) denotes
the restriction of R to the rectangle with vertices at the origin and at Vi.

Lemma 3.2. For any (R,F ) ∈ RF we have

hi = |R ∩ Γ(Vi)|

for all 0 ≤ i ≤ 2n.

Proof. For i = 0 the result is clear since h0 = 0 and Γ(V0) is empty. Since (R,F ) is a full rook
placement, it has a rook in each row and column. It follows that for 0 ≤ i < 2n,

hi+1 − hi = |R ∩ Γ(Vi+1)| − |R ∩ Γ(Vi)|,

its value being 1 or −1 depending on whether Vi+1 is to the right of or below Vi, respectively.

For (R,F ) ∈ RF , define the sequence j0 . . . j2n by letting

ji = 2ℓi − hi,

where ℓi is the length of the longest increasing sequence in R ∩ Γ(Vi). The following property of
this sequence will be used to define ∆321.

10



Lemma 3.3. If (R,F ) ∈ RF (321), then the sequence j0 . . . j2n is the height sequence of a Dyck
path DR,F , and it satisfies ji ≤ hi for all i. Thus, (DR,F ,DF ) ∈ D2

F .

Proof. Clearly j0 = 0 = j2n, and ji+1 = ji ± 1 for 0 ≤ i < 2n. It remains to show that 0 ≤ ji ≤ hi
for all i. The permutation determined by R ∩ Γ(Vi) is 321-avoiding, so it is the union of two disjoint
increasing sequences. Letting r and s be the lengths of these sequences, with r ≥ s, we have

2hi ≥ 2ℓi ≥ r + s = hi,

by Lemma 3.2. It follows that 0 ≤ 2ℓi − hi ≤ hi.

Define a map δ321 : RF (321) → D2
F by letting δ321(R,F ) = (DR,F ,DF ), with DR,F as defined

in Lemma 3.3. Finally, let ∆321 = δ321 ◦ κ. An example of the map δ321 is given in Figure 6. It
remains to show that δ321 is bijective.

×

×

×

×
×

×

0 1 0 1

0 1

2

1 2 1

2

1

0

δ321

Figure 6: An example of the bijection δ321. The sequence j0 . . . j2n is written along the border of F .

Theorem 3.4. The map δ321 : RF (321) → D2
F is a bijection, and thus so is ∆321 : MF (321) → D2

F .

Proof. The statement is easier to prove from an alternative description of δ321 in terms of Fomin’s
growth diagrams [17]. Define an F -oscillating tableau to be a sequence of integer partitions
{λi}0≤i≤2n such that λ0 = ∅ = λ2n and, for 0 ≤ i < 2n, λi+1 is obtained from λi by adding
(removing) a square if Vi+1 is to the right of (respectively, below) Vi. Denote by ΛF the set of F -
oscillating tableaux. Fomin’s growth diagram algorithm [32, Chapter 7] gives a bijection between
RF and ΛF with the following property: if (R,F ) ∈ RF is mapped to {λi}i ∈ ΛF , then λi is the
shape of the recording (and insertion) tableaux under the RSK correspondence of the permuta-
tion determined by R ∩ Γ(Vi). It is a well-known result of Schensted [29] that the length of the
longest increasing sequence in this permutation is then the size of the largest part of λi, which we
denote ρ(λi). Similarly, the length of its longest decreasing sequence is the number of parts of λi.
Thus, Fomin’s growth diagram algorithm restricts to a bijection between RF (321) and the subset
ΛF (321) ⊂ ΛF consisting of F -oscillating tableaux where each partition has at most two parts.

Given (R,F ) ∈ RF (321), we can now define its image δ321(R,F ) = (DR,F ,DF ) in terms of the
corresponding F -oscillating tableau {λi}i ∈ ΛF (321). Indeed,

|λi| = |R ∩ Γ(Vi)| = hi and 2ρ(λi)− |λi| = 2ℓi − hi = ji.

Proving that δ321 : RF (321) → D2
F is a bijection is therefore equivalent to showing that the map

{λi}i 7→ (DR,F ,DF ) is a bijection from ΛF (321) to D2
F . Injectivity is clear since we may recover

11



each λi from hi = |λi| and ji = 2ρ(λi)−|λi| by observing that ρ(λi) = (hi+ ji)/2 is the largest part
of λi, and hi − ρ(λi) is the other part. To show surjectivity, note that any (D0,DF ) ∈ D2

F , where
k0 . . . k2n is the height sequence for D0, is the image of the F -oscillating tableaux {λi}i ∈ ΛF (321),
where

λi =

(

hi + ki
2

,
hi − ki

2

)

.

Let us mention an alternative simple way to describe the path DR,F in the definition of δ321:
first label the vertices in DF by letting vertex Vi have label ℓi (the length of the longest increasing
sequence in R ∩ Γ(Vi)); then take DF and switch (i.e., N becomes E and viceversa) the steps that
have the same label at both endpoints. The resulting path is DR,F .

Now we turn to the second part of the proof of Theorem 3.1. Even though a different bijection
between MF (213) and D2

F has already been given by Jeĺınek in [20], here we present a much simpler
bijection ∆213 through a short pictorial argument.

As in the case of 321-avoiding matchings, it is convenient to let ∆213 = δ213 ◦ κ, where the
map δ213 : RF (213) → D2

F is defined as δ213(R,F ) = (D,DF ), where D is given by the following
construction. We use a bijection due to Krattenthaler [23] between 213-avoiding permutations and
Dyck paths. As the pattern 213 ends with its largest entry, the fact that (R,F ) is 213-avoiding
implies that the permutation πR is in fact an element of Sn(213). Let FR be the minimal Ferrers
board that contains R. Krattenthaler’s bijection is the map sending πR ∈ Sn(213) to the border
of FR. The placement R can be recovered from FR by the following iterative procedure: begin by
placing a rook in the rightmost column of the top row of FR; having placed rooks in the top k rows,
the rook in the (k+1)st row from the top is placed in the rightmost column which does not already
contain a rook. We define the second path in δ213(R,F ) to be D = DFR

. Note that FR ⊆ F by
definition, so DFR

and DF are noncrossing Dyck paths. The following theorem is now clear.

Theorem 3.5. The map δ213 : RF (213) → D2
F is a bijection, and thus so is ∆213 : MF (213) → D2

F .

An example of the map δ213, together with the complete bijection from between MF (321) and
MF (213), is given in Figure 7.

It is worth mentioning that in the particular case that F ∈ Fn is the square board, the compo-
sition ∆−1

213 ◦∆132 gives a bijection between Sn(321) and Sn(213) which coincides, up to symmetry,
with a bijection of Elizalde and Pak [15], that was used to prove that the number of fixed points
and the number of excedances have the same distribution on both sets. More precisely, the image of
π ∈ Sn(321) by their bijection Θ is the permutation obtained by reflecting ∆−1

213(∆132(π)) (viewed
as a rook placement) over the diagonal y = n − x. Our bijection can thus be interpreted as a
generalization of Θ to arbitrary Ferrers boards.

3.3 321- and 213-avoiding matchings with fixed points

In [18] Gouyou-Beauchamps found exact formulas for the number of standard Young tableaux
having n squares and at most p rows, for p ∈ {4, 5}. Additionally, he gave a formula for the number
of Young tableaux having n squares and exactly k columns of odd height. The key theorem in [18] is
a bijection between involutions of length 2n+k with k fixed points that avoid a decreasing sequence
of length 5 (i.e., the pattern 54321) and pairs of noncrossing Dyck paths of semilength n+ k that

12



κ

MF (321)

×

×

×

×
×

× δ321

RF (321)

D2
F

κ

MF (213)

×
×

×

×
×

×

δ213

RF (213)

Figure 7: An example of the bijection between MF (321) and MF (213). The bold path on the
bottom Ferrers board represents the border of FR.

end with k down steps. To interpret this bijection in our language we will consider, in this section,
matchings that are not necessarily perfect, that is, they may have unmatched elements. Recall the
canonical correspondence between involutions of [2n] with no fixed points and perfect matchings in
Mn, obtained by matching pairs of elements that belong to the same 2-cycle in the involution. One
can extend this correspondence by allowing fixed points in the involution, which become vertices
of degree 0 (which we also call fixed points) in the matching. Under this correspondence, 54321-
avoiding involutions of [2n + k] with k fixed points are mapped to matchings on [2n + k] with k
fixed points satisfying:

• if we remove the fixed points (and relabel the remaining elements increasingly with 1, 2, . . . , 2n),
we get an element of Mn(123), and

• for any 5 vertices x1 < · · · < x5 where the pairs (x1, x5) and (x2, x4) are matched, x3 is not
a fixed point.

Let Mk
n(123) denote the set of such matchings, and let D2

n,k denote the set of all pairs (D0,D1) ∈
D2

n+k where D0 and D1 end with k south steps. Gouyou-Beauchamps’ bijection [18] can thus be

interpreted as a bijection between Mk
n(123) and D2

n,k.
In this section we construct two related but simpler bijections between pattern-avoiding match-

ings with fixed points and D2
n,k. Let Mk

n(213) (respectively, Mk
n(321)) be the set of matchings on

[2n+ k] with k fixed points with the property that removing the fixed points produces an element
of Mn(213) (respectively, Mn(321)), and for any 5 vertices x1 < · · · < x5 where the pairs (x1, x5)
and (x3, x4) are matched, x2 is not a fixed point (respectively, (x1, x4) and (x2, x5) are matched,
x3 is not a fixed point). The bijections in the following theorem generalize those in Theorems 3.4
and 3.5.
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Theorem 3.6. There are explicit bijections between Mk
n(321) and D2

n,k, and between Mk
n(213) and

D2
n,k.

Proof. In this proof we use τ to denote either of the patterns 321 and 213. Let Rk
n be the set of

pairs (R,F ) ∈ Rn+k such that the bottom k rows of F have length n + k, and the placement R
restricted to these rows is an increasing sequence. Let Rk

n(τ) = Rk
n ∩ Rn+k(τ).

We begin by establishing a bijection κ′ between Mk
n(τ) and Rk

n(τ). Given M ∈ Mk
n(τ), add k

new vertices 2n + k + 1, . . . , 2n + 2k and k new edges (xi, 2n + 2k + 1 − i), where x1 < · · · < xk
are the fixed points of M . Denote the resulting perfect matching by M+. The map M → M+ is
a bijection from Mk

n(τ) to the set of matchings in Mn+k(τ) with the property that the vertices
2n + k, . . . , 2n + 2k are closers whose edges do not cross. Define κ′(M) to be κ(M+), where κ
is defined in Section 2.2. It is clear from the construction that κ′(M) ∈ Rk

n(τ) and that κ′ is a
bijection.

Recall from Section 3.2 that for a fixed Ferrers board F , the map δτ is a bijection between
RF (τ) and D2

F . Considering the disjoint unions

Rn+k(τ) =
⋃

F∈Fn+k

RF (τ) and D2
n+k =

⋃

F∈Fn+k

D2
F ,

it follows that δτ gives a bijection between Rn+k(τ) and D2
n+k, which we also call δτ . We now

prove that δτ restricts to a bijection between Rk
n(τ) and D2

n,k. Suppose that (R,F ) ∈ Rn+k(τ)
and δτ ((R,F )) = (D0,D1). Clearly, the bottom k rows of F have length n + k if and only if D1

ends with k south steps. It remains to show that, in this case, the restriction of R to the bottom
k rows of F forms an increasing sequence (call this the k-increasing property) if and only if the
path D1 also ends with k south steps. In the case τ = 213, it follows from the description of
the map R 7→ FR and its inverse (in the paragraph preceding Theorem 3.5) that the k-increasing
property is equivalent to the fact that the bottom k rows of the minimal Ferrers board FR have
length n + k. In the case τ = 321, the k-increasing property guarantees that the sequence J(R)
defined in Section 3.2 ends with k(k− 1) . . . 0, and the converse is also clear given that the bottom
k rows of F have length n+ k.

The composition δτ ◦ κ′ is a bijection between Mk
n(τ) and D2

n,k. An example of the bijection
δ321 ◦ κ′ is given in Figure 8.

4 The patterns 231 ∼ 312

4.1 Background

The first proof of the fact that the patterns 231 and 312 are shape-Wilf-equivalent was given by
Stankova and West [31]. Later, Bloom and Saracino [4] gave a more direct proof, constructing a
bijection between 231-avoiding and 312-avoiding full rook placements of any given Ferrers board.
As shown in Figure 3, the pattern 231 (resp. 312) in matchings and partitions consists of two
nested arcs crossed by a mutual arc, ending to the right (resp. left) of the nested arcs. In terms
of matchings, Bloom and Saracino’s map translates into a bijection between 231-avoiding and
312-avoiding matchings that preserves the sequence of openers and closers.
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1 2 3 4 5 6 7 8

Mk
n(321)

κ′

+

1 2 3 4 5 6 7 8 9 10

κ

×

×

×

×
×

0 1 0 1

2 1 2

3

2

1

0

δ321

Rk
n(321) D2

n,k

Figure 8: An example of the bijection δ321 ◦ κ′ : Mk
n(321) → D2

n,k. The shaded rows in the Ferrers
board correspond to the two vertices added to the matching.

The main ingredient in Bloom and Saracino’s construction is a bijection between 231-avoiding
full rook placements of a given Ferrers board F ∈ Fn and certain labelings of the vertices on the
border of F . Recall that the vertices V0V1 . . . V2n are ordered from (0, n) to (n, 0).

We define a labeled Dyck path of semilength n to be a pair (D,α) where D ∈ Dn and α =
α0α1 . . . α2n is an integer sequence with the following monotonicity property: if Vi is to the left of
Vi+1 then αi ≤ αi+1 ≤ αi + 1, else αi ≥ αi+1 ≥ αi − 1. We think of αi as the label of vertex Vi.

We say that two vertices Vi = (xi, yi) and Vj = (xj, yj) of D are aligned if xi − xj = yi − yj and
the line segment connecting the points Vi and Vj lies strictly below D (except for the endpoints of
the segment, which are on D). We say that a labeled Dyck path (D,α) has the diagonal property
if for any two aligned vertices Vi and Vj with i < j, we have αi ≥ αj . We say (D,α) satisfies the
0-condition if α0 = 0 = α2n and α contains no consecutive zeros (equivalently, for each i one has
αi = 0 if and only if Vi lies on the diagonal y = n − x). For F ∈ Fn, we denote by LF the set of
labelings (DF , α) of the boundary of F that satisfy both the diagonal property and the 0-condition.
We also let Ln =

⋃

F∈Fn
LF .

Bloom and Saracino’s bijection [4] between placements and labeled Dyck paths is the map
Π : RF (312) → LF that sends (R,F ) ∈ RF (312) to the pair (DF , α) where, for 0 ≤ i ≤ 2n,
the label αi is the length of the longest increasing sequence in R ∩ Γ(Vi). In a slight abuse of
notation, we also denote by Π the bijection induced by Π from Rn(312) =

⋃

F∈Fn
RF (312) to

Ln =
⋃

F∈Fn
LF .
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4.2 312-avoiding matchings

In this section we enumerate 312-avoiding matchings, or equivalently, 231-avoiding ones.

Theorem 4.1. The generating function for 312-avoiding matchings is

∑

n≥0

|Mn(312)|zn =
54z

1 + 36z − (1− 12z)3/2
.

The asymptotic behavior of is coefficients is given by

|Mn(312)| ∼
33

25
√
πn5

12n. (2)

Proof. We first translate the problem into an enumeration of labeled Dyck paths. The composition
Π ◦ κ is a bijection between Mn(312) and Ln, so we have

L(z) =
∑

n≥0

|Mn(312)|zn =
∑

n≥0

|Ln|zn.

We will find an expression for L(z) using the recursive structure of Dyck paths: every D ∈ Dn with
n ≥ 1 uniquely decomposes as eD1sD2 where e is an east step, s is a south step, and D1 and D2

are Dyck paths. Even though this decomposition can be extended to deal with labeled Dyck paths
by transferring the label on each vertex of D to the corresponding vertex of eD1s or D2, the fact
that the labels on eD1s satisfy the 0-condition does not guarantee that the labels on D1 do, even
if their values are decreased by 1.

To deal with this problem, we relax the 0-condition and consider the larger set Kn consisting of
all labeled Dyck paths (D,α) of semilength n that have the diagonal property and satisfy α2n = 0.
Let K =

⋃

n≥0 Kn, and denote by

K(u, z) =
∑

0≤n

∑

(D,α)∈Kn

uα0zn

the generating function for such paths according to the value of the first label.
To obtain an equation for K(u, z), first consider the following operation: given (A,α) ∈ Ki,

(B, β) ∈ Kj , let (A,α) ⊕ (B, β) ∈ Ki+j be the concatenation of Dyck paths AB with labels
(α0 + β0)(α1 + β0) . . . (α2i + β0)β1 . . . β2j . In other words, the labels along A are increased by β0,
and the labels along B do not change. Every nonempty (D, γ) ∈ K can be decomposed uniquely as
(D, γ) = (eD1s, α)⊕ (D2, β) where (eD1s, α), (D2, β) ∈ K. Whereas (D2, β) is an arbitrary element
of K, the labeling α of the elevated Dyck path eD1s can be of four different types, according to
whether α0 = α1 and whether α2i−1 = α2i, where i is the semilength of eD1s. The four possibilities
are shown in Figure 9. In cases (a) and (b), (D1, (α1 − 1) . . . (α2i−1 − 1)) is an arbitrary element of
Ki−1. In case (c), so is (D1, α1 . . . α2i−1). In case (d), (D1, α1 . . . α2i−1) is an element of Ki−1 with
α1 ≥ 1.

This decomposition translates into the functional equation

K(u, z) = 1 + zK(u, z)

(

2K(u, z) + uK(u, z) +
K(u, z)−K(0, z)

u

)

. (3)
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. . .
D1

a− 1a

0

1

(a)

. . .
D1

a a

0

1

(b)

. . .
D1

a a

0

0

(c)

. . .
D1

a− 1a

0
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Figure 9: The four possible labelings of the path eD1s.

To solve this equation we use the quadratic method, due to Tutte, as described in [16, p. 515].
Completing the square in (3) we get

4(u+ 1)4z2
(

K(u, z)− u+ zK(0, z)

2(u+ 1)2z

)2

= (u+ zK(0, z))2 − 4u(u+ 1)2z. (4)

Let g(u, z,K(0, z)) be the right hand side of Eq. (4). Let u(z) be a (yet unknown) function of z
such that, when substituted for u in the left hand side of (4), it vanishes, that is,

2(u(z) + 1)2zK(u(z), z) − u(z)− zK(0, z) = 0.

Now, since the left hand side has a double root in u, so does the right hand side, so g(u(z), z,K(0, z))
and ∂g

∂u(u(z), z,K(0, z)) = 0. Solving this system of two equations for the two unknowns u(z) and
K(0, z), we obtain

K(0, z) = −1− 18z − (1− 12z)3/2

54z2
. (5)

Substituting in (3), we can derive an expression for K(u, z), which is algebraic of degree 4.
Finally, to find L(z), observe that for any (D,α) ∈ Ln, D can be decomposed uniquely as

D = eA1seA2s . . . , where each Aj is a Dyck path, and if we let α(j) be its sequence of labels

decreased by one, then (Aj , α
(j)) is an arbitrary element of K with α

(j)
0 = 0. It follows that

L(z) =
1

1− zK(0, z)
=

54z

1 + 36z − (1− 12z)3/2
=

1 + 36z + (1− 12z)3/2

2(1 + 4z)2
.

To find the asymptotic behavior of the coefficients, note that the singularity of L(z) nearest to
the origin is a branch point at z = 1/12. By [16, Corollary VI.1], its coefficients satisfy

|Mn(231)| ∼
9

32

n−5/2

Γ(−3/2)
12n

as claimed.

We remark that expression (5) shows that K(0, z) agrees with the generating function for planar
rooted maps given in [16, Proposition VII.11] and in the original paper by Tutte [34]. In particular,
the coefficient of zn in K(0, z) is

2 3n (2n)!

n!(n+ 2)!
.
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This discovery has lead Bloom to construct a bijection between the set of labeled Dyck paths
(D,α) ∈ Kn with α0 = 0 and the set of planar rooted maps with n edges [3].

It is interesting to observe that the generating function in Theorem 4.1 is algebraic, in contrast
with the fact that the generating function for 123-avoiding (namely, 3-noncrossing) matchings is D-
finite but not algebraic [18, 11]. The first terms of these sequences, along with that of 132-avoiding
matchings, are given in Table 1.

Stankova [30] showed that |MF (231)| ≤ |MF (123)| ≤ |MF (132)| for any Ferrers board F , and
she characterized for which boards F the inequalities are strict. Adding the first inequality over all
F ∈ Fn, we get |Mn(231)| ≤ |Mn(123)| for all n, with strict inequality for n ≥ 4. The asymptotic
estimate for |Mn(312)| given in Theorem 4.1 allows us to quantify the magnitude of this inequality
for large n. While the exponential growth rate of |Mn(231)| is 12, as given by (2), the growth rate
of |Mn(123)| is 16, since

|Mn(123)| = Cn+2Cn − C2
n+1 ∼

24

πn5
16n.

4.3 312-avoiding partitions

A refinement of the methods from Section 4.2 can be used to enumerate 312-avoiding partitions,
or equivalently, 231-avoiding ones.

Theorem 4.2. The generating function B(z) =
∑

n≥0 |Pn(312)|zn for 312-avoiding partitions is a
root of the cubic polynomial

(z − 1)(5z2 − 2z + 1)2B3 + (−9z5 + 54z4 − 85z3 + 59z2 − 14z + 3)B2

+ (−9z4 + 60z3 − 64z2 + 13z − 3)B + (−9z3 + 23z2 − 4z + 1). (6)

The asymptotic behavior of its coefficients is given by

|Pn(312)| ∼ δn−5/2 ρn, (7)

where

ρ =
3(9 + 6

√
3)1/3

2 + 2(9 + 6
√
3)1/3 − (9 + 6

√
3)2/3

≈ 6.97685

and δ ≈ 0.061518.

Proof. To apply the argument presented in Section 2.3, we need to count 312-avoiding matchings
keeping track of the number of closers immediately followed by an opener, which we called valleys.
Via the bijection Π ◦ κ : Mn(312) → Ln, this is equivalent to counting labeled paths in Ln with
respect to the number of valleys. We proceed as in the proof of Theorem 4.1, but additionally
keeping track of valleys. We start by finding a generating function K(u, v, z) for paths in K that
refines K(u, z) by marking the number of valleys with the the variable v. The same argument that
led to (3) now gives

K(u, v, z) = 1 + z(vK(u, v, z) − v + 1)

(

2K(u, v, z) + uK(u, v, z) +
K(u, v, z) −K(0, v, z)

u

)

, (8)
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since the number of valleys of eD1sD2 is the sum of the number of valleys of D1 and D2, plus one
unless D2 is empty. Applying the quadratic method to (8) we obtain

K(0, v, z) =
(4(v − 1)2z − 2v − 1)zS2 + (8(z − 1)2z2 − 2(2v + 3)z + 1)S + 4(v − 1)2z − 2v − 1)z

4v(v − 1)(S + 1)z2 − 2vz
,

where S = S(v, z) is a root of the cubic polynomial

4(v − 1)2z2S3 + (8(v − 1)2z − 4v − 5)zS2 + (4(v − 1)2z2 − 2(2v + 1)z + 1)S − z.

To find the generating function L(v, z) for paths in Ln that refines L(z) by marking the number
of valleys with v, note that in the decomposition D = eA1seA2s . . . , a valley se is created between
each Ai and Ai+1, so

L(v, z) =
1/v

1− vzK(0, v, z)
− 1

v
+ 1.

This generating function counts 312-avoiding matchings with respect to the number of closers
immediately followed by an opener. To construct set partitions from matchings, each closer-opener
pair can be independently merged into a transitory vertex or not. Using Eq. (1), the generating
function for 312-avoiding partitions is

B(z) =
1

1− z
L

(

1

z
,

z2

(1− z)2

)

=
c2(z)R(z)2 + c1(z)R(z) + c0(z)

(1− z)(3− 7z)(1 − 2z + 5z2)2
,

where

c2(z) = 4z3(12z3 + 7z2 − 26z + 3),

c1(z) = z2(48z4 − 179z3 + 50z2 + 81z − 12),

c0(z) = 48z6 − 211z5 + 270z4 − 168z3 + 73z2 − 19z + 3,

and R(z) is a root of 4z2R3 + (3z2 − 4z)R2 + (3z2 − 6z +1)R− z2. By computing the appropriate
resultant, it follows that B(z) is a root of the polynomial (6).

To describe the asymptotic growth of its coefficients, we use the method described in [16, Section
VII.7.1] to compute the singularities of algebraic functions. If P (z,B) is the polynomial in Eq. (6),
its exceptional set is given by the zeroes of its discriminant

z9(z − 1)(1 − 2z + 5z2)2(27z3 − 54z2 + 63z − 8)3.

The dominant singularity is the exceptional point

ξ = −1

3
(9 + 6

√
3)1/3 + (9 + 6

√
3)−1/3 +

2

3
≈ 0.14333,

which is the branch point closest of the origin. For z near ξ, the three branches of the cubic (6) give
rise to one branch that is analytic with value approximately 1.0368 and a cycle of two conjugate
branches with value α ≈ 1.2146 at z = ξ. The expansion of the two conjugate branches is of the
singular type,

α+ β(ξ − z)± γ(ξ − z)3/2 + . . . ,

where β ≈ −2.7077 and γ ≈ 2.6795. It follows that

|Pn(231)| ∼ γξ1/2
n−5/2

Γ(−3/2)
ξ−n =

3γ

4
√
πn5

ξ−n+3/2.

Letting ρ = ξ−1 and δ = 3γξ3/2/(4
√
π) we get the expression in the statement.

19



Again, the generating function in Theorem 4.2 is algebraic, in contrast with the fact that
the generating function for 123-avoiding (namely, 3-noncrossing) partitions is D-finite but not
algebraic [9]. The first terms of the sequence are given in Table 2.

As in the case of matchings, from Stankova’s inequality |MF (231)| ≤ |MF (123)| for any Ferrers
board F [30], it follows that |Pn(231)| ≤ |Pn(123)| for all n. We can use Theorem 4.2 to see that
the exponential growth rates of |Pn(231)| are |Pn(123)| are different. While the growth rate of
|Pn(231)| is ρ ≈ 6.97685, as given by (7), the growth rate of |Pn(123)| is 9. This was shown by
Bousquet-Mélou and Xin [9], who proved that the number of 3-noncrossing partitions grows like

|Pn(123)| ∼
39 5

√
3

25 π

9n

n7
.

4.4 An application to 1342-avoiding permutations

The method involving labeled Dyck paths that we have developed to enumerate 312-avoiding match-
ings and partitions can be used to derive the following generating function due to Bóna [5] for the
number of 1342-avoiding permutations (which, by symmetry, equals the number of 3124-avoiding
ones).

Theorem 4.3 ([5]).
∑

n≥0

|Sn(1342)|zn =
32z

1 + 20z − 8z2 − (1− 8z)3/2
.

Bóna [5] obtained this formula by constructing a bijection between so-called indecomposable
1342-avoiding permutations and certain labeled trees, called β(0, 1)-trees. He then used the fact
that the generating function for β(0, 1)-trees had already been found by Tutte [34]. Our approach
provides a more direct method to enumerate 1342-avoiding permutations without using β(0, 1)-
trees.

We begin with a few straightforward definitions. We say that a rook placement (R,F ) ∈ Rn

is board minimal if F is the smallest Ferrers board that contains R. Equivalently, (R,F ) is board
minimal if and only if for every peak V on F the unit square of F whose north-east vertex is V
belongs to R, i.e., it contains a rook. Denote by R×

n the set of placements in Rn that are board
minimal, and similarly, for any pattern τ , let Rn(τ)

× be the the set board minimal elements of
Rn(τ).

We define a straightforward bijection χ : Sn → R×
n as follows. For π ∈ Sn, let χ(π) = (Rπ, Fπ)

where Rπ is the placement consisting of the squares (i, π(i)) for 1 ≤ i ≤ n, and Fπ is the smallest
board containing Rπ. Observe that χ−1(R,F ) = πR, as defined in Section 2.1. The following result
will allow us to use our work on 312-avoiding placements to obtain results about 3124-avoiding
(and thus 1342-avoiding) permutations.

Lemma 4.4. Let τ ∈ Sk with τ(k) = k and τ(k − 1) 6= k − 1. Then χ restricts to a bijection
between Sn(τ) and Rn(τ(1) . . . τ(k − 1))×.

Proof. Since τ(k) = k, it is clear that χ(Sn(τ)) = Rn(τ)
×. Therefore, it only remains to show that

Rn(τ)
× = Rn(τ(1) . . . τ(k−1))×. The inclusion Rn(τ(1) . . . τ(k−1))× ⊂ Rn(τ)

× is trivial. For the
other inclusion, suppose that (R,F ) /∈ Rn(τ(1) . . . τ(k − 1))×. Then there must be a peak V on F
such that the permutation determined by R ∩ Γ(V ) contains an occurrence of τ(1) . . . τ(k−1). Since
τ(k−1) 6= k−1, the rook in the unit square whose north-east vertex is V (which is in R because the
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placement is board minimal) is not part of this occurrence. Thus, the occurrence of τ(1) . . . τ(k−1)
together with this rook creates creates an occurrence of τ , and so (R,F ) /∈ Rn(τ)

×.

Our next goal is to determine the image of the map Π : Rn(312) → Ln, defined at the end of
Section 4.1, when restricted to Rn(312)

×. We say that a labeled Dyck path (D,α) has the peak
property if for every peak Vi, the labels around it satisfy αi−1 = αi + 1 = αi+1. Denote by L×

n the
set of labeled paths in Ln having the peak property.

Lemma 4.5. The map Π : Rn(312) → Ln restricts to a bijection between Rn(312)
× and L×

n .

Proof. Recall that Π maps (R,F ) to (DF , α), where αi is the length of a longest increasing sequence
in R ∩ Γ(Vi). Now observe that if Vi is a peak on F , then the square in F in this corner belongs
to R if and only if the longest increasing subsequence in R ∩ Γ(Vi) is one element longer than the
longest increasing subsequences in R ∩ Γ(Vi−1) and R ∩ Γ(Vi+1).

Combining Lemmas 4.4 and 4.5 we get a bijection between Sn(3124) and L×
n . We will derive

a generating function for these paths using the same framework that we used in Section 4.2 to
enumerate paths in Ln. Recall that in the proof of Theorem 4.1 we considered a larger set Kn

consisting of labeled Dyck paths (D,α) that have the diagonal property and satisfy α2n = 0. Let
now K×

n be the set of paths in Kn that have the peak property as well. Note that L×
n ⊂ K×

n . Let
K× =

⋃

n≥0K×
n , and let

K×(u, z) =
∑

n≥0

∑

(D,α)∈K×

n

uα0zn

be the generating function for such paths according to the value of the first label.
To obtain an equation for K×(u, z), note that every nonempty (D, γ) ∈ K× can be decomposed

uniquely as (D, γ) = (eD1s, α)⊕ (D2, β) where (eD1s, α), (D2, β) ∈ K×. The labeling of eD1s can
be of one of the four types in Figure 9. The difference with the proof of Theorem 4.1 is that now
cases (b) and (c) can only occur if D1 is nonempty, because otherwise eD1s would not have the
peak property. Consider the labeled Dyck path obtained by removing from (eD1s, α) the initial e
and the final s and, in cases (a) and (b), by decreasing by one the labels on D1. In case (a), this
path is an arbitrary element of K×; in cases (b) and (c), it is an arbitrary element of K× other
than the empty path; in case (d), it is an arbitrary element of K×

n whose first label is nonzero. This
translates into the functional equation

K×(u, z) = 1+zK×(u, z)

(

K×(u, z) + u(K×(u, z)− 1) + (K×(u, z) − 1) +
K×(u, z) −K×(0, z)

u

)

.

Using the quadratic method to solve for K×(0, z) we get

K×(0, z) =
8z2 + 12z − 1 + (1− 8z)3/2

32z2
.

Finally, to find the generating function for L×
n , observe that for any (D,α) ∈ Ln, D can be

decomposed uniquely as D = eA1seA2s . . . , where each Aj is a Dyck path, and if we let α(j) be its

sequence of labels decreased by one, then (Aj , α
(j)) is an arbitrary element of K× with α

(j)
0 = 0. It

follows that
∑

n≥0

|Sn(3124)|zn =
∑

n≥0

|L×
n |zn =

1

1− zK×(0, z)
=

32z

1 + 20z − 8z2 − (1− 8z)3/2
.
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5 The pattern 132

For last shape-Wilf-equivalence class of patterns of length 3, we have been unsuccessful in our
attempts to apply our techniques to find formulas for the generating functions

∑

n≥0

|Rn(132)|xn and
∑

n≥0

|Pn(132)|zn.

Question 5.1. Find generating functions for 132-avoiding matchings and partitions.

One reason to suspect that this may be a hard problem is that the related question of enu-
merating Rn(132)

× —that is, 132-avoiding rook placements with a rook by each peak— is equiva-
lent to the outstanding open problem of enumerating 1324-avoiding permutations [5, 6, 12], since
|Rn(132)

×| = |Sn(1324)| by Lemma 4.4. We remark that in Section 4.4, a modification of our
technique to enumerate Rn(312) allowed us to enumerate R×

n (312).

6 Pairs of patterns

In this section we investigate matchings and set partitions that avoid a pair of patterns of length 3.
For a pair of patterns σ and τ , we define the sets

RF (σ, τ) = RF (σ) ∩RF (τ), MF (σ, τ) = MF (σ) ∩MF (τ), Pn(σ, τ) = Pn(σ) ∩ Pn(τ),

Rn(σ, τ) =
⋃

F∈Fn

RF (σ, τ), Mn(σ, τ) =
⋃

F∈Fn

MF (σ, τ).

The notions defined in Section 2 for avoidance of one pattern have a straightforward generalization
to sets of patterns. For example, we say that two pairs of patterns are shape-Wilf-equivalent,
which we write as {σ, τ} ∼ {σ′, τ ′}, if for any Ferrers board F we have |RF (σ, τ)| = |RF (σ

′, τ ′)|
(equivalently, |MF (σ, τ)| = |MF (σ

′, τ ′)|).
We will establish that the 15 pairs of patterns in S3 are partitioned into 7 shape-Wilf-equivalence

classes, as shown in Table 3. We provide enumeration results for matchings and set partitions
avoiding a pair of patterns in all classes except for VI and VII. These results are summarized in
Table 4. For matchings, the first few terms of the enumeration sequences for each class are given
in Table 5.

It will be convenient to introduce some well-known facts about Dyck paths. Let C(v, z) be the
generating function for Dyck paths with respect to the number of valleys, given by

C(v, z) =
∑

n≥0

∑

D∈Dn

vval(D)zn =
1− z + vz −

√

1− 2 (v + 1)z + (v − 1)2z2

2vz
.

The number of returns of a Dyck path D ∈ Dn, which we write as r(D), is defined to be the number
of south steps of D that intersect the diagonal y = n−x. By keeping track of the number of valleys
and the number of returns, we get the generating function

∑

n≥0

∑

D∈Dn

tr(D)vval(D)zn =
1 + t(1− v)zC(v, z)

1− tvzC(v, z)
. (9)
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123 132 213 231 312 321

123 VI I II III IV

132 I I I VII

213 I I V

231 I I

312 I

321

Class Shape-Wilf Equivalent Pairs

I
{123, 213} ∼ {132, 213} ∼ {132, 231}

∼ {132, 312} ∼ {213, 231} ∼ {213, 312}
∼ {231, 312} ∼ {231, 321} ∼ {312, 321}

II {123, 231}
III {123, 312}
IV {123, 321}
V {213, 321}
VI {123, 132}
VII {132, 321}

Table 3: Shape-Wilf equivalence classes for pairs of patterns of length 3.

Class Matchings Set partitions

I
4

3 +
√
1− 8z

2− 3z + z2 − z
√
1− 6z + z2

2(1− 3z + 3z2)

II & III Solutions of a cubic Solutions of a cubic

IV
1− 5z + 2z2

1− 6z + 5z2
1− 10z + 32z2 − 37z3 + 12z4

(1− z)(1 − 10z + 31z2 − 30z3 + z4)

V Functional equation Unknown

VI & VII Unknown Unknown

Table 4: A summary of the generating functions for matchings and set partitions avoiding a pair
in each of the 7 classes.

P
P
P
P
P
P
P
PP

Class
n

1 2 3 4 5 6 7

I 1 3 13 67 381 2307 14589

II & III 1 3 13 66 364 2112 12688

IV 1 3 13 63 313 1563 7813

V 1 3 13 68 399 2528 16916

VI 1 3 13 69 414 2697 18625

VII 1 3 13 66 363 2091 12407

Table 5: The values of |Mn(σ, τ)| for n ≤ 7, for {σ, τ} in each of the 7 classes.

In the next subsections we consider each one of the first five equivalence classes from Table 3.
We will work in the context of rook placements on Ferrers boards, as the bijection κ allows us to
translate the results to matchings. For each pair of patterns {τ, σ}, we will use the fact established
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in Section 2.3 that, once we find the generating function

A(v, z) =
∑

n≥0

∑

M∈Mn(σ,τ)

vval(M)zn =
∑

n≥0

∑

F∈Fn

|MF (σ, τ)|vval(F )zn =
∑

n≥0

∑

F∈Fn

|RF (σ, τ)|vval(F )zn,

then we can obtain
∑

n≥0 |Mn(σ, τ)|zn = A(1, z) and

∑

n≥0

|Pn(σ, τ)|zn =
1

1− z
A

(

1

z
,

z2

(1− z)2

)

, (10)

by Eq. (1).

6.1 Equivalence class I

For F ∈ Fn, define its number of returns to be r(F ) = r(DF ). We now give the generating functions
for matchings and partitions avoiding a pair of patterns from class I.

Theorem 6.1. Let {σ, τ} be a pair in class I (see Table 3). For all F ∈ Fn, we have

|MF (σ, τ)| = 2n−r(F ),

and so all pairs in class I are shape-Wilf-equivalent. Moreover,

∑

n≥0

|Mn(σ, τ)|zn =
4

3 +
√
1− 8z

, and so |Mn(σ, τ)| =
1

n+ 1

n
∑

k=0

(

2n+ 2

n− k

)(

n+ k

k

)

,

and
∑

n≥0

|Pn(σ, τ)|zn =
2− 3z + z2 − z

√
1− 6z + z2

2(1 − 3z + 3z2)
.

Proof. Once we prove that |RF (σ, τ)| = 2n−r(F ) for all F ∈ Fn, the rest follows easily. Indeed, it is
then clear that the elements in class I are shape-Wilf-equivalent, because the formula 2n−r(F ) only
depends on F . The generating function for {σ, τ}-avoiding matchings with respect to the number
of valleys is then

A1(v, z) :=
∑

n≥0

∑

M∈Mn(σ,τ)

vval(M)zn =
∑

n≥0

∑

F∈Fn

2n−r(F )vval(F )zn

=
∑

n≥0

∑

D∈Dn

2n−r(D)vval(D)zn =
1 + z(1− v)C(v, 2z)

1− vzC(v, 2z)
, (11)

where the last equality follows by substituting 2z for z and 1/2 for t in Eq. (9). For v = 1 the
expression simplifies to

∑

n≥0

|Mn(σ, τ)|zn =
4

3 +
√
1− 8z

,

from where a formula for the coefficients |Mn(σ, τ)| can be derived routinely. The formula for
{σ, τ}-avoiding partitions follows by expanding Eqs. (10) and (11).
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It only remains to prove that |RF (σ, τ)| = 2n−r(F ) for all F ∈ Fn, for every pair {σ, τ} in class I.
We first demonstrate a complete proof for the pair {σ, τ} = {231, 312}, and then show how simple
modifications provide proofs for the other 8 pairs.

We proceed by induction on n, noting that the result is clear when n = 1. Let n ≥ 2, and assume
the result holds for boards in Fn−1. Let F ∈ Fn, and let F ′ ∈ Fn−1 be the board obtained from F
by removing its rightmost column and bottom row, and shifting the squares one unit down so that
the bottom left corner of F ′ is at the origin. By induction hypothesis, |RF ′(231, 312)| = 2n−1−r(F ′).
Given a placement R′ such that (R′, F ′) ∈ RF ′(231, 312), we will consider all the placements
(R,F ) ∈ RF (231, 312) where R is obtained from R′ by inserting a rook in the rightmost column of
F , and shifting up by one square the rooks in R′ in rows at least as high as that of the inserted rook.
It is clear that all placements in RF (231, 312) arise in this fashion, since this process is reversible.
Let k be the number of rows in the rightmost column of F , i.e., the number of south steps at the
end of DF .

If k = 1, then any given (R′, F ′) ∈ RF ′(231, 312) gives rise to a unique placement inRF (231, 312),
namely the one obtained from R′ by inserting a rook in position (n, 1) of F and sliding all the other
rooks up one square. We conclude that |RF (231, 312)| = |RF ′(231, 312)| = 2n−1−r(F ′) = 2n−r(F ),
since r(F ′) = r(F )− 1 in this case.

Suppose now that k ≥ 2. Given (R′, F ′) ∈ RF ′(231, 312), we can always insert a rook in
position (n, k) of F to obtain a placement in in RF (231, 312), since the inserted rook does not
create occurrences of the patterns 231 or 312. Additionally, if the rightmost rook in (R′, F ′) is in
position (n − 1, b), a new rook can be inserted in position (n, b) of F , giving rise to a {231, 312}-
avoiding placement. On the other hand, inserting a rook in position (n, c) with 1 ≤ c ≤ b−1 would
create an occurrence of the pattern 231, while inserting a rook in position (n, c) with b < c < k
would create an occurrence of the pattern 312. It follows that

|RF (231, 312)| = 2 |RF ′(231, 312)| = 2 · 2n−1−r(F ′) = 2n−r(F ),

since r(F ′) = r(F ) in this case.
This inductive proof can be slightly modified for the following five additional pairs of patterns,

by changing the available insertion locations for the new rook in the case k ≥ 2 as shown in the
following table.

Patterns Available insertion locations for the new rook

{123, 213} (n, 1) and (n, 2)

{231, 321} (n, k) and (n, k − 1)

{132, 213} (n, b+ 1) and (n, 1)

{213, 231} (n, b) and (n, b+ 1)

{132, 312} (n, k) and (n, 1)

It remains to show that the three pairs {312, 321}, {213, 312}, and {132, 231} belong to this
equivalence class. For (R,F ) ∈ Rn, let (R

t, F t) be the placement obtained by reflecting (R,F ) over
the line y = x. Then, by symmetry, (R,F ) ∈ RF (312, 321) if and only if (Rt, F t) ∈ RF t(231, 321).
Since r(F ) = r(F t), we have

|RF (312, 321)| = |RF t(231, 321)| = 2n−r(F t) = 2n−r(F ),

as needed. The argument for the other two pairs is analogous.
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6.2 Equivalence classes II and III

It is easy to see that the pairs {123, 231} and {123, 312} are not shape-Wilf equivalent. Indeed,
a simple count reveals that if F ∈ F5 is the board that has three columns of height 5 followed
by two columns of height 4, then |RF (123, 231)| = 14 and |RF (123, 312)| = 15. However, as the
following result shows, we have equality in the number of matchings avoiding each of the two pairs,
and similarly in the number of partitions. This answers Question 2.2 in the affirmative for pairs of
patterns, although the original question remains open.

Theorem 6.2. Let {σ, τ} ∈ {{123, 231}, {123, 312}}. Then

∑

n≥0

|Mn(σ, τ)|zn =
1

1− zH(1, z)
,

and
∑

n≥0

|Pn(σ, τ)|zn = 1 +
z(1− z)

(1− z)2 − zH(v, z)
,

where H = H(v, z) is a rook of the cubic polynomial αH3 + βH2 + γH + δ, with

α = v2z2,

β = −2vz + 2v(1 − v)z2 + v2z2C(v, z),

γ = (−2 + 3v)z + (1− v)2z2 +
(

1− (1 + v)z + v(1 − v)z2
)

C(v, z),

δ = −1 +
(

vz − (1− v)2z2
)

C(v, z).

Proof. Consider first the pair of patterns {123, 312}. Recall from Section 4 the bijection Π :
RF (312) → LF , that sends (R,F ) ∈ RF (312) to the labeled Dyck path (DF , α), where αi is the
length of the longest increasing sequence in R ∩ Γ(Vi). Define L<3

F to be the set of labeled paths
(DF , α) ∈ LF such that αi < 3 for all i, and let L<3

n =
⋃

F∈Fn
L<3
F . Then it is clear that Π

restricts to a bijection between RF (123, 312) and L<3
F . It follows that the generating function for

{123, 312}-avoiding matchings with respect to the number of valleys equals

A2(v, z) :=
∑

n≥0

∑

F∈Fn

|RF (123, 312)|vval(F )zn =
∑

n≥0

∑

(D,α)∈L<3
n

vval(D)zn.

The generating function for {123, 312}-avoiding partitions can be obtained from A2(v, z) using
Eq. 10.

To find an expression for A2(v, z), we follow the outline of the proofs of Theorems 4.1 and 4.2.
Let K<2

n be the set of labeled Dyck paths (D,α) of semilength n that satisfy the diagonal property,
have α2n = 0, and αi < 2 for all i. Let K<2 =

⋃

n≥0 K<2
n , and define

K<2(u, v, z) =
∑

n≥0

∑

(D,α)∈K<2
n

uα0vval(D)zn.

To see the relationship between K<2 and A2, observe that any element of L<3 may be uniquely

constructed by taking paths (D1, α
(1)), (D2, α

(2)), . . . ∈ K<2 with α
(j)
0 = 0 for all j, and combining
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them into a path (eD1seD2s . . . eDks, α), where the labels along each Di are given by the labels
α(i) incremented by 1, and the remaining labels are zero. From this construction we see that

A2(v, z) =
1/v

1− vzK<2(0, v, z)
− 1

v
+ 1.

It remains to find an expression for K<2(0, v, z). Using the operation ⊕ on K defined in the
proof of Theorem 4.1, every nonempty (D, γ) ∈ K<2 can be uniquely decomposed as (D, γ) =
(eD1s, α) ⊕ (D2, β), where (eD1s, α), (D2, β) ∈ K. If αj = 0 for all j, then (D2, β) can be an
arbitrary element of K<2. If αj = 1 for some j, then the condition (D, γ) ∈ K<2 forces β0 = 0, and
we have the following possibilities for the labels α1 and α2i−1, where i is the semilength of eD1s:

(a) α2i−1 = α1 = 0, which forces α0 = 0;

(b) α2i−1 = 0 and α1 = 1, in which case α0 can be 0 or 1;

(c) α2i−1 = 1, which forces α1 = 1 by the diagonal property, and thus αj = 1 for 1 ≤ j ≤ 2i− 1,
but α0 can be 0 or 1.

Putting these cases together and noting that the generating function for labeled Dyck paths where
all labels are 0 is C(v, z), we obtain the following function equation.

K<2(u, v, z) = 1 + zC(v, z)(vK<2(u, v, z) − v + 1)

+ z

(

(

K<2(0, v, z) − C(v, z)
)

+ (K<2(u, v, z) −K<2(0, v, z))

(

1

u
+ 1

)

+ (1 + u)C(v, z)

)

(vK<2(0, v, z) − v + 1)

Writing H = H(v, z) = K<2(0, v, z) and C = C(v, z), we obtain
(

1− vzC − z(vH − v + 1)

(

1

u
+ 1

))

K<2(u, v, z) = 1 + z(1− v)C + z(vH − v + 1)

(

uC − H

u

)

,

(12)
which we solve using the kernel method. The expression multiplying K<2(u, v, z) in the left hand
side is canceled by setting

u =
z (1− v + vH)

1− z + vz(1− C −H)
.

Making this substitution in Eq. (12), we get

0 = αH3 + βH2 + γH + δ,

with α, β, γ, δ as in the statement.
Finally, to prove the that the generating functions for {123, 231}-avoiding matchings and par-

titions are the same as for {123, 312}-avoiding ones, it will suffice, by Eq. 10, to show that
∑

n≥0

∑

F∈Fn

|RF (123, 231)|vval(F )zn =
∑

n≥0

∑

F∈Fn

|RF (123, 312)|vval(F )zn. (13)

Since 231 and 312 are inverses of each other, while 123 is an involution, we have that |RF (123, 231)| =
|RF t(123, 312)| for every F ∈ Fn, where F

t is the board obtained by reflecting F over the line y = x.
Now Eq. (13) follows using that val(F ) = val(F t).
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6.3 Equivalence class IV

In order to state our results for the pair {123, 321}, we need a few definitions. Let D ∈ Dn and
let h0 . . . h2n be its height sequence. We define the height of D to be maxi hi. For h ≥ 1, denote
by D<h

n the set of paths in Dn whose height is strictly less than h, and by F<h
n the set of Ferrers

boards F ∈ Fn such that DF ∈ D<h
n . Let D<h

n =
⋃

n≥0 D<h.
The height of a peak es formed by the kth and (k+1)st steps in D is defined to be hk. Lastly,

let η(D) = |{i : hi = 2}|, and let η(F ) = η(DF ) for F ∈ Fn.

Theorem 6.3. For all F ∈ Fn we have

|MF (123, 321)| =
{

2η(F ) if F ∈ F<5
n ,

0 otherwise.

Moreover,

∑

n≥0

|Mn(123, 321)|zn =
1− 5z + 2z2

1− 6z + 5z2
, and so |Mn(123, 321)| =

5n−1 + 1

2
,

and
∑

n≤0

|Pn(123, 321)|zn =
1− 10z + 32z2 − 37z3 + 12z4

(1− z)(1− 10z + 31z2 − 30z3 + z4)
.

To prove this theorem we use the bijection δ321 : RF (321) → D2
F defined in Section 3.2. To

describe the image of δ321 when restricted to RF (123, 321), we need one more definition. Let
F ∈ F<5

n , and let h0 . . . h2n be the height sequence of DF . Define E2
F to be the set of pairs

(D0,DF ) ∈ D2
F where the height sequence j0 . . . j2n of D0 satisfies the following conditions: if

hi ∈ {1, 3}, then ji = 1; if hi ∈ {0, 4}, then ji = 0; and if hi = 2, then ji ∈ {0, 2}. Let
E2
n =

⋃

F∈F<5
n

E2
F .

Lemma 6.4. For any F ∈ D<5
n , |E2

F | = 2η(F ).

Proof. Let h0 . . . h2n be the height sequence of DF . If D0 is such that (D0,DF ) ∈ E2
F , and j0 . . . j2n

is its height sequence, then for each i such that hi 6= 2, the value of ji is determined by hi. Let now
i be such that hi = 2. Then hi−1, hi+1 ∈ {1, 3}, which forces ji−1 = ji+1 = 1, and so both choices
of ji ∈ {0, 2} are valid. It follows that the number of choices of the height sequence j0 . . . j2n is
2η(F ).

The next lemma describes the image of the bijection δ321 on the set RF (123, 321).

Lemma 6.5. If F ∈ Fn\F<5
n , then RF (123, 321) = ∅. If F ∈ F<5

n , then δ321 restricts to a bijection
between RF (123, 321) and E2

F .

Proof. Let F ∈ Fn, let V0, . . . , V2n be the vertices along the border of F , and let h0 . . . h2n be the
height sequence of DF .

Consider first the case that F /∈ F<5
n . Suppose for contradiction that RF (123, 321) 6= ∅,

and let R ∈ RF (321, 123). Then, by Lemma 3.2, hi = |R ∩ Γ(Vi)| for every i. By the Erdös-
Szekeres theorem, any permutation of length at least 5 must have either an increasing or decreasing
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subsequence of length at least 3. Thus, if i is such that hi ≥ 5, the permutation given by R ∩ Γ(Vi)
contains an occurrence of 123 or 321, contradicting that R ∈ RF (123, 321).

Now consider the case that F ∈ F<5
n . Recall from Section 3.2 that for (R,F ) ∈ RF (123, 321),

the bottom path in δ321(R,F ) is defined as the one with height sequence ji = 2ℓi − hi, where ℓi is
the length of a longest increasing sequence in R ∩ Γ(Vi). From this definition of ji and the fact
that 0 ≤ ji ≤ hi and ℓi < 3 for all i, it follows easily that ji = 1 when hi ∈ {1, 3}, ji = 0 when
hi ∈ {0, 4}, and ji ∈ {0, 2} when hi = 2. This shows that δ321(R,F ) ∈ E2

F , proving the inclusion
δ321(RF (123, 321)) ⊆ E2

F .
To establish the reverse inclusion, let D0 be any path such that (D0,DF ) ∈ E2

F , and let c0 . . . c2n
be its height sequence. Let (R0, F ) = δ−1

321(D0,DF ) ∈ RF (321), which exists because δ321 is a
bijection between RF (321) and D2

F . Letting ℓi be the length of a longest increasing sequence in
R0 ∩ Γ(Vi), we know be definition of δ321 that ci = 2ℓi−hi. Thus, ℓi = (ci+hi)/2 < 3, where the last
inequality follows from the fact that (D0,DF ) ∈ E2

F . We conclude that (R0, F ) ∈ RF (123, 321).

Proof of Theorem 6.3. It follows from Lemmas 6.4 and 6.5 that

|RF (123, 321)| = |E2
F | =

{

2η(F ) if F ∈ F<5
n ,

0 otherwise.
(14)

This implies that

A4(v, z) :=
∑

n≥0

∑

F∈Fn

|RF (123, 321)|vval(F )zn =
∑

n≥0

∑

D∈D<5
n

2η(D)vval(D)zn.

If we let
Q(u, v, z) =

∑

n≥0

∑

D∈D<5
n

uη(D)vval(D)zn,

then
∑

n≥0 |Mn(123, 321)|zn = Q(2, 1, z) and A4(v, z) = Q(2, v, z), from where
∑

n≤0 |Pn(123, 321)|zn
can be found using Eq. 10. Thus, it suffices to find an expression for Q(u, v, z).

In the following generating functions for Dyck paths, u marks the statistic η, and v marks the
statistic val. Let

T (v, z) =
1/v

1− vz
− 1

v
+ 1

be the generating function for D<2. Since paths in D<3 can be obtained from paths in D<2 by
inserting a path in D<2 at each peak, the generating function for D<3 is T (v, z T (v, uz)). Similarly,
T (v, z T (v, uz T (v, uz))) is the generating function for D<4, obtained from paths in D<3 by inserting
a path in D<2 at each peak (see Figure 10). Finally, inserting path in D<2 at the peaks of paths
in D<4, we have

Q(u, v, z) = T (v, z T (v, uz T (v, uz T (v, z)))),

from where we obtain the stated generating functions for {123, 321}-avoiding matchings and set
partitions.
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Figure 10: An example of the construction of a path in D<4 by inserting a path in D<2 at a peak
of a path in D<3.

6.4 Equivalence class V

In this section we give a functional equation for the generating function for {213, 321}-avoiding
matchings, with two additional variables. Unlike in the previous sections, we are unable to solve
this equation to obtain an expression for the generating function. We also do not give results on
the enumeration of {213, 321}-avoiding partitions.

Theorem 6.6. The generating function for {213, 321}-avoiding matchings is given by

∑

n≥0

|Mn(213, 321)|z2n = G(0, 0, z),

where G(t, u, z) is the solution to the functional equation

G(t, u, z) = 1 + z

(

tG(t, u, z) +
G(t, u, z) −G(t, 0, z)

tu
+

G(t, 0, z) −G(0, 0, z)

t

+
tu

1− u
(G(t, 0, z) −G(tu, 0, z))

)

.

To prove this theorem we use the bijection δ213 : RF (213) → D2
F defined in Section 3.2. To

describe its image when restricted to RF (213, 321), we define the following set. For any F ∈ Fn,
denote by A2

F the set of all pairs (D0,DF ) ∈ D2
F such that if V is a vertex on the top path DF , then

D0 has no peak that lies strictly south and strictly west of V . As usual, we let A2
n =

⋃

F∈Fn
A2

F .
Figure 11 illustrates this definition.

Lemma 6.7. For F ∈ Fn, the bijection δ213 restricts to a bijection between RF (213, 321) and A2
F .

Proof. Let (R,F ) ∈ RF (213) and δ213(R,F ) = (D0,DF ) ∈ D2
F . Let F0 ∈ Fn be such that

DF0
= D0. Figure 11 gives an example of this bijection both when (D0,DF ) ∈ A2

F (left) and
when (D0,DF ) /∈ A2

F (right). Recall that, by definition of δ213, F0 is the smallest Ferrers board
that contains R. Consequently, if (x, y) is a peak on F0, then the unit square whose northeast
vertex is (x, y) contains a rook of R. Furthermore, R ∩ Γ(x− 1, y − 1) is strictly increasing since
(R,F ) ∈ RF (213). We will show that (R,F ) ∈ RF (213, 321) if and only if (D0,DF ) ∈ A2

F .
First suppose that (D0,DF ) /∈ A2

F . Then there exists a vertex V = (a, b) on the border of F
and a peak (x, y) on F0 such that x < a and y < b. The rook at this peak (i.e., in row x − 1
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F0

F
×

×
×

×
×

×
×

×

F ′
0

F
×

×
×

×
×

×
×

×

Figure 11: On the left, the two Ferrers boards F0 (shaded) and F satisfy (DF0
,DF ) ∈ A2

F . On the
right, F ′

0 (shaded) and F satisfy (DF ′

0
,DF ) /∈ A2

F .

and column y − 1), together with the rook in row b− 1 and the rook in column a − 1, creates an
occurrence of 321 in R ∩ Γ(V ), and so (R,F ) /∈ RF (213, 321).

Now suppose that (D0,DF ) ∈ A2
F . Then, for any vertex V = (a, b) on the border of F , the board

F0 has at most two peaks in the region x ≤ a and y ≤ b. It follows that the placement R ∩ Γ(V )
is the union of two increasing sequence, so it avoids 321. Therefore, (R,F ) ∈ RF (213, 321).

Proof of Theorem 6.6. By Lemma 6.7,
∑

n≥0

|Mn(213, 321)|zn =
∑

n≥0

|Rn(213, 321)|zn =
∑

n≥0

|A2
n|zn.

To enumerate A2
n, we will consider an larger set where we do not require paths to end on the

diagonal. It will also be convenient to shift the paths down by n units. More precisely, define B2
n

to be the set of pairs of lattice paths (L0, L1) with steps south and east that start at the origin,
remain above the line y = −x, and satisfy the following conditions:

• L1 has a total of n steps,

• L0 is weakly below L1,

• both paths end at the same x-coordinate,

• L0 has no peak strictly southwest of any vertex on L1,

• L0 ends with a south step only if L1 and L0 end at the same y-coordinate.

Two examples of pairs in B2
n are given in Figure 12. Note that one may think of A2

n as a subset of
B2
2n by sliding the paths in A2

n down by n units.
Define the following statistics on pairs (L0, L1) ∈ B2

n. If V = (a, b) and W = (a, d) are final
vertices of L1 and L0, respectively, let h(L1) = a+ b and ǫ(L0, L1) = b−d. Consider the generating
function

G(t, u, z) =
∑

n≥0

∑

(L0,L1)∈B2
n

th(L1)uǫ(L0,L1)zn =
∑

i,j≥0

tiujGi,j(z),

and note that G(0, 0, z) =
∑

n≥0 |A2
n|z2n.

To find a functional equation for G, consider, given (L0, L1) ∈ B2
n, all the ways that we may

append steps at the end of L0 and L1 to obtain a pair in B2
n+1. It follows from the definitions that

we have the following options:
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Figure 12: The example on the left is a pair in B2
n where the bottom path ends with an east step.

In the example on the right the bottom path ends in a south step.

(a) Add an east step to both L0 and L1.

(b) If ǫ(L0, L1) > 0, we may also add a south step to L1 and leave L0 unchanged.

(c) If ǫ(L0, L1) = 0 and h(L1) > 0, we may also add either a south step to both L0 and L1, or
one east step to L1 and ℓ south steps followed by one east step to L0, where 1 ≤ ℓ ≤ h(L1).

A routine calculation translates these rules into the following functional equation:

G(t, u, z) = 1 + z

(

tG(t, u, z) +
G(t, u, z) −G(t, 0, z)

tu
+

G(t, 0, z) −G(0, 0, z)

t

+ t
∑

i>0

ti(u+ u2 + . . . + ui)Gi,0(z)

)

,

which yields the one in the statement after simplifying.
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