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Abstract

We describe a construction that maps any connected graph G on three or more vertices
into a larger graph, H(G), whose independence number is strictly smaller than its Lovász
number which is equal to its fractional packing number. The vertices of H(G) represent all
possible events consistent with the stabilizer group of the graph state associated to G, and
exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G
under local complementation. Physically, the construction translates into graph-theoretic terms
the connection between a graph state and a Bell inequality maximally violated by quantum
mechanics. In the context of zero-error information theory, the construction suggests a protocol
achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue
of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the
one-shot version of this capacity being strictly larger than the independence number. Finally,
given the correspondence between graphs and exclusivity structures, we are able to compute the
independence number for certain infinite families of graphs with the use of quantum non-locality,
therefore highlighting an application of quantum theory in the proof of a purely combinatorial
statement.

1 Introduction

Partitioning a phase space into orbits is a central step in the study of any physical or formal
dynamics. Immediately after the introduction of graph (/stabilizer) states in quantum coding
theory [8, 14, 32] and in the context of measurement-based quantum computation [27], it was
evident that the related task, when considering the dynamics at the subsystems level, requires
approaches of combinatorial flavour. While substantial attention has been given to orbits obtained
by the application of local unitaries (with a clear motivation coming from the classification of
multipartite entanglement [16]), the question to decide whether two graph states are equivalent
under the action of the local Clifford group has been settled, by showing [24] that the equivalence
classes are in one-to-one correspondence with local complementation orbits (also called Kotzig orbits
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[18]). In other words, the existence of a sequence of local complementations relating the associated
graphs guarantees equivalence under local Clifford operations and viz.

Even though this link does not embrace full local unitary equivalence, having now counterex-
amples to the LU-LC conjecture [19, 28], it unveils a rich interface between the structure of useful
multi-qubit systems and a number of mathematical ideas. Indeed, local complementation (or,
equivalently, κ-transformation) is a fundamental operation for studying circle graphs [18]. This
notion has been instrumental for unifying certain properties of Eulerian tours and matroids via
isotropic systems [3], constructs associated to vector spaces over GF (2); and it appears in string
reconstruction problems (related to DNA sequencing) and graph polynomials [2].

Given an equivalence class induced by local complementation, in the present work we shall
describe a method for constructing a larger graph associated to the equivalence class. The method
makes use of the stabilizer group of an arbitrary graph state from the class. Each of these graphs
is identified with an exclusivity structure and a related non-contextuality inequality (for short,
NC inequality). Such an inequality is an upper bound on the sum of probabilities of a set of
events, with some exclusivity constraints (a technical discussion about events and exclusivity will
be given in Section 3). NC inequalities are satisfied by any non-contextual hidden variable theory,
i.e., any physical theory for which the probability of seeing an event is independent of the choice of
measurements. Quantum mechanics or more general theories can violate such inequalities. For more
details, see [7]. In this reference, the graph (and more generally an hypergraph), whose vertices are
events, is employed to characterize the correlations for classical and general probabilistic theories
satisfying that the sum of probabilities of pairwise exclusive events cannot be larger than 1. The
maximum values for the three physical theories: classical, general, and quantum, were computed
through the three well-known combinatorial parameters: the independence number, the fractional
packing number, and the Lovász number, respectively. As a consequence, it becomes evident that
quantum and general probabilistic correlations satisfying that the sum of probabilities of pairwise
exclusive events cannot be larger than 1 have semidefinite and linear characterizations, respectively.
Quantum mechanics is sandwiched between the other two theories.

The framework introduced in [7] permits to quantitatively discuss classical, quantum, and more
general theories through the analysis of a single mathematical object and to have a general technique
to single out quantum correlations with ad hoc degree of contextuality. For example, a generic graph
with independence number strictly smaller than the Lovász number is associated to a NC inequality
violated by quantum mechanics. If, in addition, the graph has equal Lovász and fractional packing
number, then it can be associated to a NC inequality that is “maximally violated” by quantum
mechanics, meaning that no general probabilistic theory satisfying that the sum of probabilities of
pairwise exclusive events cannot be larger than 1 can achieve a larger value. (Of course, there are
graphs for which all theories coincide, as, for example, perfect graphs.)

In the present paper, we propose a construction that translates into the combinatorial lan-
guage developed in [7] the connection between every graph state of three or more qubits and a
Bell inequality maximally violated by quantum mechanics found in [15]. Namely, we describe a
construction that maps any graph on three or more vertices G into a larger graph, H(G), such that
its independence number is strictly smaller than its Lovász number which is equal to its fractional
packing number. The vertices of H(G) represent all possible events consistent with the stabilizer
group of the graph state associated to G and exclusive events are adjacent.

The construction has also applications in zero-error information theory. It leads to a straightfor-
ward protocol achieving the maximum rate of zero-error entanglement-assisted capacity [9, 12]. We
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conjecture that this quantity for a graph H(G) is always strictly larger than its Shannon capacity.
A proof of this statement would possibly require a rank bound a la Haemers. While it is difficult
to compute this bound in general, it may be easier in our case, since H(G) has a very particular
structure because of the connection with the stabilizer group. The violation of the Bell inequality is
here expressed by the one-shot version of this capacity being strictly larger than the independence
number. The correspondence between graphs and exclusivity structures allows us compute the
independence number of the graphs H(Kn), where Kn is the complete graph, by taking advantage
of well-known techniques used in quantum non-locality.

Since two graphs yield the same (up to isomorphism) graph in our construction if and only if
they are equivalent under local complementation, the construction can be interpreted as a method
to represent local complementation orbits. Somehow this is in analogy with the notion of a two-
graph, a well-studied mathematical object which represents equivalence classes under the operation
of switching (see Ch. 11 of [13]).

Our work is innovative with respect to [7] and [15] in many ways. First, we present a character-
ization of local complementation orbits, a result of pure combinatorial nature. Our representative
graphs are obtained via a construction inspired by quantum mechanics. We find tools to analyze
the properties of such graphs in [15]. Second, by using the results in [7], we discover that local
complementation orbits are naturally associated to Bell inequalities. We improve the mathemati-
cal representation of such Bell inequalities by writing down an explicit operational form, namely, a
pseudo-telepathy game. The form that we have introduced is often easier to use in both theoretical
purposes and the design of laboratory experiments. Third, we introduce a novel connection between
the results presented in [7] and [15], and zero-error information theory. Such a connection is also
interesting on its own, since it provides a way to construct families of channels with a separation
between classical and quantum capacities starting from any graph.

The remainder of the work is organized as follows. The next section introduces the required
terminology and notions: the language of graph theory, non-locality, and channel capacities. The
construction is described in Section 3. Section 4 discusses the relevant graph-theoretic parameters.
Section 5 contains examples. We highlight that physical arguments can be useful to consider
difficult tasks such as computing the independence number. Section 6 is devoted to zero-error
capacities. We show that our construction produces infinite families of graphs for which the use of
entanglement gives the maximum possible zero-error capacity. Section 7 classifies graphs (or local
complementation orbits) according to the objects obtained via the construction. We point out a link
with Boolean functions and propose a conjecture about connectedness of the graph representatives.

2 Preliminaries

2.1 Graphs, graph parameters and graph states

A (simple) graph G = (V,E) is an ordered pair: V (G) is a set whose elements are called vertices;
E(G) ⊂ V (G) × V (G) is a set whose elements are called edges. The set E(G) does not contain an
edge of the form {i, i}, for every i ∈ V (G). The vertices forming an edge are said to be adjacent. We
denote by N (i) the neighbourhood of the vertex i, i.e., N (i) = {j ∈ V | (i, j) ∈ E}. An independent
set in a graph G is a set of mutually non-adjacent vertices. The independence number of a graph
G, denoted by α(G), is the size of the largest independent set of G. A subgraph H = (V,E) of a
graph G = (V,E), is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). An induced subgraph
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H = (V,E) of a graph G = (V,E) with respect to V (H) ⊆ V (G) is a graph with vertex set V (H)
and edge set E(H) = {{i, j} | i, j ∈ V (H) and {i, j} ∈ E(G)}. A clique in a graph G is a subgraph
whose vertices are all adjacent to each other.

An orthogonal representation of G is a map from V (G) to C
k for some k, such that adjacent

vertices are mapped to orthogonal vectors. An orthogonal representation is faithful when vertices
u and v are mapped to orthogonal vectors if and only if {u, v} ∈ E(G). The Lovász number [20] is
defined as follows:

ϑ(G) = max
n
∑

i=1

|〈ψ|vi〉|2, (1)

where the maximum is taken over all unit vectors ψ and all orthogonal representations, {vi}, of G.
The fractional packing number is defined by the following linear program:

α∗(G,Γ) = max
∑

i∈V
wi, (2)

where the maximum is taken over all 0 ≤ wi ≤ 1 under the restriction
∑

i∈Cj
wi ≤ 1 [30], and for all

cliques Cj ∈ Γ, where Γ is the set of all cliques of G. In this paper, by fractional packing number,
we mean α∗(G,Γ) and denote it as α∗(G).

Given a graph G = (V,E), the graph state |G〉 (see, for example, [16, 32]) associated to G is
the unique n-qubit state such that

gi|G〉 = |G〉 for i = 1, . . . , n, (3)

where gi is the generator labeled by a vertex i ∈ V of the stabilizer group of |G〉. A generator for
i ∈ V (G) is defined as

gi = X(i)
⊗

j∈N (i)
Z(j), (4)

where X(i), Y (i), and Z(i) denote the Pauli matrices (sometimes denoted as σx, σy, and σz) acting
on the i-th qubit. Therefore, gi can be obtained directly and univocally from G. The stabilizer
group of the state |G〉 is the set S of the stabilizing operators sj of |G〉 defined by the product of
any number of generators gi. Note that, for convenience, we shall remove the identity element from
S. Therefore, the set S contains 2n − 1 elements.

Given a graph G = (V,E), the operation of local complementation (LC) on i ∈ V transforms
G into a graph Gi on the same set of vertices. To obtain Gi, we replace the induced subgraph of
G on N (i) by its complement. It is easy to verify that (Gi)i = G. The set of graphs is partitioned
into LC orbits (also known as Kotzig orbits) by the repeated action of local complementation on
each graph [3]. The LC orbits are then equivalence classes.

2.2 Non-locality

We assume familiarity with the basics of quantum information theory. The reader can find a good
introduction in [25, Chapter 2]. A non-local game is an experimental setup between a referee and
two players, Alice and Bob. (It can also be defined with more players, but we do not consider
this case here.) The game is not adversarial, but the players collaborate with each other. They
are allowed to arrange a strategy beforehand, but they are not allowed to communicate during the
game. The referee sends Alice an input x ∈ X and sends Bob an input y ∈ Y , according to a fixed
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and known probability distribution π on X × Y . Alice and Bob answer with a ∈ A and b ∈ B
respectively, and the referee declares the outcome of the game according to a verification function
V : A×B ×X × Y → {win = 1, lose = 0}. So, the non-local game is completely specified by the
sets X,Y,A,B, the distribution π, and the verification function V .

A classical strategy is w.l.o.g. a pair of functions sA : X → A and sB : Y → B for Alice
and Bob, respectively. A quantum strategy consists of a shared bipartite entangled state |ψ〉 and
POVMs {P xa }a∈A, for every x ∈ X for Alice and {P yb }b∈B , for every y ∈ Y for Bob. On input
x, Alice uses the positive operator valued measurement (POVM) {P xa }a∈A to measure her part of
the entangled state and Bob does similarly on his input y. Alice (resp. Bob) answers with a (resp.
b) corresponding to the obtained measurement outcome. Therefore, the probability to output
a, b given x, y is Pr(a, b|x, y) = 〈ψ|P xa ⊗ P yb |ψ〉. The classical and quantum values (or winning
probabilities) for the game are:

ωc = max
sA,sB

∑

x,y,a,b

π(x, y)V (sA(x), sB(y), x, y), (5a)

ωq = max
|ψ〉,{Px

a },{P y
b
}

∑

x,y,a,b

π(x, y)V (a, b, x, y)〈ψ|P xa ⊗ P yb |ψ〉. (5b)

A Bell inequality for a non-local game is a statement of the form ωc ≤ t for t ∈ [0, 1]. It is
violated by quantum mechanics if ωq > t. A non-local game is called a pseudo-telepathy game
if ωc < ωq = 1, i.e. quantum players win with certainty, while classical players have nonzero
probability to lose.

Non-local games are a special form of Bell experiment. In general, a Bell operator B is a linear
combination of observables and a Bell inequality is a statement of the form

max |〈B〉| ≤ t, (6)

where the maximum runs over classical states. A quantum state is said to violate the Bell inequality
if |〈B〉| > t.

2.3 Channel capacity

Zero-error information theory was initiated in [29]; a review is [17]. A classical channel C with input
set X and output set Y is specified by a conditional probability distribution C(y|x), the probability
to produce output y upon input x. (Precisely this is a discrete, memoryless, stationary channel.)
Two inputs x, x′ ∈ X are confusable if there exists y ∈ Y such that C(y|x) > 0 and C(y|x′) > 0. We
then define the confusability graph of channel C, G(C), as the graph with vertex set X and edge set
{(x, x′) : x, x′ are distinct and confusable}.

The one-shot zero-error capacity of C, c0(C), is the size of a largest set of non-confusable inputs.
This is just the independence number α(G(C)) of the confusability graph. In the entanglement-
assisted setting, the sender (Alice) and receiver (Bob) share an entangled state ρ and can perform
local quantum measurements on their part of ρ.

The general form of an entanglement-assisted protocol used by Alice to send one out of q
messages to Bob with a single use of the classical channel C can be described as follows (also see
[9]). For each message m ∈ [q], Alice has a POVM Em = {Em1 , . . . , Em|X|} with |X| outputs. To
send message m, she measures her subsystem using Em and sends through the channel the observed
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x ∈ X. Bob receives some y ∈ Y with C(y|x) > 0. If the right condition holds (as we will explain
below), Bob can recover m with certainty using a projective measurement on his subsystem.

It is not hard to state a necessary and sufficient condition for the success of the protocol. If
Alice gets outcome x ∈ X upon measuring Em, Bob’s part of the entangled state collapses to
βmx = trA((E

m
x ⊗ I)ρ). Given the channel’s output y, Bob can recover m if and only if

∀m 6= m′,∀ confusable x, x′ tr(βmx β
m′

x′ ) = 0. (7)

Bob can recover the message with a projective measurement on the mutually orthogonal supports
of

∑

x : C(y|x)>0

βmx , (8)

for all messages m. In such a case we say that, assisted by the entangled state ρ, Alice can use the
POVMs E1, . . . , Eq as her strategy for sending one out of q messages with a single use of C.

The entanglement-assisted one-shot zero-error channel capacity of C, c∗0(C), is the maximum
integer q such that there exists a protocol for which condition (7) holds.

We are now ready to outline the setting where Alice and Bob share a maximally entangled state
in the above protocol. We will refer to this particular case later in section 6. Let the (canonical)
maximally entangled state of local dimension n be defined as follows:

|Ψ〉 := 1√
n

∑

i∈[n]
|i〉|i〉, (9)

where {|i〉}i∈[n] is the standard basis of Cn. When Alice and Bob share a maximally entangled
state and Alice performs a projective measurement observing Pa, Bob’s part of the state collapses
to trA((Pa⊗I)|Ψ〉〈Ψ|) = P⊤

a /n. This implies that Bob can distinguish between Pa and Pb perfectly
if and only if tr(PaPb) = 0. Therefore, if Alice uses projective measurement {Pmx }x∈X for message
m and players share a maximally entangled state, then Condition (7) is true if and only if

∀m 6= m′,∀ confusable x, x′ tr(Pmx P
m′

x′ ) = 0. (10)

Considering more than a single use of the channel, one can define the asymptotic zero-error
channel capacity Θ(C) and the asymptotic entanglement-assisted zero-error channel capacity Θ∗(C)
by Θ(C) := lim

k→∞
(c0(C⊗k))1/k and Θ∗(C) := lim

k→∞
(c∗0(C⊗k))1/k.

Since c∗0(C) depends solely on the confusability graph G(C) [9], we can talk about c∗0(G) for a
graph G, meaning the entanglement-assisted one-shot zero-error capacity of a channel with confus-
ability graph G. Similarly we can talk about quantities c0(G),Θ(G), and Θ∗(G).

3 Construction

Let G be a graph on n vertices and consider the n-qubit graph state |G〉. Let S be the stabilizer
group of G. For each sj ∈ S, with sj =

⊗n
k=1O

(k), let wj = |{O(k) : O(k) 6= I}| be the weight of sj.
Let Sj = {S(i,j) : i = 1, 2, . . . , 2wj−1} be the set of the events of sj, i.e. the measurement outcomes
that occur with non-zero probability when the system is in state |G〉 and the stabilizing operators
sj are measured with single-qubit measurements. The set of all events is S =

⋃

j=1,2,...,2n−1 Sj. Two
events are exclusive if there exists a k ∈ {1, . . . , n} for which the same single-qubit measurement
gives a different outcome.

A graph representing a Kotzig orbit can be naturally defined as follows:
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Definition 1 Let G be a graph. Let S be the stabilizer group of the graph state of G. We denote
by H(G) the graph whose vertices are the events in S and the edges are all the pairs of exclusive
events.

We give an example for events and exclusiveness. Let n = 3 and s2 = ZXZ (we omit the
superscripts for simplicity). This means that ZXZ|G〉 = |G〉, i.e., if the system is prepared in |G〉
and s2 is measured by measuring Z on the first qubit (with possible results −1 or 1), X on the
second qubit, and Z on the third qubit, then the product of the three results must be 1. Therefore,
S2 = {zxz, zxz, zxz, zxz}, where hereafter zxz denotes the event “the result 1 is obtained when Z
is measured on qubit 1, the result −1 is obtained when X is measured on qubit 2, and the result
−1 is obtained when Z is measured on qubit 3”. As another example: if n = 2 and s1 = XZ, then
S1 = {zx, zx}.

We now give an example of a graph representing a Kotzig orbit. Let us consider P3 =
({1, 2, 3}, {{1, 2}, {2, 3}}), the path on three vertices. We construct H(P3). The stabilizer group S
(minus the identity) has the following elements: s1 = g1 = XZI, s2 = g2 = ZXZ, s3 = g3 = IZX,
s4 = g1g2 = Y Y Z, s5 = g1g3 = XIX, s6 = g2g3 = ZY Y , and s7 = g1g2g3 = −Y XY . For all
j = 1, . . . , 23−1, obtain all possible events (i.e., those which can happen with non-zero probability)
when three qubits are prepared in the state |G〉 and three parties measure the observables corre-
sponding to sj . For instance, when j = 1, Alice measures X(1), Bob measures Z(2), and Charlie
does not perform any measurement . Since the three qubits are in state |G〉, there are only two
possible outcomes: Alice obtains X(1) = +1 and Bob obtains Z(2) = +1, denoted as xzI; or Alice
obtains X(1) = −1 and Bob obtains Z(2) = −1, denoted as xzI. For j = 2, the only events that can
occur are zxz, zxz, zxz, and zxz. The other events for the remaining j’s are obtained in a similar
way. Now, let us construct the graph H(P3): the vertices represent possible events; two vertices
are adjacent if and only events are exclusive (e.g., xzI and xIx). Notice that each sj of weight wj
generates 2wj−1 vertices. A drawing of H(P3) is in Fig. 1.

Each H(G) can be interpreted as in [7]. Every graph is in fact associated to an NC inequality
and is constructed by expressing the linear combination of joint probabilities of events in the NC
inequality as a sum S. For a graph in [7], an event in S is represented by a vertex and exclusive
events are represented by edges. Constructing such a graph from the inequality is straightforward,
when the absolute values of the coefficients in the linear combination are natural numbers (which,
to our knowledge, is always the case for all relevant NC inequalities). As already mentioned in the
introduction, this graph-theoretic framework can be used to single out games with ad hoc quantum
advantage and quantum correlations with ad hoc degree of contextuality (see [23, 1], respectively).

3.1 Local complementation orbits

If we apply the method to graphs G and G′ in the same orbit under local complementation [16, 6]
then we obtain the same graph H. The reason is that the graph states |G〉 and |G′〉 share the same
set of perfect correlations (up to relabeling), so also share the same graph in which all possible
exclusive events are adjacent.

This paper constructs H(G) from G, as described earlier, where each of the 2n − 1 operators,
sj, generated by G, in turn generates a clique of size 2wj−1 in H, where wj is the weight of operator
sj. In this section, we present a classification of all H(G) from all graphs G for n < 7. This
classification is greatly simplified by the fact that if two graphs, G and G′, are in the same local
complementation (LC) orbit, then H(G) = H(G′). So we need only classify for one representative
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Figure 1: The graph H(P3) associated to the path on three vertices, P3, consists of two connected
components: the upper component in the drawing is CS, the complement of the Shrikhande graph
[31]; the lower component is Ci8(1, 3), the 6-vertex (1,3)-circulant graph. We have α(CS) = 3,
ϑ(CS) = α∗(CS) = 4, α[Ci8(1, 3)] = ϑ[Ci8(1, 3)] = α∗[Ci8(1, 3)] = 3. Therefore, α(H(P3)) = 6,
while ϑ(H(P3)) = α∗((P3)) = 7.

from each orbit. A choice of representatives for n = 2, . . . , 6, for connected graphs only, are listed
in the second column of table 1.

The action of local complementation on vertex v of graph G to yield graph G′ can be realised,
in the context of graph states, by a specific local unitary action:

G′ = Gv

m m
|G′〉 = ω7T (v)N (v)

∏

i∈Nv
T (i)|G〉,

(11)

where N = 1√
2

(

1 i
1 −i

)

, T =

(

1 0
0 i

)

, and ω = e
7πi
4 .

Here, S = {sj , j = 1 . . . 2n−1} is the stabilizer group associated with the graphG, where we omit
s0 for convenience. Similarly, let S′ = {s′j , j = 1 . . . 2n − 1} be the stabilizer group associated with

G′ = Gv. We show how to obtain S′ from S. Let sj = (−1)cj
∏n
k=1O

(k)
j , where Oj ∈ {I,X,Z, Y },

and cj ∈ {0, 1}.
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Define the mapping Lv : {I,X,Z, Y } → {I,X,Z, Y } as follows:

Lv : X(k) → X(k), Z(k) → Y (k), Y (k) → Z(k), k = v

X(k) → Y (k), Z(k) → Z(k), Y (k) → X(k), k ∈ Nv

I → I,X → X,Z → Z, Y → Y, otherwise.

(12)

Moreover, define yv(sj) = |{k | O(k)
j = Y (k) and k ∈ v ∪ Nv}|. In words, yv(sj) is the total

number of Y matrices at tensor positions v ∪ Nv of sj.

Lemma 2 The action of LC at vertex v of G maps G to G′ and S to S′, where

s′j = (−1)cj+yv(sj)
n
∏

k=1

Lv(O(k)
j ), j = 0 . . . 2n − 1. (13)

This action is a permutation, (I)(X)(ZY ), of the Pauli matrices at tensor position v of each sj and
a permutation, (I)(Z)(XY ), of the Pauli matrices at tensor positions in Nv of each sj, followed by
a global multiplication by (−1)yv(sj).

For example, consider the graph G with two edges {1, 2} and {1, 3}. Then G′ = G1 is the graph
with edges {1, 2}, {1, 3}, {2, 3} (so the star ST3 and the complete graph K3 are in the same Kotzig
orbit). We have that S(G) = {XZZ,ZXI, Y Y Z,ZIX, Y ZY, IXX,−XY Y } and that
S(G1) = S′ = {XZZ,ZXZ, Y Y I, ZZX, Y IY, IY Y,−XXX}. For example sj = Y Y Z is mapped
to s′j = (−1)y1(sj)ZXZ = ZXZ, where v = 1, Nv = {2, 3}, and y1(sj) = 2 as Y occurs at tensor
positions 1 and 2 of sj, where 1, 2 ∈ v ∪Nv.

Proof. We use (11). For vertex v we replace U with ω7TNUN †T †ω, for each of U ∈ {X,Z, Y }
to obtain {X,Y,−Z}. Similarly, for vertices in Nv we replace U with ω7TUT †ω, for each of
U ∈ {X,Z, Y } to obtain {Y,Z,−X}.

Theorem 3 Let GL be the Kotzig orbit of graphs generated by the action of successive local com-
plementation on G. Then

H(G′) = H(G′′), ∀G′, G′′ ∈ GL. (14)

Proof. Every vertex in H(G) represents a measurement, sj, of |G〉, combined with a certain
measurement result, as specified by the bars under x, y, and z, as appropriate. This measurement
is equivalent to a measurement, s′j of |G′〉, where s′j , |G′〉, and the new measurement results are
obtained from sj and |G〉 by the same local unitary transform, namely the transform in (11). Since
the two measurement scenarios are equivalent, then the edge relationship between vertices in H(G)
is preserved in H(G′), i.e., H(G) = H(G′). The theorem is then extended to any two G′, G′′ ∈ GL
as G′′ can be obtained from G′ by a series of local complementations.

Proposition 3 implies that we only have to classify for one representative member, G, (arbitrarily
chosen) of each Kotzig orbit, GL, of n-vertex graphs. Table 1 classifies, computationally, graphs
H(G) = (V H , EH) for n = 2, . . . 6 from G = (V,E), where |GL| is the size of the Kotzig orbit of G
up to re-labeling (graph isomorphism).
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4 Parameters

Theorem 4 Let H be a graph representing a Kotzig orbit. Then, for n > 2,

α(H) < ϑ(H) = α∗(H) = 2n − 1. (15)

We firstly give an intuition of the statement, explaining how the Theorem can be seen as a
consequence of the results in [7, 15]. A formal and stand-alone proof will follow later in this
section. Let |G〉 be the graph state with corresponding graph G. It was shown in [15] that
the sum of the elements of the stabilizer group of |G〉, ∑2n−1

j=1 sj is a Bell operator such that
∑2n−1

1 sj|G〉 = (2n − 1)|G〉 and max |〈S〉| < 2n − 1 when restricting to classical states (where S
is the stabilizer group defined earlier). In words, the graph state |G〉 violates the corresponding
Bell inequality up to its algebraic maximum. This fact together with [7, Equation 6] enforces that
α(H) < ϑ(H) and ϑ(H) = α∗(H) = 2n − 1. The construction in Definition 1 simply transforms
the Bell operator, originally written as a sum of mean values, into a sum of probabilities of events,
in order to construct the graph associated with the exclusivity structure.

The statement, therefore, combines known facts from quantum information in a novel way in
order to prove a purely graph theoretical result.

The proof of Theorem 4 requires the following definition:

Definition 5 (Canonical orthogonal representation) Let H = (V,E) be a graph representing

a Kotzig orbit. Let S(i,j) =
(

s
(1)
(i,j), s

(2)
(i,j), . . . , s

(n)
(i,j)

)

be the event at vertex (i, j) ∈ V (H), where

i = 1 . . . 2n − 1, j = 1 . . . 2wi−1, and s
(k)
(i,j) ∈ {I, x, x, y, y, z, z}, for each k = 1, 2, . . . , n. Let |s(k)(i,j)〉

be defined as follows:

s
(k)
(i,j) x x y y z z I

|s(k)(i,j)〉 |+〉 |−〉 |y+〉 |y−〉 |0〉 |1〉 |ψ〉
. (16)

Here, |ψ〉 is an arbitrary ray in C
2 and |y+〉, |y−〉 are the eigenvectors of the Pauli matrix Y with

eigenvalue +1 and −1, respectively. The canonical orthogonal representation of H is the set of

vectors {|s(i,j)〉 := |s(1)(i,j)〉 ⊗ |s(2)(i,j)〉 ⊗ · · · ⊗ |s(n)(i,j)〉 : (i, j) ∈ V (H)}.

For example, in H(P3) (see Fig. 1), the element of the canonical orthogonal representation of
the vertex labeled by xIx is |−〉 ⊗ |ψ〉 ⊗ |−〉. Notice that if |ψ〉 is chosen to be non-orthogonal to
any of the vectors |+〉, |−〉, . . . , |1〉 then the representation is faithful.

Proof of Theorem 4. Let H = H(G) be a graph representing a Kotzig orbit of a graph
G. The proof is structured in three parts: (1) we prove that ϑ(H) ≥ 2n − 1; (2) we prove that
α∗(H) ≤ 2n − 1; (3) finally, we prove that α(H) < 2n − 1. The first two parts together prove that
ϑ(H) = α∗(H) = 2n − 1, since ϑ(G) ≤ α∗(G), for any graph G (see, e.g., [7]). We begin with the
first part:

(1) It follows directly from Eq. (3) that
∑2n−1

i=1 〈G|si|G〉 = 2n−1. We know that the eigenvectors
with eigenvalue +1 of each operator si are in one-to-one correspondence with the vertices of a clique
in H: |s(i,1)〉, |s(i,2)〉, . . . , |s(i,2wi−1)〉. These are elements of the canonical orthogonal representation

of H. From the definition of the stabilizer group, for all si ∈ S and for all eigenvectors |s(i,j)〉
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(j = 1, 2, . . . , 2wi−1) with eigenvalue −1, we have 〈s(i,j)|G〉 = 0, because |G〉 is in the +1 eigenspace.
Now, let si =

∑

j λij |s(i,j)〉〈s(i,j)| be an Hermitian eigendecomposition of si. Thus,

2n − 1 =

2n−1
∑

i=1

〈G|si|G〉 (17)

=

2n−1
∑

i=1

∑

j

λij〈G|s(i,j)〉〈s(i,j)|G〉 (18)

=

2n−1
∑

i=1

∑

j:λij=1

〈G|s(i,j)〉〈s(i,j)|G〉 (19)

=

2n−1
∑

i=1

∑

j:λij=1

|〈G|s(i,j)〉|2 (20)

≤ ϑ(H), (21)

where the inequality in the last line follows because a canonical orthogonal representation of H
together with the state |G〉 represents a feasible solution for the semidefinite formulation of the
Lovász number in Eq. (1).

(2) From the linear programming formulation of the fractional packing number (see Eq. (2)),
it is easy to see that a partition of the set of vertices into k cliques gives an upper bound to α∗(H).
To see this choose one vertex, say i, per clique and set its weight wi = 1. We get a partition of H
into 2n − 1 cliques if we consider the events associated with each si.

(3) We use an argument very similar to [15, Lemma 1 and Theorem 1]. If the number of
vertices of G is two then the result does not hold as α(H) = 22 − 1 (by direct calculation). Each
connected graph with more than two vertices has a subgraph with three vertices. For each of those
we can see (also by direct calculation; see Table 1 of section 3.1) that α(H) < 7. Therefore, we
just need to show that if G′ is a subgraph of G with n′ vertices and α(H ′) < 2n

′ − 1, where H ′ is
the representative of the Kotzig orbit of G′, then α(H) < 2n − 1 for n > 2. Notice that S′, the
stabilizer group of G′, is a subset of S. Therefore, in the graph H we find cliques associated with
S′, but containing slightly different events. For each s′i ∈ S′, the corresponding si ∈ S has the same
structure, with eventually some additional Z operators. Let H̃ be the subgraph of H induced by
the vertices in cliques associated with the elements of S′. We need to show that if in H ′ there is
no vertex per clique to form a maximal independent set then neither are there in H̃. Therefore,
α(H) < 2n − 1. Towards a contradiction, suppose there is an independent set L of H̃ such that
|L| = 2n

′ − 1. We distinguish two cases:

• If the events at the vertices in L do not have any z element then we can map them to an
independent set in H ′ of size 2n

′ − 1, just by ignoring the additional Z operators. This
contradicts the hypothesis that α(H ′) < 2n

′ − 1.

• If the events at the vertices in L do have z elements then we can find another independent set
J with the same cardinality such that the events at its vertices do not have any z element. We
can find J as follows. It is easy to check that an operator si has the form O(1) · · ·Z(ℓ) · · ·O(n)

if and only if it has an odd number of X(k) and Y (k), with {ℓ, k} ∈ E(H). Therefore,
complementing z(ℓ) and all occurrences of X(k) and Y (k) in the events at the vertices of the
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independent set L, we obtain the events in J with the desired properties, and so we are back
to the previous case.

The Bell inequalities described by the graph H are exactly the same as in [15], but in the form
of a pseudo-telepathy game.

Definition 6 For any graph G on n vertices, let us define an n-player game for G as follows. The
input set for each player is {X,Y,Z, I} and the output set is {+1,−1}. The set of valid inputs is
the set of elements of the stabilizer group of |G〉. The players win on input si ∈ S if and only if
the sign of the product of their outputs equals the sign of si.

Corollary 7 The graph game for G is a pseudo-telepathy game.

Proof. It is easy to see that if the players share the graph state |G〉 and each player performs the
measurement corresponding to her input, then they always win. On the other hand, we show that
a classical strategy for the game can be used to construct an independent set of H = H(G) and
viz.

We now consider the first direction. If there exists a strategy which answers correctly to k
questions then there exists an independent set with k elements. A classical strategy is w.l.o.g. a
set of functions for each player from the input set to the output set. Therefore, for all the winning
inputs si, there will be a single output (a1, . . . , an), corresponding to a vertex of H. It is easy to
verify that there cannot be an edge between any pair of these vertices. Since the strategy wins on
k input pairs, the independent set has k elements.

For the other direction, we show that if there exists an independent set L of H having size k,
then there exists a strategy for the game on G that answers correctly to at least k of the 2n − 1
questions. By the structure of H, the independent set L cannot contain vertices i, j such that, for

the same input x, a
(i)
ℓ 6= a

(j)
ℓ for some ℓ ∈ {1, . . . n}. Hence, we have the following strategy: on

input x, each player outputs the unique a determined by the vertices in the independent set. The
size k of the independent set implies that the players answer correctly to at least k input pairs.

5 Examples

Proposition 8 Let Kn be the complete graph on n vertices. Then,

α(H(Kn)) =

{

2
n−3

2 + 3 · 2n−2 − 1, for n odd;

2
n
2
−1 − 2n−2 + 2n − 1, for n even.

(22)

Proof. As said before, H(G) can be associated to the Bell inequality in which the Bell operator is
the sum of all stabilizer operators of |G〉 [15]. The first observation is that the graph state associated
to G = Kn is the n-qubit Greenberger-Horne-Zeilinger (GHZ) state [16]. The second observation
is that, in that case, the Bell inequality corresponding to H(G) is the sum of a well-known Bell
inequality maximally violated by the n-qubit GHZ state [22] plus a trivial Bell inequality not
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violated by quantum mechanics [5]. For example, for n = 3, the Bell inequality corresponding to
H(K3) is β3 = µ3 + τ3 ≤ 2 + 3, where

µ3 = 〈XZZ〉+ 〈ZXZ〉+ 〈ZZX〉 − 〈XXX〉, (23a)

τ3 = 〈Y Y I〉+ 〈Y IY 〉+ 〈IY Y 〉; (23b)

recall that 〈XZZ〉 denotes the mean value of the product of the outcomes of the measurement of X
on qubit 1, Z on qubit 2, and Z on qubit 3. The inequality µ3 ≤ 2 is the well-known Bell inequality
introduced in [22], while τ3 ≤ 3 is a trivial inequality not violated by quantum mechanics [15, 5].
The sum β3 has 7 terms, with four terms generating cliques of size 23−1 and the other three terms
generating cliques of size 22−1. Then, we can see that α(H(K3)) is equal to the maximum number
of quantum predictions that a deterministic local theory can simultaneously satisfy. By quantum
predictions we mean: XZZ = 1, ZXZ = 1, ZZX = 1, XXX = −1, IY Y = 1, Y IY = 1, and
IY Y = 1. In this case, the maximum number of quantum predictions that a deterministic local
theory can simultaneously satisfy is 6: 3 out of XZZ = 1, ZXZ = 1, ZZX = 1, XXX = −1, plus
the other 3 (IY Y = 1, Y IY = 1, and IY Y = 1). Equivalently, α(H(K3)) is the maximum quantum
violation, denoted by βQM, minus the minimum number of quantum predictions which cannot be
satisfied by a deterministic local theory. Since the minimum number of quantum predictions which
cannot be satisfied by a deterministic local hidden variable theory is βQM minus the maximum value
of the Bell operator for a deterministic local theory, denoted by βLHV, and all of them divided by
two, then

α(H(Kn)) =
βQM(n) + βLHV(n)

2
. (24)

This expression is very useful since, for the Bell inequalities for the n-qubit GHZ states [15],

βQM(n) = µQM(n) + τQM(n), (25)

βLHV(n) = µLHV(n) + τLHV(n).

The interesting point is that the values of µQM(n) and µLHV(n) are well-known [22], and

τQM(n) = τLHV(n) = βQM(n)− µQM(n) (26)

(Recall that βQM(n) = 2n − 1.) For n odd, µQM(n) = 2n−1, and µLHV(n) = 2(n−1)/2; for n even,
µQM(n) = 2n−1 and µLHV(n) = 2n/2. Inserting these numbers in Eq. (25) and then in Eq. (24),
we obtain the statement.

6 Zero-error capacity

In this section, we show that for every graph G on n vertices the graph H(G) has zero-error
entanglement-assisted capacity 2n − 1. Theorem 4 states that α(H(G)) < 2n − 1. The result gives
a separation between c∗0(H(G)) and c0(H(G)). It is known that for all graphs, the Lovász number
upper bounds the entanglement-assisted Shannon capacity [12]. Therefore, c∗0(H(G)) saturates its
upper bound.

There are few (and very recently discovered) classes of graphs for which this separation is known.
For example, one is based on the Kochen-Specker theorem [9] and other ones are based on variations
of orthogonality graphs [4, 21]. Here, we present a new family of graphs and a construction method,
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which can also be interpreted as a graph theoretic technique of independent interest. The most
important point is that every graph gives rise to a member of the family through our construction.
This property opens directions for future studies, for example, identifying subclasses or hierarchies
where the separation is large or is easy to quantify.

Theorem 9 Let H be a graph from a Kotzig orbit. Then c∗0(H) = 2n − 1.

Proof. From Theorem 4 and [12, Corollary 14] we obtain the upper bound

c∗0(H(G)) ≤ ϑ(H(G)) = 2n − 1.

We need to show a matching lower bound on c∗0(H(G)). We do this by exhibiting a strategy for
entangled parties to send one out of 2n − 1 messages in the zero-error setting through a channel
with confusability graph H. The strategy is as follows. Alice and Bob share a maximally entangled
state of local dimension 2n(n− 1). Observe that H can be partitioned into 2n − 1 cliques, one for
each element of the stabilizer group. The clique corresponding to si ∈ S consists of the vertices
associated with the mutually exclusive events in the set Si; we denote by Si the set of events related
to si as in Section 3. For each i ∈ {1, 2, . . . , 2n − 1}, Alice performs a projective measurement on
her part of the shared state. The outcomes of the measurement are the elements of Si. Since
the parties share a maximally entangled state, Alice’s strategy has to satisfy two properties to be
correct:

1. For each i ∈ {1, 2, . . . , 2n − 1}, the projectors associated to elements of Si form a projective
measurement (because Alice needs to perform a projective measurement for each message i
to be sent).

2. For each edge {u, v} ∈ E(H(G)), projectors associated with u and v must be orthogonal (to
satisfy the zero-error constraint).

The next step is to exhibit projectors in Alice’s strategy and show that both properties are
satisfied. In what follows we use the notation in Definition 5.

We begin by examining the case where si does not contain any identity operator. In this case,
each projective measurement will consist of projectors of rank 1 acting on C

2n(n−1). Order the
elements of Si arbitrarily. Let si be of the form O(1) · · ·O(n), where O(k) ∈ {X,Y,Z}. Define for

each s
(k)
(i,j) the occurrence number ν(i, j, k) based on a chosen ordering: if the same eigenvector of

O(k) occurs in s
(k)
(i,j) for the ℓ-th time in the chosen ordering then ν(i, j, k) = ℓ. Construct projectors

starting from the canonical orthogonal representation and an ancillary space of dimension n − 1.

For s
(k)
(i,j), let

P(i,j) =
n

⊗

k=1

|s(k)(i,j)〉〈s
(k)
(i,j)| ⊗ |ν(i, j, k)〉〈ν(i, j, k)|. (27)

We show that Property 1 is satisfied. These projectors are mutually orthogonal for all vertices (i, j).
We need to prove that their sum is the identity. From the structure of the events in Si we observe
that, for each Ok, the eigenvectors with eigenvalue +1 (and −1) occur in half of the elements of Si.
Therefore, in the construction of the projectors, a pair of ±1 eigenvectors for each Ok is summed
for each ancillary subspace. The sum of each subspace is the identity. Hence, the total sum is the
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identity for the whole space. We show now that also Property 2 is satisfied. If two projectors are
in the same clique, orthogonality follows from the discussion above. Consider now two projectors
of adjacent vertices from two different cliques that project to the same ancillary subspace. Since
we started from an orthogonal representation, those projectors are orthogonal.

Now, consider the more general case where si can contain identity operators. Let si be of the
form O(1) · · ·O(n), where O(k) ∈ {I,X, Y, Z}. We assume that si has weight w. First consider the
case where the first w operators are different from identity, O(1), O(2), . . . , O(w) 6= I. To construct
the projective measurement for Si, we initially construct the projectors for the first w operators
as in the previous case. We obtain rank-1 projectors acting on C

2w(w−1). Choose a basis for
C
2n(n−1)−2w(w−1) and let the projectors be

Q(i,j) =

2n(n−1)−2w(w−1)
∑

ℓ=1

P(i,j) ⊗ |ℓ〉〈ℓ|. (28)

This ensures that the dimensions match and that Properties 1 and 2 hold. To finish the proof, we
need to prove the general case where identity operators are in arbitrary positions and not all at the
end. In this case, split the construction into subspaces so that each subspace has all the identities
at the end. Obtain the projectors for the subspaces as described above and then obtain the final
projectors by making tensor products of the projectors for the subspaces.

We immediately have the following corollary from Theorems 4 and 9 and the Lovász number
upper bound on Θ∗.

Corollary 10 Let H be a graph from a Kotzig orbit. Then, c0(H) < c∗0(H) = Θ∗(H).

7 Classification

Let λH be the number of connected components of H - we follow λH by the number of vertices
in each connected component, e.g., λH = 2[6, 16] means that there are two connected compo-
nents, one with 6 vertices and one with 16 vertices. The degree sequence of H, DH , is written as
a, b/c, d/e, f/ . . ., meaning that there are b vertices of degree a, d vertices of degree c, f vertices of
degree e, etc.

For each Kotzig orbit, we wish to compute the independence number, α(H). This is also listed in
Table 1. Each stabilizing operator of S is multiplied by a global coefficient +1 or −1. For instance,
for the operators of H(P3) (see Fig 1 and associated discussion), there are six ‘+1’ coefficients
and one ‘−1’ coefficient. If one selects one vertex from each of the 6 cliques in H generated by
the 6 operators of this example which have a ‘+1’ coefficient, then one can be sure that they are
mutually unconnected in H. (More specifically, one can select for each operator the event where
all the measurements gave outcome +1. This event is always present if the operator has coefficient
+1.) So α(H) ≥ 6, i.e. the number of ‘+1’ coefficients in S for a given G yields a lower bound on
α(H), for each G. This idea leads to the following lemma. Let β(G) be the number of operators in
S with a ‘−1’ coefficient where, in general, β(G) is not an invariant of the Kotzig orbit of G. Let
βmin(G

L) = min{β(G), G ∈ GL} and βmax(G
L) = max{β(G), G ∈ GL}, where GL is the set of

graphs in the Kotzig orbit of G.

Lemma 11 Given a graph G, we have

α(H) ≥ 2n − 1− βmin(G
L) ≥ 2n − 1− β(G). (29)
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Table 1 lists both the computed independence number, α(H), for each H, and the range of
lower bounds, βmin(G

L)−βmax(GL), on α(H). One observes that the lower bound is often tight but
not always. For example, for the graph G = 15, 25, 34, 45, computations show that βmin(G

L) = 6
and βmax(G

L) = 12. So α(H) ≥ 25−1−6 = 25. In this case the bound is tight as α(H) is computed
to be 25.

The symmetrical form of Kn makes it relatively easy to prove that, for n > 2, H(STn) = H(Kn)
is comprised of two disjoint subgraphs, and the results of section 5 allow us to identify these two
disjoint subgraphs, i.e. H(Kn) = H(µn) +H(τn), where H(µn) has 2

2n−2 vertices and H(τn) has
∑⌊n

2
⌋

i=1 2
2i−1

(n
2i

)

vertices - (see the equations in (24) for the case of n = 3). It is likewise easy to show

that β(Kn) =
∑⌊n+1

4
⌋

i=1

( n
4k−1

)

, and therefore we know that α(H(Kn)) ≥ 2n − 1−∑⌊n+1

4
⌋

i=1

( n
4k−1

)

.

The evaluation of β(G) can be translated to the following problem.

Lemma 12 Define the Boolean function, fG(z1, z2, . . . , zn) : F
n
2 → F2 such that

fG(z1, z2, . . . , zn) =
∑

{i,j},{j,k}∈E(G),i<j<k

zizjzk. (30)

Let wt(f) be the weight of f , defined to be the number of ones in its truth-table). Then,

β(G) = wt(fG). (31)

Proof. (Sketch) Consider the subgraph of G at vertices i, j, k, where we assume {i, j}, {j, k} ∈
E(G). One can confirm that s = gigjgk is an operator with a global coefficient of −1 and we
can represent this in fG by the cubic term zizjzk. Moreover this must be true for each such
pair of edges in G. Likewise consider the five vertices i, j, k, l,m in G where we assume that
{i, j}, {j, k}, {k, l}, {l,m} ∈ E(G). One can confirm that s = gigjgkglgm is an operator with a
global coefficient of −1, and the operators s′ = gigjgk, s

′′ = gjgkgl, and s′′′ = gkglgm also have
global coefficients equal to −1. We represent this situation in fG by the sum of the cubic terms
zizjzk + zjzkzl+ zkzlzm. The lemma follows from an elaboration of this argument. Specifically the
global coefficient of s =

∏n
j=1 g

zj
j is (−1)fG(z1,z2,...,zn).

Lemma 12 allows us to obtain an equation for β(Cn). We evaluate β(Cn) by computer for n =
3, 4, 5, 6, 7, 8, . . . to be 1, 4, 6, 18, 36, 80, . . ., respectively and use [26] to find the sequence A051253
and the reference [10] where a recurrence formula is provided for β(Cn) = wt(fG) = wt(z1z2z3 +
z2z3z4 + . . . + zn−2zn−1zn + zn−1znz1 + znz1z2), namely

β(Cn+3) = 2(β(Cn+1) + β(Cn) + 2n−1). (32)

We also offer the following conjecture, based on the results of Table 1.

Conjecture 13 The graph H(G) is always connected except when G is in the Kotzig orbit of the
star graph, STn, in which case H(G) splits into 3 disjoint components for n = 2, and 2 disjoint
components for n > 2.
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Table 1: H(G) for n = 2, . . . , 6

n G |GL| |V H | λH α(H) βmin(G
L) − βmax(G

L) DH

2 12 1 6 3[2, 2, 2] 3 0 1, 6/

3 12, 13 2 22 2[6, 16] 6 1 − 1 3, 6/9, 16

4 14, 24, 34 2 84 2[20, 64] 13 4 − 4 11, 12/13, 2/17, 6/43, 64

14, 23, 24, 34 4 76 1 13 2 − 4 15, 4/25, 4/27, 4/29, 32/35, 32

5 15, 25, 35, 45 2 316 2[60, 256] 25 10 − 10 33, 20/45, 10/49, 30/195, 256/

15, 25, 34, 45 6 280 1 25 6 − 12 49, 6/51, 2/89, 12/91, 12/107, 24/129, 72/133, 24/159, 128/

15, 24, 25, 34, 35 10 268 1 25 6 − 12 55, 4/99, 16/101, 4/103, 4/107, 16/117, 64/129, 32/137, 32/139, 32/147, 64/

12, 13, 24, 35, 45 3 256 1 25 6 − 10 99, 40/117, 120/135, 96

6 16, 26, 36, 46, 56 2 1206 2[182, 1024] 51 20 − 20 101, 30/143, 30/147, 90/151, 2/167, 30/841, 1024/

16, 26, 36, 45, 56 6 1030 1 51 16 − 28 145, 12/189, 2/207, 2/211, 6/299, 24/301, 24/343, 4/351, 28/

383, 32/455, 32/459, 96/587, 256/665, 512/

16, 26, 35, 45, 46 16 976 1 49 14 − 30 169, 6/207, 2/349, 12/351, 12/357, 24/383, 8/411, 48/449, 8/

453, 24/471, 32/473, 16/477, 48/481, 48/483, 48/533, 128/557, 128/

565, 64/567, 64/611, 256/

15, 26, 36, 45, 56 4 1044 1 49 14 − 30 173, 12/321, 36/323, 36/479, 192/541, 64/545, 192/679, 512/

15, 26, 35, 36, 45, 46 5 958 1 51 20 − 28 213, 6/355, 32/395, 12/397, 12/441, 96/515, 384/547, 192/

549, 192/559, 4/567, 28/

16, 24, 35, 46, 56 10 958 1 51 12 − 28 181, 4/213, 2/323, 4/325, 4/347, 8/349, 8/379, 32/401, 64/455, 8/

459, 24/477, 32/487, 64/489, 64/515, 256/593, 256/599, 32/603, 96/

15, 26, 34, 35, 46, 56 25 940 1 49 14 − 30 187, 4/337, 4/339, 4/357, 16/379, 16/383, 32/431, 64/435, 32/

469, 32/471, 32/493, 32/495, 32/497, 128/521, 128/529, 64/531, 64/

575, 128/601, 64/603, 64/

16, 24, 26, 35, 36, 45 21 922 1 47 16 − 28 193, 2/355, 16/357, 16/405, 16/413, 64/425, 64/441, 8/475, 32/

477, 32/479, 64/503, 256/511, 32/513, 32/557, 256/563, 8/567, 24/

14, 25, 36, 45, 46, 56 5 990 1 47 20 − 28 197, 6/355, 12/357, 12/433, 192/473, 96/487, 8/491, 24/579, 192/

581, 192/625, 256/

12, 13, 25, 36, 45, 46 16 904 1 45 18 − 30 355, 32/395, 24/407, 96/431, 48/485, 384/539, 192/565, 64/567, 64/

12, 13, 14, 23, 25, 36, 45, 46, 56 2 936 1 45 22 − 26 427, 360/571, 576/
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The conjecture is verified, computationally, for n = 2, 3, 4, 5,. A potential way to prove it is to
try to construct two connected components by adding codewords and show that this forces one to
be in the STn orbit.

By using code-theoretic techniques, we can lower and upper bound the size of cliques in H(G).
Remember that S is the stabilizer group generated by G, comprising 2n − 1 operators, sj, and
that wj = w(sj) is the weight of operator sj. Let wmax(S) = maxsj∈S(w(sj)) and wmin(S) =

minsj∈S(w(sj)). We have that wmax(S) = n, for any S, because, for any graph G, then
∏n−1
i=0 gi is

always an operator of weight n. It is also well-known that the stabilizer group for a graph state
characterizes a self-dual additive code over F4 of length n whose minimum distance, dH , is given
by wmin(S) [11]. So, in subsequent discussions, we refer to wmin(S) and wmax(S) by dH and n,
respectively. Let C(H) be the set of maximal cliques in H, where each c ∈ C(H) is a subset of V (H),
the set of vertices of H, over which there is a clique in H. Let ω̃(H) and ω(H) be the minimum
and maximum size of a maximal clique, respectively, in graph H. So ω̃(H) = min{|c| : c ∈ C(H)}
and ω(H) = max{|c| : c ∈ C(H)}. Recall that ω(H) denotes the clique number of H.

Theorem 14 For H(G), the graph generated from the stabilizer set S,

ω̃(H) ≤ |c| ≤ ω(H), ∀c ∈ C(H),
where ω̃(H) = 2dH−1, ω(H) = 2n−1,
and both upper and lower bounds are tight.

(33)

Proof. Consider an arbitrary set of two operators, R = {IXZY Z,−Y XZY Y }. Then both opera-
tors have XZY at their second, third, and fourth tensor positions. We say that the two operators
have a set overlap of XZY and this overlap is of size µR = 3. Let R ⊂ S and consider an arbi-
trary splitting of the assignments to XZY of xzy, xzy, xzy, xzy, xzy for operator IXZY Z and
xzy, xzy, xzy for operator −Y XZY Y . Then H(G) contains a size-11 clique over the vertices
Ixzyz, Ixzyz, Ixzyz, Ixzyz, Ixzyz and yxzyy, yxzyy, yxzyy, yxzyy, yxzyy, yxzyy. It is straightfor-
ward to verify that this clique cannot be extended by adding another vertex from the subset of ver-
tices inH originating from the operators in R. More generally, any splitting of the 23 assignments to
XZY is possible, each giving a different clique. For our example, the operator IXZY Z contributes
5 ·2w(IXZY Z)−µR−1 vertices to the clique and operator −Y XZY Y contributes 3 ·2w(−Y XZY Y )−µR−1

vertices to the clique. So this clique is of size 2−µR−1(5.2w(IXZY Z) + 3 · 2w(−Y XZY Y )) = 11. It is a
maximal clique if and only if there is no R′ ⊂ S such that R ⊂ R′ and µR′ = µR.

If, instead, R = {IXZY Z,−Y XZY Y,XXZXI}, then the set overlap is reduced to XZ and
of size µR = 2. As an example, consider just the partition where xz is assigned to operator
IXZY Z, xz, xz to operator −Y XZY Y , and xz to operator XXZXI. Then this assignment
identifies the vertices Ixzyz, Ixzyz, and yxzyy, yxzyy, yxzyy, yxzyy, yxzyy, yxzyy, yxzyy, yxzyy,

and xxzxI, xxzxI. The operator IXZY Z contributes 1 · 2w(IXZY Z)−µR−1 vertices to the clique,
operator −Y XZY Y contributes 2 ·2w(−Y XZY Y )−µR−1 vertices to the clique, and operator XXZXI
contributes 1·2w(XXZXI)−µR−1 vertices to the clique. So this clique is of size 2−µR−1(1·2w(IXZY Z)+
2 · 2w(−Y XZY Y ) +1 · 2w(XXZXI)) = 12. It is a maximal clique if and only if there is no R′ ⊂ S such
that R ⊂ R′ and µR′ = µR.

Therefore, a strategy to find all maximal cliques in H(G) is to find all subsets R ⊂ S where
µR > 0, and such that there is no R′ ⊂ S where R ⊂ R′ and µR′ = µR. Then for each of
these subsets, R, and for each |R|-wise ordered partition, p = {asj | sj ∈ R} of 2µR , where
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∑

sj∈R asj = 2µR , and for each assignment of the integers in set {0, 1, . . . , 2µR − 1} according to
partition p, there is associated a maximal clique, KR,p, of size,

|KR,p| = 2−µR−1
∑

sj∈R
asj2

w(sj). (34)

Let w−(sj) = min{w(sj) | sj ∈ R}. Then, for the specific sj ∈ R where w(sj) = w−(sj) we can
minimise the clique size by assigning aj = 2µR . So a special case of the above equation identifies a

maximal clique of minimum size 2w
−(sj)−1. Similarly let w+(sj) = max{w(sj) | sj ∈ R}. Then, for

the specific sj ∈ R where w(sj) = w+(sj) we can maximise the clique size by assigning aj = 2µR .

A special case of the above equation identifies a maximal clique of maximum size 2w
+(sj)−1. We

arrive at both ω̃(H) = 2dH−1 and ω(H) = 2n−1 by observing that all members of S occur in at
least one R identified.

In a step towards enumerating the maximal cliques of H(G), we first enumerate the number of
maximal cliques of size given by (34), as generated by a fixed R and |R|-wise ordered partition, p.
Let Rk ⊂ R satisfy Rk = {sj ∈ R | j < k}, and let bk =

∑

sj∈Rk
aj .

Lemma 15 For fixed R and p, the graph H(G), contains #KR,p maximal cliques of size |KR,p|,
where

#KR,p =
∏

sj∈R

(

2µR−bj

aj

)

. (35)

Proof. The lemma follows immediately by counting the number of ways that one can assign to
the integers an |R|-way partition of 2µR . For instance, for µR = 2 and partition {1, 2, 1}, one
can assign the integers as {{0}, {1, 2}, {3}}, {{0}, {1, 3}, {2}}, {{0}, {2, 3}, {1}}, {{1}, {0, 2}, {3}},
{{1}, {0, 3}, {2}}, {{1}, {2, 3}, {0}}, {{2}, {0, 1}, {3}}, {{2}, {0, 3}, {1}}, {{2}, {1, 3}, {0}},
{{3}, {0, 1}, {2}}, {{3}, {0, 2}, {1}}, {{3}, {1, 2}, {0}} - in total

(

22

1

)

×
(

22−1
2

)

×
(

22−3
1

)

= 4×3×1 = 12
ways.

Although, in Theorem 14, we have obtained tight lower and upper bounds for the size of the
maximal cliques of H(G) in the general case, in terms of dH , and n, respectively, it remains open to
obtain tight lower and upper bounds for the size of the maximal independent sets of H(G) in the
general case. However we have obtained a lower bound, β(G), on α(H(G)), although this bound
is not tight in general. It also remains open to provide equations for |V H | in the general case.
Given that this paper highlights the gap between α(H(G)) and 2n − 1, it is particularly desirable
to develop equations for α(H(G)) in the general case. Of course, it would be nice to find a formula
linking α(H(G)) and α(G) - however it should be noted that α(G) is not an invariant of the Kotzig
orbit of G.

Acknowledgements We would like to thank Mary Beth Ruskai for asking during the Quantum
Information Workshop at the Centro de Ciencias de Benasque (July 2011) the question that moti-
vated the results: Is there a connection between graph states and the graphs representing exclusivity
structures studied in [7]? We thank the Associate Editor and a referee for the very useful comments
that improved the readability of the paper. AC is supported by the Project No. FIS2011-29400

19



(Spain). Part of this work has been done while AC and SS where visiting the Department of Infor-
matics at the University of Bergen. The financial support of the University of Bergen is gratefully
acknowledged. Part of this work has been done while GS was visiting University College London.
GS is supported by Ronald de Wolf’s Vidi grant 639.072.803 from the Netherlands Organization
for Scientific Research (NWO).

References
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