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Abstract

We derive tight expressions for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the
Minkowski sum, P1 + P2 + P3, of three d-dimensional convex polytopes P1, P2 and P3, as a
function of the number of vertices of the polytopes, for any d ≥ 2. Expressing the Minkowski
sum of the three polytopes as a section of their Cayley polytope C, the problem of counting
the number of k-faces of P1 + P2 + P3, reduces to counting the number of (k + 2)-faces
of the subset of C comprising of the faces that contain at least one vertex from each Pi.
In two dimensions our expressions reduce to known results, while in three dimensions, the
tightness of our bounds follows by exploiting known tight bounds for the number of faces
of r d-polytopes, where r ≥ d. For d ≥ 4, the maximum values are attained when P1,
P2 and P3 are d-polytopes, whose vertex sets are chosen appropriately from three distinct
d-dimensional moment-like curves.
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1 Introduction

We study the Minkowski sum of three d-dimensional convex polytopes, or, simply d-polytopes,
and derive tight upper bounds for the number of its k-faces, for 0 ≤ k ≤ d−1, with respect to the
number of vertices of the summands. Given two convex polytopes P1 and P2, their Minkowski
sum P1 + P2 is the set {p1 + p2 | p1 ∈ P1, p2 ∈ P2}. This definition extends to any number
of summands and also, to non-convex sets of points. The Minkowski sum of convex polytopes
is itself a convex polytope, namely, the convex hull of the Minkowski sum of the vertices of its
summands.

Minkowski sums are widespread operations in Computational Geometry and find applications
in a wide range of areas such as robot motion planning [Lat91], pattern recognition [TRH00],
collision detection [LM04], Computer-Aided Design, and, very recently, Game Theory. They
reflect geometrically some algebraic operations, and capture important properties of algebraic
objects, such as polynomial systems. This makes them especially useful in Computational
Algebra, see e.g., [GS93, Stu96, CLO05].

The geometry of the Minkowski sum can be derived from that of its summands: its normal
fan is the common refinement of the normal fans of the summands (see [Zie95] for definitions and
details). However, its combinatorial structure is not fully understood, partially due to the fact
that most algorithms for computing Minkowski sums have focused on low dimensions (see, e.g.,
[Fog08] for algorithms computing Minkowski sums in three dimensions). The recent development
of algorithms that target high dimensions [Fuk04], has led to a more extensive study of their
properties (see, e.g., [Wei07]).

A natural and fundamental question regarding the combinatorial properties of Minkowski
sums, concerns their complexity measured as a function of the vertices, or the facets of the
summands. A complete answer, in terms of the number of vertices or facets of the summands,
does not yet exist although for certain classes of polytopes the question has been resolved (see
Section 1). Most of the known results offer tight bounds with respect to the number of vertices
of the summands; deriving tight upper bounds with respect to the number of facets seems much
harder. Knowing the complexity of Minkowski sums is crucial in developing algorithms for their
computation, since it allows to quantify their efficiency.

Preliminaries. Let P be a d-polytope; its dimension is the dimension of its affine span. The
faces of P are ∅, P , and the intersections of P with its supporting hyperplanes. The former faces
are called improper while the latter faces are called proper. Each face of P is itself a polytope,
and a face of dimension k is called a k-face. Faces of P of dimension 0, 1, d − 2 and d − 1 are
called vertices, edges, ridges, and facets, respectively.

A d-dimensional polytopal complex, or simply d-complex, C is a finite collection of polytopes
in Rd such that (i) ∅ ∈ C, (ii) if P ∈ C then all the faces of P are also in C and (iii) the
intersection P ∩Q for two polytopes P and Q in C is a face of both. The dimension dim(C) of C
is the largest dimension of a polytope in C. A polytopal complex is called pure if all its maximal
(with respect to inclusion) faces have the same dimension. In this case the maximal faces are
called the facets of C. A polytopal complex is simplicial if all its faces are simplices. Finally, a
polytopal complex C′ is called a subcomplex of a polytopal complex C if all faces of C′ are also
faces of C. For a polytopal complex C, the star of v in C, denoted star(v,C), is the subcomplex
of C consisting of all faces that contain v, and their faces. The link of v, denoted by C/v, is the
subcomplex of star(v,C) consisting of all the faces of star(v,C) that do not contain v.

One important class of polytopal complexes arises from polytopes. More precisely, a d-
polytope P , together with all its faces and the empty set, form a d-complex, denoted by C(P ).
The only maximal face of C(P ), which is clearly the only facet of C(P ), is the polytope P itself.
Moreover, all proper faces of P form a pure (d−1)-complex, called the boundary complex C(∂P ),
or simply ∂P , of P . The facets of ∂P are just the facets of P .
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For a d-polytope P , or its boundary complex ∂P , we can define its f -vector as f(P ) =
(f−1, f0, f1, . . . , fd−1), where fk = fk(P ) denotes the number of k-faces of P and f−1(P ) := 1
corresponds to the empty face of P . From the f -vector of P we define its h-vector as the vector
h(P ) = (h0, h1, . . . , hd), where hk = hk(P ) =

∑k
i=0(−1)k−i

(
d−i
d−k
)
fi−1(P ), 0 ≤ k ≤ d.

Let C be a pure simplicial polytopal d-complex. A shelling S(C) of C is a linear ordering
F1, F2, . . . , Fs of the facets of C such that for all 1 < j ≤ s the intersection, Fj ∩

(⋃j−1
i=1 Fi

)
, of

the facet Fj with the previous facets is non-empty and pure (d−1)-dimensional. In other words,
for every i < j there exists some ` < j such that the intersection Fi ∩Fj is contained in F` ∩Fj ,
and such that F` ∩ Fj is a facet of Fj .

Every pure polytopal complex that has a shelling is called shellable. In particular, the
boundary complex of a polytope is always shellable (cf. [BM71]). Consider a pure shellable
simplicial polytopal complex C and let S(C) = {F1, . . . , Fs} be a shelling order of its facets. The
restriction R(Fj) of a facet Fj is the set of all vertices v ∈ Fj such that Fj \ {v} is contained in
one of the earlier facets.1 The main observation here is that when we construct C according to
the shelling S(C), the new faces at the j-th step of the shelling are exactly the vertex sets G with
R(Fj) ⊆ G ⊆ Fj (cf. [Zie95, Section 8.3]). Moreover, notice that R(F1) = ∅ and R(Fi) 6= R(Fj)
for all i 6= j.

Previous work. The complexity of Minkowski sums depends on the geometry of their sum-
mands. Worst-case tight upper bounds offer the best possible alternative when the geomet-
ric characteristics of a specific instance of the problem are not accounted for. Gritzman and
Sturmfels [GS93] have been the first to derive tight upper bounds for the number of k-faces of
P1 + · · ·+ Pr, namely:

fk(P1 + · · ·+ Pr) ≤ 2

(
m

k

) d−k−1∑

j=0

(
m− k − 1

j

)
, 0 ≤ k ≤ d− 1, d, r ≥ 2,

where m denotes the number of non-parallel edges of P1, . . . , Pr. Equality occurs when Pi are
generic zonotopes, i.e., when each Pi is a Minkowski sum of edges, and the generating edges of
all polytopes are in general position.

Our knowledge of tight upper bounds for fk(P1 + · · · + Pr) as a function of the number
of vertices or facets of the summands is much more limited, while the problem of finding such
tight bounds is far from being fully understood and resolved. Given two polygons P1, P2 in two
dimensions, with n1, n2 vertices (or edges) respectively, their Minkowski sum can have at most
n1 +n2 vertices; clearly, this bound holds also for the number of edges of P1 +P2, and generalizes
in the obvious way for any number of summands (cf. [dBvKOS00]).

In three or more dimensions, Fukuda and Weibel [FW07] have shown what they call the
trivial upper bound : given r d-polytopes P1, P2, . . . , Pr in Rd, where d ≥ 3 and r ≥ 2, we have

fk(P1 + P2 + · · ·+ Pr) ≤ Φk+r(n1, n2, . . . , nr), (1)

where ni is the number of vertices of Pi, 1 ≤ i ≤ r, and

Φ`(n1, n2, . . . , nr) =
∑

1≤si≤ni
s1+...+sr=`

r∏

i=1

(
ni
si

)
, ` ≥ r, si ∈ N.

In the same paper, Fukuda and Weibel have shown that the trivial upper bound is tight for:
(i) d ≥ 4, 2 ≤ r ≤ bd2c and for all 0 ≤ k ≤ bd2c − r, and (ii) for the number of vertices,
f0(P1 + P2 + · · ·+ Pr), of P1 + P2 + · · ·+ Pr, when d ≥ 3 and 2 ≤ r ≤ d− 1. For r ≥ d, Sanyal

1For simplicial faces, we identify the face with its defining vertex set.
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[San09] has shown that the trivial bound for f0(P1 +P2 + · · ·+Pr) cannot be attained, since in
this case:

f0(P1 + P2 + · · ·+ Pr) ≤
(

1− 1

(d+ 1)d

) r∏

i=1

ni <
r∏

i=1

ni.

Karavelas and Tzanaki [KT11] recently extended the range of of d, r and k for which the trivial
upper bound (1) is attained. More precisely, they showed that for any d ≥ 3, 2 ≤ r ≤ d− 1 and
for all 0 ≤ k ≤ bd+r−1

2 c − r, there exist r neighborly d-polytopes P1, P2, . . . , Pr in Rd, for which
the number of k-faces of their Minkowski sum attains the trivial upper bound. Recall that a
d-polytope P is neighborly if any subset of bd2c or less vertices is the vertex set of a face of P .
Tight bounds for f0(P1 +P2 + · · ·+Pr), where r ≥ d, have very recently been shown by Weibel
[Wei12], namely:

f0(P1 + P2 + · · ·+ Pr) ≤ α+

d−1∑

j=1

(−1)d−1−j
(
r − 1− j
d− 1− j

) ∑

S∈Srj

(∏

i∈S
f0(Pi)− α

)
,

where Sr
j is the family of subsets of {1, 2, . . . , r} of cardinality j, and α = 2(d− 2bd2c).

Tight bounds for all face numbers, i.e., for all 0 ≤ k ≤ d − 1, expressed as a function of
the number of vertices or facets of the summands, are known only for two d-polytopes when
d ≥ 3. Fukuda and Weibel [FW07] have shown that, given two 3-polytopes P1 and P2 in R3,
the number of k-faces of P1 + P2, 0 ≤ k ≤ 2, is bounded from above as follows:

f0(P1 + P2) ≤ n1n2,

f1(P1 + P2) ≤ 2n1n2 + n1 + n2 − 8,

f2(P1 + P2) ≤ n1n2 + n1 + n2 − 6,

(2)

where ni is the number of vertices of Pi, i = 1, 2. These bounds are tight. Weibel [Wei07] has
derived analogous tight expressions in terms of the number of facets mi of Pi, i = 1, 2:

f0(P1 + P2) ≤ 4m1m2 − 8m1 − 8m2 + 16,

f1(P1 + P2) ≤ 8m1m2 − 17m1 − 17m2 + 40,

f2(P1 + P2) ≤ 4m1m2 − 9m1 − 9m2 + 26.

(3)

Weibel’s expression for f2(P1 + P2) (cf. rel. (3)) has been generalized to the number of facets
of the Minkowski sum of any number of 3-polytopes by Fogel, Halperin and Weibel [FHW09];
they have shown that, for r ≥ 2, the following tight bound holds:

f2(P1 + P2 + · · ·+ Pr) ≤
∑

1≤i<j≤r
(2mi − 5)(2mj − 5) +

r∑

i=1

mi +

(
r

2

)
,

where mi = f2(Pi), 1 ≤ i ≤ r. Finally, Karavelas and Tzanaki [KT12] have shown that for any
two d-polytopes P1 and P2 in Rd, where d ≥ 4, and for all 1 ≤ k ≤ d, we have:

fk−1(P1 + P2) ≤ fk(Cd+1(n1 + n2))−
b d+1

2
c∑

i=0

(
d+1−i
k+1−i

) ((
n1−d−2+i

i

)
+
(
n2−d−2+i

i

))
, (4)

where ni = f0(Pi), i = 1, 2, and Cd(n) stands for the cyclic d-polytope with n vertices. The
bounds in (4) have been shown to be tight, and match the corresponding, previously known,
bounds for 2- and 3-polytopes (cf. rel. (2)).
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Overview. In this work we continue the line of research in [KT12], extending the methods
to the case of three d-polytopes in Rd. This turns out to be far from trivial. Allowing just
one more summand significantly raises the problem’s intricacy. On the other hand, the case of
three d-polytopes provides a valuable insight towards our ultimate goal, the general case of r
d-polytopes, for any d, r ≥ 2. Using the tools and methodology applied in this paper, some of
the results obtained here can be generalized to the case d, r ≥ 2 (see Section 7), while others
still remain elusive.

We state our main result, also presented in Theorem 14. Let P1, P2 and P3 be three d-
polytopes in Rd, d ≥ 2, with ni ≥ d + 1 vertices, 1 ≤ i ≤ 3. Then, for all 1 ≤ k ≤ d, we
have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+ 2− i
k + 2− i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS − d− 3 + i

i

)

− δ
(bd2c+ 1

k − bd2c

) 3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
,

where [3] = {1, 2, 3}, δ = d − 2bd2c, and nS =
∑

i∈S ni, ∅ ⊂ S ⊆ [3]. Moreover, for any d ≥ 2,
there exist three d-polytopes in Rd for which the bounds above are attained.

To establish the upper bounds we first lift the three d-polytopes in Rd+2 using an affine basis
of R2, and form the convex hull C of the embedded polytopes in Rd+2. C is known as the Cayley
polytope of the Pi’s (see Section 2). Exploiting the bijection between the set F[3], consisting
of the k-faces of C that contain vertices from each Pi, and the (k − 2)-faces of P1 + P2 + P3,
we reduce the derivation of upper bounds for fk−2(P1 + P2 + P3) to deriving upper bounds for
fk(F[3]), 2 ≤ k ≤ d+ 1.

The rest of our proof follows the main steps of McMullen’s proof of the Upper bound Theorem
for polytopes [McM70]. In Section 3 we add auxiliary vertices to appropriate faces of the Cayley
polytope C, resulting in a simplicial polytope Q whose face set contains F[3]. We then consider
the f -vector f(∂Q) and the h-vector h(∂Q) of ∂Q and derive expressions for their entries via
the corresponding vectors for F[3]. Using these expressions, we continue by deriving Dehn-
Sommerville-like equations for F[3]. As an intermediate step we define the subcomplex K[3] of
C as the closure under subface inclusion of F[3], and derive expressions for its f - and h-vectors
(cf. relations (5) and (12) with R = [3]). This allows us to write the Dehn-Sommerville-like
equations for F[3] in the very concise form:

hd+2−k(F[3]) = hk(K[3]), 0 ≤ k ≤ d+ 2.

In Section 4 we establish a recurrence relation for the elements of h(F[3]) (see Lemma 7).
Our starting point is a well known relation by McMullen (cf. rel. (17)), and the expressions for
the h-vector of ∂Q already established in the previous section. The recurrence relation for the
elements of h(F[3]) is then used in Section 5 to prove upper bounds on the elements of h(F[3])
and h(K[3]). These upper bounds combined with the Dehn-Sommerville-like equations for F[3],
yield refined upper bounds for the values hk(F[3]) when k > bd+2

2 c. We end by establishing
our upper bounds on the number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski sum of three
d-polytopes by computing f(F[3]) from h(F[3]). At the same time we establish conditions on a
subset of the elements of the vectors f(FR), ∅ ⊂ R ⊆ [3], that are sufficient and necessary in
order for the upper bounds in the number of k-faces of P1 + P2 + P3 to be tight for all k (FR
stands for the set of faces of C that have at least one vertex from each Pi for all i ∈ R).

In Section 6 we describe the constructions that establish the tightness of our upper bounds.
For d = 2 and d = 3 we rely on previous results. For d ≥ 4 we define three convex d-polytopes,
whose vertices lie on three distinct moment-like d-curves, and show that the sets FR, ∅ ⊂ R ⊆
[3], associated with them satisfy the sufficient and necessary conditions mentioned above. We

5



conclude with Section 7, where we discuss the case of four or more summands and directions for
future work.

2 The Cayley trick

Recall that [3] stands for the set {1, 2, 3}, and denote by S3
j := {R ⊆ [3] | |R| = j}, the set of all

subsets of [3] of cardinality j, for 1 ≤ j ≤ 3. To keep the notation lean, in the rest of this paper
we shall denote S3

j as Sj . Consider three d-polytopes P1, P2 and P3 in Rd, and choose the basis
e2,1 = (0, 0), e2,2 = (1, 0), e2,3 = (0, 1), as the preferred affine basis of R2. The Cayley embedding
of the Pi’s is defined via the maps µi(x) = (e2,i,x), and we denote by C the (d + 2)-polytope
we get by taking the convex hull of the sets Vi = {µi(v) | v ∈ Vi}, where Vi is the vertex set of
Pi. This is known as the Cayley polytope of the Pi. Similarly, by taking appropriate affine bases
we define the Cayley polytope CR of all polytopes Pi, i ∈ R, where R ∈ Sj , j = 1, 2. These are
the Cayley polytopes of all pairs of Pi’s and, trivially, the Pi’s themselves. Clearly, CR ≡ Pi, for
R ∈ S1. Moreover, C ≡ C[3].

For any ∅ ⊂ R ⊆ [3], let VR denote the union of the sets Vi, i ∈ R. In the sequel we shall
identify CR ⊂ Rd+|R|−1, for all R ∈ Sj , j = 1, 2, with the affinely isomorphic and combinatorially
equivalent polytope conv(VR) ⊂ C ⊂ Rd+2. This will allow us to study properties of these subsets
of C by examining the corresponding Cayley polytopes which lie in lower dimensional spaces.

We shall denote by FR, ∅ ⊂ R ⊆ [3], the set of proper faces of C, with the property that
F ∈ FR if F ∩ Vi 6= ∅, for all i ∈ R. In other words, FR consists of all the faces of C that have
at least one vertex from each Vi, for all i ∈ R. Clearly, if |R| ≥ 2, then f0(FR) = 0. Moreover,
if R ∈ S1 then FR ≡ ∂Pi. The dimension of FR is the maximum dimension of the faces in FR,
i.e., dim(FR) = maxF∈FR dim(F ) = d+ |R| − 2.

We call W the d-flat of Rd+2:

W = {1
3e2,1 + 1

3e2,2 + 1
3e2,3} × Rd,

and consider the weighted Minkowski sum 1
3P1 + 1

3P2 + 1
3P3. Note that this is nothing more

than P1 + P2 + P3, scaled down by 1
3 , hence these two sums are combinatorially equivalent.

The Cayley trick [HRS00] says that the intersection of W with C is combinatorially equivalent
(isomorphic) to the weighted Minkowski sum 1

3P1 + 1
3P2 + 1

3P3, hence also to the unweighted
Minkowski sum P1 + P2 + P3 (see also Fig. 1). Moreover, every face of P1 + P2 + P3 is the
intersection of a face of F[3] with W . This implies that:

fk−1(P1 + P2 + P3) = fk+1(F[3]), 1 ≤ k ≤ d.

To compute the upper bounds for the number of k-faces of P1 + P2 + P3, in the rest of the
paper we assume that C is “as simplicial as possible”, i.e., all faces of C are simplicial except for
the trivial faces of CR, for all ∅ ⊂ R ⊆ [3]. Otherwise, we can employ the so called bottom-vertex
triangulation [Mat02], where we triangulate every face of C except the trivial faces of CR for
all ∅ ⊂ R ⊆ [3]. The resulting complex is polytopal and all of its faces are simplicial, except
from the seven trivial faces above. Moreover, it has the same number of vertices as C, while the
number of its k-faces is never less than the number of k-faces of C.

Under the “as simplicial as possible” assumption above, the faces in FR are simplicial. We
shall denote by KR the closure, under subface inclusion, of FR, i.e., KR contains all the faces in
FR and all the faces that are subfaces of faces in FR. It is easy to see that KR does not contain
any of the trivial faces of CS , S ⊆ R, and, thus, KR is a pure simplicial (d + |R| − 2)-complex,
whose facets are precisely the facets in FR. It is also clear that FR ≡ KR ≡ ∂PR, for R ∈ S1.
Moreover, K[3] is the boundary complex ∂C of the Cayley polytope C, except for its three facets
(i.e., (d+ 1)-faces) CR, R ∈ S2, and its three ridges (i.e., d-faces) Pi, 1 ≤ i ≤ 3.
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x2

x1

(0, 1)

(1, 0)

(0, 1
3
)

(1
3
, 0)(0, 0)

P1

P2

P3

W

Figure 1: Schematic of the Cayley trick for three polytopes. The three polytopes P1, P2 and P3

are shown in red, green and blue, respectively. The polytope 1
3P1 + 1

3P2 + 1
3P3 is shown in black.

Consider a k-face F of KR, ∅ ⊂ R ⊆ [3]. By the definition of KR, F is either a k-face of FR,
or a k-face of FS for some nonempty subset S of R. Hence

fk(KR) =
∑

∅⊂S⊆R
fk(FS), −1 ≤ k ≤ d+ |R| − 2, (5)

where, in order for the above equation to hold for k = −1, we set f−1(FR) = (−1)|R|−1. In what
follows we use the convention that fk(FR) = 0, for any k < −1 or k > d+ |R| − 2.

3 f-vectors, h-vectors and Dehn-Sommerville-like equations

We are going to define auxiliary vertices in Rd+2 not contained in Vi, i = 1, 2, 3. For every
∅ ⊂ R ⊂ [3] we add a vertex yR in the relative interior of CR and, following [ES74], we consider
the complex arising by taking successive stellar subdivisions of ∂C as follows:

(i) we form the complex arising from ∂C by taking the stellar subdivisions st(y{i}, C{i}) for all
1 ≤ i ≤ 3, then

(ii) we form the complex arising from the one constructed in the previous step by taking the
stellar subdivisions st(yR, C′R) for every R ∈ S2, where C′R is the complex obtained by
taking, for every S ⊂ R, the stellar subdivision of yS over the boundary complex of CS .

This complex is polytopal and isomorphic to the boundary complex of a (d+ 2)-polytope which
we shall denote as Q (see also Fig. 2). The boundary complex ∂Q is a simplicial (d + 1)-
sphere. The simpliciality of ∂Q will allow us to utilize its Denh-Sommerville equations in order
to prove Dehn-Sommerville-like equations for F[3] in the upcoming Lemma 3. We denote by
V := V1 ∪ V2 ∪ V3 ∪ {yR | ∅ ⊂ R ⊂ [3]} the vertex set of Q.

Let us count the k-faces of ∂Q. Suppose that F is a k-face of ∂Q. We distinguish between
the following cases depending on the number of auxiliary vertices, yR, that F contains:

(i) F does not contain any additional auxiliary vertices. Then, it can be a k-face of any
FR, R ∈ S1, or it can be a k-face of any of the FR, R ∈ S2, or it can be a k-face of F[3].
This gives a total of fk(F[3]) +

∑
R∈S1

fk(FR) +
∑

R∈S2
fk(FR) k-faces of ∂Q.
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x2

x1

(0, 1)

(1, 0)(0, 0)

P1

P2

P3

y{2,3}

y{1,2}

y{1,3}

Figure 2: The (d+ 2)-polytope Q.

(ii) F contains one auxiliary vertex. Then, it can consist of a (k − 1)-face of:

(a) FR, R ∈ S1 and vertex yR, (e.g., a (k − 1)-face of ∂P1 and vertex y{1}), or
(b) FR, R ∈ S2 and vertex yR, (e.g., a (k − 1)-face of F{1,2} and vertex y{1,2}), or
(c) FS , S ∈ S1 and vertex yR, where S ⊂ R ∈ S2, (e.g., a (k− 1)-face of ∂P1 and vertex

y{1,2} or vertex y{1,3}),

for a total of faces equal to:
case (a)︷ ︸︸ ︷∑

R∈S1

fk−1(FR) +

case (b)︷ ︸︸ ︷∑

R∈S2

fk−1(FR) +

case (c)︷ ︸︸ ︷∑

R∈S2

∑

∅⊂S⊂R
fk−1(FS) =

∑

R∈S2

fk−1(FR) + 3
∑

R∈S1

fk−1(FR).

(iii) F contains two auxiliary vertices. Then, it can consist of a (k − 2)-face of FR, R ∈ S1

and vertices yR and yS , where S ∈ S2 such that R ⊂ S, (e.g., a (k − 2)-face of ∂P1 and
vertices y{1} and either y{1,2} or y{1,3}), for a total of 2

∑
R∈S1

fk−2(FR) faces.

Summing over all previous cases we obtain the following relation, for all 0 ≤ k ≤ d+ 1:

fk(∂Q) = fk(F[3]) +
∑

R∈S2

[fk(FR) + fk−1(FR)] +
∑

R∈S1

[fk(FR) + 3fk−1(FR) + 2fk−2(FR)]. (6)

Relation (6) also holds for k ∈ {−1, 0}, since, by convention, we have set fl(FS) = 0 for all
l < −1 and ∅ ⊂ S ⊆ [3].

Denote by Y a generic subset of faces of C. Y will either be a subcomplex of the boundary
complex ∂C of C, or one of the FR’s. Let δ be the dimension of Y. Then we can define the
h-vector of Y as

hk(Y) =
δ+1∑

i=0

(−1)k−i
(
δ + 1− i
δ + 1− k

)
fi−1(Y). (7)

Another quantity that will be heavily used in the rest of the paper is that we call the m-order
g-vector of Y, the k-th element of which is given by the following recursive formula:

g
(m)
k (Y) =

{
hk(Y), m = 0,

g
(m−1)
k (Y)− g(m−1)

k−1 (Y), m > 0.
(8)
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Observe that for m = 0 we get the h-vector of Y, while for m = 1 we get what is typically known
as the g-vector of Y. Clearly, g(m)(Y) is the m-order backward finite difference of h(Y), which
suggests the following lemma (see Section A.1 of Appendix A for the proof):

Lemma 1. For any k,m ≥ 0, we have:

g
(m)
k (Y) =

m∑

i=0

(−1)i
(
m

i

)
hk−i(Y). (9)

We next define the summation operator Sk(·;D, ν) whose action on Y is as follows:

Sk(Y;D, ν) =
D+1∑

i=0

(−1)k−i
(
D + 1− i
D + 1− k

)
fi−1−ν(Y). (10)

Regarding the action of Sk(·;D, ν) on Y, it is easy to verify the following (see Section A.1 of
Appendix A for the proof):

Lemma 2. Let δ be the dimension of Y, ν ≥ 0, δ ≤ D, and D− δ− ν ≥ 0. Then for any k ≥ 0
we have:

Sk(Y;D, ν) = g
(D−δ−ν)
k−ν (Y). (11)

In the following lemma we relate the h-vectors of FR and KR with each other, and with the
h-vector of ∂Q. The last among the relations proved in the following lemma can be thought of
as the analogue of the Dehn-Sommerville equations for F[3] and K[3].

Lemma 3. The following relations hold:

hk(KR) =
∑

∅⊂S⊆R
g

(|R|−|S|)
k (FS), 0 ≤ k ≤ d+ |R| − 1, ∅ ⊂ R ⊆ [3]. (12)

hk(∂Q) = hk(F[3]) +
∑

R∈S2

hk(FR) +
∑

R∈S1

[hk(FR) + hk−1(FR)], 0 ≤ k ≤ d+ 2. (13)

hd+2−k(F[3]) = hk(K[3]), 0 ≤ k ≤ d+ 2. (14)

Proof. Relation (12) follows directly from the application of the summation operator Sk(·; d +
|R| − 2, 0) to relation (5). More precisely, from (5) we get, for all 0 ≤ k ≤ d+ |R| − 1,

Sk(KR; d+ |R| − 2, 0) =
∑

∅⊂S⊆R
Sk(FS ; d+ |R| − 2, 0). (15)

Relation (12) now immediately follows by noticing that:
• By applying Lemma 2 on the right-hand-side of (15), with δ ← d+ |R|−2, D ← d+ |R|−2

and ν ← 0, we get

Sk(KR; d+ |R| − 2, 0) = g
((d+|R|−2)−(d+|R|−2)−0)
k−0 (KR) = hk(KR).

• Similarly, by applying Lemma 2 on the left hand side of (15), with δ ← d + |S| − 2,
D ← d+ |R| − 2, ν ← 0, we get:

Sk(FS ; d+ |R| − 2, 0) = g
((d+|R|−2)−(d+|S|−2)−0)
k−0 (FS) = g

(|R|−|S|)
k (FS).

9



To prove (13), we apply the summation operator Sk(·; d + 1; 0) to the (d + 1)-complex ∂Q.
Using relation (6), we get, for all 0 ≤ k ≤ d+ 2:

Sk(∂Q; d+ 1; 0) = Sk(F[3]; d+ 1; 0) +
∑

R∈S2

[Sk(FR; d+ 1; 0) + Sk(FR; d+ 1; 1)]

+
∑

R∈S1

[Sk(FR; d+ 1; 0) + 3Sk(FR; d+ 1; 1) + 2Sk(FR; d+ 1; 2)],

which, using Lemma 2, gives, for all 0 ≤ k ≤ d+ 2:

g
(0)
k (∂Q) = g

(0)
k (F[3]) +

∑

R∈S2

[g
(1)
k (FR) + g

(0)
k−1(FR)] +

∑

R∈S1

[g
(2)
k (FR) + 3g

(1)
k−1(FR) + 2g

(0)
k−2(FR)].

Relation (13) follows by expanding g(m)(·), 1 ≤ m ≤ 2, according to Lemma 1, and gathering
common terms.

To prove what we named the Dehn-Sommerville-like equations for F[3] (cf. (14)), we replace
k by d+ 2− k in (13), to get, for all 0 ≤ k ≤ d+ 2:

hd+2−k(∂Q) = hd+2−k(F[3]) +
∑

R∈S2

hd+2−k(FR) +
∑

R∈S1

[hd+2−k(FR) + hd+1−k(FR)]. (16)

Using the above relation, in conjunction with (13), the Dehn-Sommerville equations for ∂Q
become:

hd+2−k(F[3]) +
∑

R∈S2

hd+2−k(FR) +
∑

R∈S1

[hd+2−k(FR) + hd+1−k(FR)]

= hk(F[3]) +
∑

R∈S2

hk(FR) +
∑

R∈S1

[hk(FR) + hk−1(FR)].

Using the Dehn-Sommerville equations for FR, R ∈ S1, as well as the Dehn-Sommerville-like
equations for FR, R ∈ S2 (cf. [KT12, rel. (3.10)]), we get:

hd+2−k(F[3]) +
∑

R∈S2

[hk−1(FR) +
∑

∅⊂S⊂R
gk−1(FS)] +

∑

R∈S1

[hk−2(FR) + hk−1(FR)]

= hk(F[3]) +
∑

R∈S2

hk(FR) +
∑

R∈S1

[hk(FR) + hk−1(FR)].

Finally, solving in terms of hd+2−k(F[3]), we arrive at the following:

hd+2−k(F[3]) = hk(F[3]) +
∑

R∈S2

hk(FR) +
∑

R∈S1

[hk(FR) + hk−1(FR)]

−
∑

R∈S2

[hk−1(FR) +
∑

∅⊂S⊂R
gk−1(FS)]−

∑

R∈S1

[hk−2(FR) + hk−1(FR)]

= hk(F[3]) +
∑

R∈S2

hk(FR) +
∑

R∈S1

[hk(FR) + hk−1(FR)]

−
∑

R∈S2

hk−1(FR)− 2
∑

R∈S1

gk−1(FS)−
∑

R∈S1

[hk−2(FR) + hk−1(FR)]

= hk(F[3]) +
∑

R∈S2

[hk(FR)− hk−1(FR)]

+
∑

R∈S1

[hk(FR) + hk−1(FR)− 2gk−1(FS)− hk−2(FR)− hk−1(FR)]
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= hk(F[3]) +
∑

R∈S2

gk(FR) +
∑

R∈S1

[hk(FR)− 2hk−1(FR) + hk−2(FR)]

= hk(F[3]) +
∑

R∈S2

gk(FR) +
∑

R∈S1

g
(2)
k (FR)

= hk(K[3]),

where for the last equality we used relation (12) for R ≡ [3].

4 Recurrence relations

Recall that we denote by V the vertex set of ∂Q and by Vi the (Cayley embedding of the) vertex
set of ∂Pi, 1 ≤ i ≤ 3. Let Y/v denote the link of vertex v of Y in the simplicial complex Y.
McMullen [McM70] showed that for any d-dimensional polytope P the following relation holds:

(k + 1)hk+1(∂P ) + (d− k)hk(∂P ) =
∑

v∈vert(∂P )

hk(∂P/v), 0 ≤ k ≤ d− 1. (17)

Applying relation (17) to the (d+ 2)-dimensional polytope Q, we have, for all 0 ≤ k ≤ d+ 1:

(k + 1)hk+1(∂Q) + (d+ 2− k)hk(∂Q) =
∑

v∈V
hk(∂Q/v) =

∑

v∈V[3]

hk(∂Q/v) +
∑

∅⊂R⊂[3]

hk(∂Q/yR),

(18)
where we used the fact that V is the disjoint union of the vertex sets V[3] = V1 ∪ V2 ∪ V3 and
{yR | ∅ ⊂ R ⊂ [3]}.

Lemma 4. The h-vectors of the complexes ∂Q/v, v ∈ Vi, i = 1, 2, 3, ∂Q/yR, R ∈ S1, and
∂Q/yR, R ∈ S2 are given by the following relations:

hk(∂Q/v) = hk(K[3]/v) +
∑

{i}⊆R⊂[3]

hk−1(KR/v) + hk−2(K{i}/v), v ∈ Vi, i ∈ [3], (19)

hk(∂Q/yR) = hk(FR) + hk−1(FR), R ∈ S1, (20)

hk(∂Q/yR) =
∑

∅⊂S⊆R
hk(FS), R ∈ S2. (21)

Proof. We start by proving relation (19). Without loss of generality we assume that v ∈ V1; the
cases v ∈ V2 and v ∈ V3 are entirely analogous.

Let F be a k-face of ∂Q/v. We have the following cases depending on the number of
additional points yR, ∅ ⊂ R ⊂ [3], that F contains:

(i) F does contain any additional points. Then, it is a k-face of K[3].

(ii) F contains one additional point. Then, it can consist of a (k − 1)-face of:

(a) K{1}(≡ ∂P1) and point y{1}, or

(b) K{1,2}, and point y{1,2}, or

(c) K{1,3}, and point y{1,3}.

(iii) F contains two additional points. Then, it can consist of a (k− 2)-face of K{1} and points
y{1} and y{1,2}, or points y{1} and y{1,3}.

11



Summing over all previous cases we obtain the following relation:

fk(∂Q/v) =

case (i)︷ ︸︸ ︷
fk(K[3]/v) +

case (ii)︷ ︸︸ ︷∑

{1}⊆R⊂[3]

fk−1(KR/v) +

case (iii)︷ ︸︸ ︷
2fk−2(K{1}/v), v ∈ V1. (22)

We apply the summation operator Sk(·; d, 0) to the d-complex ∂Q/v and obtain:

g
(0)
k (∂Q/v) = g

(0)
k (K[3]/v) +

∑

{1}⊆R⊂[3]

g
(2−|R|)
k−1 (KR/v) + 2g

(0)
k−2(K{1}/v),

which finally gives, for any v ∈ V1:

hk(∂Q/v) = hk(K[3]/v) +

(
gk−1(K{1}/v) +

∑

{1}⊂R⊂[3]

hk−1(KR/v)

)
+ 2hk−2(K{1}/v)

= hk(K[3]/v) + hk−1(K{1}/v)− hk−2(K{1}/v) +
∑

{1}⊂R⊂[3]

hk−1(KR/v) + 2hk−2(K{1}/v)

= hk(K[3]/v) +
∑

{1}⊆R⊂[3]

hk−1(KR/v) + hk−2(K{1}/v).

To prove (20) consider a k-face of ∂Q/yR, R ∈ S1. Such a face is either a k-face of FR, or
consists of a (k − 1)-face of FR and point yS for any S ∈ S2 such that S ⊃ R. Note that there
exactly two such points yS . Hence:

fk(∂Q/yR) = fk(FR) + 2fk−1(FR), R ∈ S1. (23)

Applying the summation operator Sk(·; d, 0) to the simplicial d-complex ∂Q/yR, R ∈ S1, and
using relation (23) and Lemma 2, we get, for any R ∈ S1:

hk(∂Q/yR) = g
(0)
k (∂Q/yR) = Sk(∂Q/yR; d, 0)

= Sk(FR; d, 0) + 2Sk(FR; d, 1) = g
(1)
k (FR) + 2g

(0)
k−1(FR)

= hk(FR)− hk−1(FR) + 2hk−1(FR) = hk(FR) + hk−1(FR).

To prove (21) consider a k-face of ∂Q/yR, R ∈ S2. This is either a k-face of FS , for any
∅ ⊂ S ⊆ R, or consists of a (k − 1)-face of FS and point yS for any ∅ ⊂ S ⊂ R. Hence, for any
R ∈ S2, we have:

fk(FR/yR) =
∑

∅⊂S⊆R
fk(FS) +

∑

∅⊂S⊂R
fk−1(FS) = fk(FR) +

∑

∅⊂S⊂R
[fk(FS) + fk−1(FS)]. (24)

Applying the summation operator Sk(·; d, 0) to the d-dimensional complex ∂Q/yR, R ∈ S2, and
using relation (24), along with Lemma 2, we get, for any R ∈ S2:

hk(∂Q/yR) = Sk(∂Q/yR; d, 0) = Sk(FR; d, 0) +
∑

∅⊂S⊂R
[Sk(FS ; d, 0) + Sk(FS ; d, 1)]

= g
(0)
k (FR) +

∑

∅⊂S⊂R
[g

(1)
k (FS) + g

(0)
k−1(FS)]

= hk(FR) +
∑

∅⊂S⊂R
hk(FS)

=
∑

∅⊂S⊆R
hk(FS).
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The following two lemmas are essential in the proof of the upcoming recurrence relation in
Lemma 7.

Lemma 5. The following relation holds, for all 0 ≤ k ≤ d+ 1:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) =
∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR/v). (25)

Sketch of proof. The complete proof may be found in Section A.2 of Appendix A. Our starting
point is relation (18). We first substitute hk(∂Q) and hk+1(∂Q) on the left-hand side of (18)
with their relevant expressions from (13). We then group the terms so that we get a sum of:

(i) the left-hand side of (25),

(ii) (k + 1)hk+1(FR) + (d+ 1− k)hk(FR), R ∈ S2

(iii) (k + 1)hk+1(FR) + (d− k)hk(FR) and khk(FR) + (d− k − 1)hk−1(FR) with R ∈ S1

(iv) additional terms.

As will be described below, the intuition behind this grouping is to substitute the terms in
(ii) and (iii) by sums involving quantities of the form g

(m)
k (KS/v). These quantities will be

grouped with the terms obtained from a similar expansion of the term hk(∂Q/v) appearing in
the right-hand side of (18), yielding the right-hand side of (25).

In the proof of [KT12, Lemma 3.2], the sum in item (ii) above is shown to be equal2 to∑
i∈R

∑
v∈Vi [hk(KR/v)− gk(K{i}/v)]. For (iii) we use (17) combined with the fact that for any

R ∈ S1, FR ≡ ∂PR. On the right-hand side of (18) we substitute hk(∂Q/v) and hk(∂Q/yR)
using the relations in Lemma 4. Finally, we equate our expansions of the left- and right-hand
side of (18) and notice that the terms in (iv) and the expressions for hk(∂Q/yR) cancel-out.
Recalling that gk = hk − hk−1 and g

(2)
k = hk − 2hk−1 + hk−2, we appropriately regroup the

remaining terms to obtain the desired expression.

Lemma 6. The following relation holds, for all 0 ≤ k ≤ d+ 1:
∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR/v) ≤

∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR). (26)

Proof. Let us first observe that, by rearranging terms, we can rewrite relation (26) as follows:

3∑

i=1

∑

v∈Vi

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR/v) ≤

3∑

i=1

∑

v∈Vi

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR). (27)

Clearly, to show that relation (27) holds, it suffices to prove that:
∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR/v) ≤

∑

{i}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR), v ∈ Vi, i ∈ [3]. (28)

In the rest of the proof we shall prove relation (28) for i = 1 and for any v ∈ V1. The cases
i = 2 and i = 3 are entirely similar.

Fix a vertex v ∈ V1. Let ∂Q′ be the polytopal (d + 1)-complex that we get by removing
from ∂Q the faces that are incident to y{2,3} (see Fig. 3(left)). It is straightforward to see
that: (1) the stars of v in Q and ∂Q′ coincide (the faces incident to y{2,3} contain vertices
from V{2,3} ∪ {y{2}, y{3}} only), and (2) ∂Q′ is shellable. To verify the latter consider a shelling
S(∂Q) of ∂Q that shells the star of y{2,3} in ∂Q last; the shelling order that we get by removing

2The expression in [KT12] is written differently; it is equivalent, however, to the expression stated here.
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y{1}

y{1,2}

y{1,3}

x2

x1

(0, 1)

(1, 0)(0, 0)

P1

P2

P3
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y{2}

∂Q′
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x2

x1

(0, 1)
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P2
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y{3}

y{2}

Z ′

Figure 3: Left: the (d+ 1)-complex ∂Q′ that we get from ∂Q be removing all faces incident to
y{2,3}. Right: the (d + 1)-complex Z ′ that we get from the Cayley polytope C[3] of P1, P2 and
P3, after we: (i) have performed stellar subdivisions using the vertices y{1}, y{2} and y{3} (which
yields the (d+ 1)-polytope Z), and (ii) have removed the facet Q{2,3} from Z.

from S(∂Q) the facets that are incident to y{2,3} is clearly a shelling order for ∂Q′. Let SR,
R ∈ {{1, 2}, {1, 3}}, be the star of yR in ∂Q′ (which actually coincides with the star of yR in
∂Q). Let X denote the set of faces of ∂Q′ that are either faces in S{1,2} or faces in S{1,3}, and
let G denote the set of faces of ∂Q′ that are either faces in F[3] or faces in F{2,3}. Notice that
the sets X and G form a disjoint union of the faces in ∂Q′, which implies that:

fk(∂Q′) = fk(X ) + fk(G), −1 ≤ k ≤ d+ 1. (29)

Notice that X is a (d+1)-complex, whereas G is a set of faces with maximal dimension d+1. By
applying the summation operator Sk(·; d + 1, 0) to (29), we immediately get the corresponding
h-vector relation:

hk(∂Q′) = hk(X ) + hk(G), 0 ≤ k ≤ d+ 2. (30)

We claim that there exists a specific shelling S(∂Q′) of ∂Q′, which actually is an initial
segment of a shelling of ∂Q that shells the star of y{2,3} last, with the property that the cor-
responding shelling order has the facets in X before the facets in G. We will postpone the
proof of this claim, and we will assume for now that the claim holds true. Consider the specific
shelling of ∂Q′ just mentioned, and notice that the facets in G are actually the facets in F[3].
The existence of this particular shelling S(∂Q′) also implies that X is shellable, and the shelling
S(X ) of X induced by S(∂Q′) coincides with S(∂Q′) as long as it visits the facets of X . As
a result of this, and as long as we shell X , we get a contribution of +1 to both hk(∂Q′) and
hk(X ) for every restriction of S(∂Q′) of size k. After the shelling S(∂Q′) has left X , a restriction
of size k for S(∂Q′) contributes +1 to hk(∂Q′), does not contribute to hk(X ) (X has already
been fully constructed), and, thus, by relation (30), contributes +1 to hk(G). In other words,
for this particular shelling S(∂Q′) of ∂Q′, hk(G) counts the number of restrictions of size k that
correspond to the facets of ∂Q′ that are also facets of G (and, of course, of F[3]).

The same argumentation can be applied to the links of vertices v ∈ V1: ∂Q′/v can be seen
as the disjoint union of the sets X/v and G/v, while the particular shelling S(∂Q′) of ∂Q′ that
shells X first, induces a particular shelling S(∂Q′/v) for ∂Q′/v that shells the facets of ∂Q′/v
in X/v first. From these observations we immediately arrive at the following h-vector relation
for ∂Q′/v, X/v and G/v:

hk(∂Q′/v) = hk(X/v) + hk(G/v), 0 ≤ k ≤ d+ 1, (31)
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from which we argue, as above, that hk(G/v) counts the number of restrictions of size k for
S(∂Q′/v) that correspond to the facets of ∂Q′/v that are also facets of G/v (or F[3]/v).

Let us now consider the dual graph G∆(∂Q) of ∂Q, oriented according to the shelling S(∂Q),
as well as the dual graph G∆(∂Q/v) of ∂Q/v, also oriented according to the shelling S(∂Q/v).
We will denote by V∆(Y) the subset of vertices of G∆(∂Q) that are the duals of the facets in
∂Q that belong to Y, where Y stands for a subset of the set of faces of ∂Q.

Since S(∂Q/v) is induced from S(∂Q), G∆(∂Q/v) is isomorphic to the subgraph of G∆(∂Q)
defined over V∆(star(v, ∂Q)). Moreover, hk(∂Q) counts the number of vertices of V∆(∂Q) with
in-degree equal to k, while hk(G) counts the number of vertices of V∆(G) of in-degree k in
G∆(∂Q) (for the particular shelling S(∂Q) of ∂Q that we have chosen). Consequently, hk(G)
counts the number of vertices of V∆(G) of in-degree k in G∆(∂Q); in an analogous manner,
we can conclude that hk(G/v) counts the number of vertices of V∆(star(v,G)) with in-degree k
in G∆(∂Q/v). Since, however, G∆(∂Q/v) is the subgraph of G∆(∂Q) that corresponds to the
face v∆ of G∆(∂Q), the number of vertices of V∆(star(v,G)) with in-degree k cannot exceed the
number of vertices of V∆(G) with in-degree k. Hence,

hk(G/v) ≤ hk(G), 0 ≤ k ≤ d+ 2. (32)

On the other hand, recall that G is the disjoint union of F[3] and F{2,3}. Using expressions
(5), in conjunction with the fact that FS ≡ KS for S ∈ S1, we have, for all −1 ≤ k ≤ d+ 1:

fk(G) = fk(F[3]) + fk(F{2,3})

=

fk(F[3])︷ ︸︸ ︷
fk(K[3])−

∑

R∈S2

fk(FR)−
∑

R∈S1

fk(KR) +

fk(F{2,3}︷ ︸︸ ︷
fk(K{2,3})−

∑

i∈{2,3}
fk(K{i})

= fk(K[3])−
∑

R∈S2

[
fk(KR)−

∑

i∈R
fk(K{i})

]
−
∑

R∈S1

fk(KR) + fk(K{2,3})−
∑

i∈{2,3}
fk(K{i})

= fk(K[3])−
∑

R∈S2

fk(KR) + 2
∑

R∈S1

fk(KR)−
∑

R∈S1

fk(KR) + fk(K{2,3})−
∑

i∈{2,3}
fk(K{i})

= fk(K[3])−
∑

{1}⊂R⊂[3]

fk(KR) + fk(K{1})

=
∑

{1}⊆R⊆[3]

(−1)3−|R| fk(KR). (33)

By a similar argument, we can arrive that the following expression for fk(G/v):

fk(G/v) =
∑

{1}⊆R⊆[3]

(−1)3−|R| fk(KR/v), −1 ≤ k ≤ d. (34)

By applying the summation operators Sk(·; d + 1, 0) and Sk(·; d, 0) to relations (33) and (34),
respectively, we get the corresponding h-vector relations:

hk(G) =
∑

{1}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR), 0 ≤ k ≤ d+ 2,

hk(G/v) =
∑

{1}⊆R⊆[3]

(−1)3−|R| g(3−|R|)
k (KR/v), 0 ≤ k ≤ d+ 1.

(35)

Relation (28) (for i = 1) follows by substituting the expressions for hk(G) and hk(G/v) from
(35) in (32).

To finish our proof, it remains to establish our claim that there exists a specific shelling
S(∂Q′) of ∂Q′ with the property that the facets of X appear in the shelling before the facets of
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G. Let us start with some definitions: we denote by Z the (d+1)-complex we get by performing
the stellar subdivisions on C[3] using the vertices yR, R ∈ S1 (see also Fig. 3(right)), and by QR,
R ∈ S2 the (d+ 1)-complex that we get by performing stellar subdivisions on the non-simplicial
proper faces of CR, namely the faces CS , ∅ ⊂ S ⊂ R. Notice that QR, R ∈ S2, is nothing but a
facet of Z, while ∂QR is actually the link of yR in ∂Q. In fact, we can separate the facets of Z
in two categories; they are either (1) facets of the form QR, R ∈ S2, which are non-simplicial,
or (2) facets in G (or F[3]), which are simplicial. Moreover, notice that star(yR,Z), R ∈ S1,
consists of the faces belonging to the two facets QS , R ⊂ S ⊂ [3] of Z. Since stellar subdivisions
produce polytopal complexes [ES74], Z is polytopal and, thus, shellable. In fact, there exists a
particular (line) shelling S(Z) of Z in which the facets of star(y{1},Z) appear first, while Q{2,3}
is the last facet in S(Z). More precisely, for this particular shelling of Z, the two facets Q{1,2}
and Q{1,3} appear first, followed by the facets in G, which, in turn, are followed by the facet
Q{2,3}.

Let us call Z ′ the (d + 1)-complex we get by removing Q{2,3} from Z. The complex Z ′ is
shellable (it follows from the fact that S(Z) has Q{2,3} as its last facet), while the particular line
shelling S(Z) of Z described above, yields a shelling S(Z ′) for Z ′ in which the facets Q{1,2} and
Q{1,3} appear first, followed by the facets in G. Notice that if we perform stellar subdivisions
on the two non-simplicial facets Q{1,2} and Q{1,3} of Z ′ (using the vertices y{1,2} and y{1,3}), we
arrive at the simplicial (d+ 1)-complex ∂Q′ described earlier. Furthermore, from the particular
shelling S(Z ′) of Z ′ described above, we may obtain the sought-for shelling for ∂Q′ that shells
X first and G last. To see this, notice that given any shelling order for ∂Pi, i = 1, 2, 3, we may
construct a shelling for QR, R ∈ {{1, 2}, {1, 3}}, that: (1) shells st(y{1},QR) first, (2) shells
st(yR\{i},QR) last, and (3) the shelling order of the facets in both stars is the order implied by
the shellings of the boundary complexes ∂Pi and ∂PR\{i}. This implies that if we choose shelling
orders for ∂Q{1,2} and ∂Q{1,3} that respect a common shelling order for ∂P1, we can replace
the facets Q{1,2} and Q{1,3} in S(Z ′) by the facets in star(y{1,2}, ∂Q′) and star(y{1,3}, ∂Q′),
respectively, (the shelling orders of ∂Q{1,2} and ∂Q{1,3} are “inherited” in the shelling orders
for star(y{1,2}, ∂Q′) and star(y{1,3}, ∂Q′)) and arrive at a shelling order for ∂Q′ with the desired
property.

Using inequality (26) in Lemma 6, we arrive at the following recurrence relation for the
elements of h(F[3]); its proof may be found in Section A.2 in Appendix A.

Lemma 7. For all 0 ≤ k ≤ d+ 1, we have:

hk+1(F[3]) ≤
n[3] − d− 2 + k

k + 1
hk(F[3]) +

3∑

i=1

ni
k + 1

gk(F[3]\{i}). (36)

Sketch of proof. Using Lemma 6, we can bound the left hand side of relation (25) by the right
hand side of relation (26), which involves g-vectors, or various orders, of the complexes KR,
where ∅ ⊂ R ⊆ [3]. These can be substituted by their equal values from relation (12) with
R = [3] and for all R ∈ S2. This gives an inequality involving h-vectors and g-vectors of F[3]

and FR, R ∈ S2, which simplifies to relation (36).

5 Upper bounds

In this section we establish upper bounds for the number of (k+ 2)-faces of F[3], 0 ≤ k ≤ d− 1,
which immediately yield upper bounds for the number of k-faces of P1 + P2 + P3. Our starting
point is the recurrence relation (36). We shall first prove a few lemmas that establish bounds
for the g-vector of FR, R ∈ S2, and the h-vectors of F[3] and K[3].
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Lemma 8. Let R be a non-empty subset of [3] of cardinality 2. Then, for all 0 ≤ k ≤ d+ 2, we
have:

gk(FR) ≤
∑

∅⊂S⊆R
(−1)|S|

(
nS − d− 3 + k

k

)
. (37)

Equality holds for some k, where 0 ≤ k ≤ bd+1
2 c, if and only if fl−1(FR) =

∑
∅⊂S⊆R(−1)|S|

(
nS
l

)
,

for all 0 ≤ l ≤ k.

Proof. The bound clearly holds, as equality, for k = 0. For k ≥ 1, from [KT12, Lemma 3.2] we
have:

hk(FR) ≤ nR−d−2+k
k hk−1(FR) +

∑

∅⊂S⊂R

nR\S
k gk−1(FS). (38)

Subtracting hk−1(FR) from both sides of (38) we get:

gk(FR) ≤ nR−d−2
k hk−1(FR) +

∑

∅⊂S⊂R

nR\S
k gk−1(FS). (39)

Using now the upper bounds for hk−1(FR), gk−1(FS), ∅ ⊂ S ⊂ R, and noting that nR− d− 2 ≥
2(d+ 1)− d− 2 = d > 0, we deduce, for any k ≥ 1:

gk(FR) ≤ nR−d−2
k

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k−1

)
+

∑

∅⊂S⊂R

nR\S
k

(
nS−d−3+k

k−1

)

= nR−d−2
k

(
nR−d−3+k

k−1

)
−

∑

∅⊂S⊂R

nR−d−2
k

(
nS−d−3+k

k−1

)
+

∑

∅⊂S⊂R

nR\S
k

(
nS−d−3+k

k−1

)

= nR−d−2+k
k

(
nR−d−3+k

k−1

)
−
(
nR−d−3+k

k−1

)
−

∑

∅⊂S⊂R

nR−d−2−nR\S
k

(
nS−d−3+k

k−1

)

=
(
nR−d−2+k

k

)
−
(
nR−d−3+k

k−1

)
−

∑

∅⊂S⊂R

nS−d−2
k

(
nS−d−3+k

k−1

)

=
(
nR−d−3+k

k

)
−

∑

∅⊂S⊂R

[
nS−d−2+k

k

(
nS−d−3+k

k−1

)
−
(
nS−d−3+k

k−1

)]

=
(
nR−d−3+k

k

)
−

∑

∅⊂S⊂R

[(
nS−d−2+k

k

)
−
(
nS−d−3+k

k−1

)]

=
(
nR−d−3+k

k

)
−

∑

∅⊂S⊂R

(
nS−d−3+k

k

)

=
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k

)
.

We focus now on the equality claim. Suppose first that fl−1(FR) =
∑
∅⊂S⊆R(−1)|S|

(
nS
l

)
,

for all 0 ≤ l ≤ k. Then, by [KT12, Lemma 3.3], hλ(FR) =
∑
∅⊂S⊆R(−1)|S|

(
nS−d−2+λ

λ

)
, for

λ = k − 1, k, which gives:

gk(FR) = hk(FR)− hk−1(FR) =
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k

k

)
−

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k−1

k−1

)

=
∑

∅⊂S⊆R
(−1)|S|

[(
nS−d−2+k

k

)
−
(
nS−d−2+k−1

k−1

)]
=

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k

)
.

Suppose now that gk(FR) =
∑
∅⊂S⊆R(−1)|S|

(
nS−d−3+k

k

)
. By relation (39), we conclude that

hk−1(FR) must be equal to its upper bound (cf. [KT12, Lemma 3.3]), since, otherwise, gk(FR)
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would not be maximal, which contradicts our assumption on the value of gk(FR). This gives:

hk(FR) = gk(FR) + hk−1(FR) =
∑

∅⊂S⊆R
(−1)|S|

(
nS−d−3+k

k

)
+

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k−1

k−1

)

=
∑

∅⊂S⊆R
(−1)|S|

[(
nS−d−2+k−1

k

)
+
(
nS−d−2+k−1

k−1

)]
=

∑

∅⊂S⊆R
(−1)|S|

(
nS−d−2+k

k

)
.

Now the fact that hk(FR) is maximal, implies that hl(FR) must be equal to its maximal value
for all 0 ≤ l < k. To see this suppose that hl(FR) is not maximal for some l, with 0 ≤ l < k,
and among all such l choose the largest one. Then, Lemmas 3.2 and 3.3 in [KT12] imply that
hl+1(FR) cannot be maximal, which contradicts the maximality of l. Summarizing, we deduce
that if gk(FR) is equal to its upper bound in (37), so is hl(FR) for all 0 ≤ l ≤ k. By Lemma 3.3
in [KT12], this implies that fl−1(FR) =

∑
∅⊂S⊆R(−1)|S|

(
nS
l

)
, for all 0 ≤ l ≤ k.

Lemma 9. For all 0 ≤ k ≤ d+ 2, we have:

hk(F[3]) ≤
∑

∅⊂S⊆[3]

(−1)3−|S|
(
nS − d− 3 + k

k

)
, nS =

∑

i∈S
ni. (40)

Equality holds for some 0 ≤ k ≤ bd+2
2 c, if and only if fl−1(F[3]) =

∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for

all 0 ≤ l ≤ k.

Proof. We are going to prove relation (40) by induction on k. The result clearly holds for k = 0,
since

h0(F[3]) = 1 = 1− 3 + 3 =
(n[3]−d−3

0

)
−

3∑

i=1

(n[3]\{i}−d−3
0

)
+

3∑

i=1

(
ni−d−3

0

)
.

Suppose the bound holds for some k ≥ 0. We will show that it holds for k+1. Using relation
(36), Lemma 8, and the fact that, for any k ≥ 0, n[3]−d− 2 +k ≥ 3(d+ 1)−d− 2 = 2d+ 1 > 0,
we have:

hk+1(F[3]) ≤
n[3]−d−2+k

k+1 hk(F[3]) +
3∑

i=1

ni
k+1gk(F[3]\{i})

≤ n[3]−d−2+k

k+1

∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
+

3∑

i=1

ni
k+1

∑

∅⊂S⊆[3]\{i}
(−1)|S|

(
nS−d−3+k

k

)

=
n[3]−d−2+k

k+1

(n[3]−d−3+k

k

)
−

3∑

i=1

n[3]−d−2+k

k+1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

n[3]−d−2+k

k+1

(
ni−d−3+k

k

)

+
3∑

i=1

ni
k+1

(n[3]\{i}−d−3+k

k

)
−

3∑

i=1

ni
k+1

∑

j∈[3]\{i}

(nj−d−3+k
k

)

=
(n[3]−d−2+k

k+1

)
−

3∑

i=1

n[3]−d−2+k−ni
k+1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

n[3]−d−2+k−n[3]\{i}
k+1

(
ni−d−3+k

k

)

=
(n[3]−d−2+k

k+1

)
−

3∑

i=1

n[3]\{i}−d−2+k

k+1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

ni−d−2+k
k+1

(
ni−d−3+k

k

)

=
(n[3]−d−2+k

k+1

)
−

3∑

i=1

(n[3]\{i}−d−2+k

k+1

)
+

3∑

i=1

(
ni−d−2+k

k+1

)

=
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−2+k
k+1

)
,
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where we used the fact that:

3∑

i=1

n[3]\{i}
k+1

(
ni−d−3+k

k

)
=

3∑

i=1


 ∑

j∈[3]\{i}

nj
k+1


(ni−d−3+k

k

)
=

3∑

i=1

∑

j∈[3]\{i}

nj
k+1

(
ni−d−3+k

k

)

=
3∑

i=1

∑

j∈[3]\{i}

ni
k+1

(nj−d−3+k
k

)
=

3∑

i=1

ni
k+1

∑

j∈[3]\{i}

(nj−d−3+k
k

)
.

The rest of the proof is concerned with the equality claim. Assume first that fl−1(F[3]) =∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ k. Then we have:

hk(F[3]) =
d+2∑

i=0

(−1)k−i
(
d+2−i
d+2−k

)
fi−1(F[3]) = (−1)k

d+2∑

i=0

(−1)i
(
d+2−i
d+2−k

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS
i

)

= (−1)k
∑

∅⊂S⊆[3]

(−1)3−|S|
d+2∑

i=0

(−1)i
(
d+2−i
d+2−k

)(
nS
i

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
.

In the above relation we used the combinatorial identity (cf. [GKP89, eq. (5.25)]):

∑

0≤k≤l

(
l − k
m

)(
s

k − n

)
(−1)k = (−1)l+m

(
s−m− 1

l −m− n

)
,

where k ← i, l← d+ 2, m← d+ 2− k, n← 0, and s← nS .
Suppose now that hk(F[3]) =

∑
∅⊂S⊆[3](−1)3−|S|(nS−d−3+k

k

)
. Since relation (36) holds for all

k ≥ 0, we conclude that hl(F[3]) must be equal to its upper bound in (40), for all 0 ≤ l < k. To
see this suppose that (40) is not tight for some l, with 0 ≤ l < k, and among all such l choose
the largest one. Then, relation (36) implies that hl+1(F[3]) cannot be equal to its upper bound
from (40), which contradicts the maximality of l. Hence, if hk(F[3]) is equal to its upper bound
in (40), so is hl(F[3]) for all 0 ≤ l < k, which gives, for all l with 0 ≤ l ≤ k:

fl−1(F[3]) =

d+2∑

i=0

(
d+2−i
l−i

)
hi(F[3]) =

d+2∑

i=0

(
d+2−i
l−i

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)

=
∑

∅⊂S⊆[3]

(−1)3−|S|
d+2∑

i=0

(
d+2−i
l−i

)(
nS−d−3+i

i

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|
d+2∑

i=0

(
d+2−i
d+2−l

)(
nS−d−3+i
nS−d−3

)

(41)

=
∑

∅⊂S⊆[3]

(−1)3−|S|( nS
nS−l

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|(nS
l

)
, (42)

where, in order to get from (41) to (42), we used the combinatorial identity (cf. [GKP89,
eq. (5.26)]):

∑

0≤k≤l

(
l − k
m

)(
q + k

n

)
=

(
l + q + 1

m+ n+ 1

)
,

with k ← i, l← d+ 2, m← d+ 2− l, q ← nS − d− 3, and n← nS − d− 3.

We are now going to bound the elements of the h-vector of K[3]. More precisely:

Lemma 10. For all 0 ≤ k ≤ d+ 2, we have:

hk(K[3]) ≤
(
n[3] − d− 3 + k

k

)
. (43)
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Furthermore, for d ≥ 3 and d odd, we have:

hb d
2
c+1(K[3]) ≤

(
n[3] − bd2c − 3

bd2c+ 1

)
−

3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
. (44)

Equality holds for some k, where 0 ≤ k ≤ bd+1
2 c, if and only if, for all ∅ ⊂ R ⊆ [3], fl−1(FR) =∑

∅⊂S⊆R(−1)|R|−|S|
(
nS
l

)
, for all 0 ≤ l ≤ min{k, bd+|R|−1

2 c}.
Sketch of proof. The complete proof can be found in Section A.3 of Appendix A. To prove the
upper bound for hk(K[3]), we distinguish between two cases: (1) the case k = 0, where the
result follows by a straightforward calculation from relation (12) with R = [3], and (2) the case
k ≥ 1, where again we use (12) with R = [3] and substitute gk(FR) by its upper bound from
relation (39) in Lemma 8. We, thus, obtain a bound for hk(K[3]) expressed in terms of hk(F[3]),
hk−1(FR), R ∈ S2, and gλ(∂Pi), λ = k, k − 1. Combining the upper bounds from Lemma 9,
Lemma 3.3 in [KT12], along with the upper bounds for the g-vector of a d-polytope (cf. [Zie95,
Corollary 8.38]), respectively, gives the upper bound in the statement of the lemma.

For the equality claim we assume that hk(K[3]) attains its maximal value. Then, the expres-
sion bounding hk(K[3]) used above, in conjunction with Lemmas 7, 8, 9, and [KT12, Lemma
3.3], yields the equality conditions in the statement of the lemma. In the opposite direction, we
assume that these conditions hold and, using Lemma 9 and [KT12, Lemma 3.3], we show that
the quantities in the right hand side of relation (12) with R = [3], attain their maximal values.
The conclusion then follows from an easy calculation.

We are now ready to state and prove the main theorem of the paper concerning upper bounds
on the number of k-faces of the Minkowski sum of three convex d-polytopes.

Theorem 11. Let P1, P2 and P3 be three d-polytopes in Rd, d ≥ 2, with ni ≥ d + 1 vertices,
1 ≤ i ≤ 3. Then, for all 1 ≤ k ≤ d, we have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+ 2− i
k + 2− i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS − d− 3 + i

i

)

− δ
(bd2c+ 1

k − bd2c

) 3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
,

(45)
where δ = d− 2bd2c, and nS =

∑
i∈S ni. Equality holds for all 1 ≤ k ≤ d, if and only if

fl−1(FR) =
∑

∅⊂S⊆R
(−1)|R|−|S|

(
nS
l

)
, 0 ≤ l ≤ bd+|R|−1

2 c, ∅ ⊂ R ⊆ [3]. (46)

Proof. If suffices to establish upper bounds for fk(F[3]) for all 0 ≤ k ≤ d + 1. Indeed, writing
the f -vector of F[3] in terms of its h-vector, and using relation (14), along with Lemmas 9 and
10 we get:

fk−1(F[3]) =
d+2∑

i=0

(
d+2−i
k−i

)
hi(F[3]) =

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) +

d+2∑

i=b d+2
2
c+1

(
d+2−i
k−i

)
hi(F[3])

=

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) +

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hd+2−j(F[3])

=

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) +

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hj(K[3]). (47)
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From Lemma 9 we have:

b d+2
2
c∑

i=0

(
d+2−i
k−i

)
hi(F[3]) ≤

b d+2
2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)
,

whereas from Lemma 10 we get

b d+1
2
c∑

j=0

(
j

k−d−2+j

)
hj(K[3]) ≤

b d+1
2
c∑

i=0

(n[3]−d−3+j
j

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)
,

where δ = d− 2bd2c. Hence:

fk−1(F[3]) ≤
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+i
i

)
+

b d+1
2
c∑

j=0

(
j

k−d−2+j

)(n[3]−d−3+j
j

)

− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)

=

b d+2
2
c∑

i=0

(
d+2−i
k−i

)(n[3]−d−3+i
i

)
+

b d+1
2
c∑

i=0

(
i

k−d−2+i

)(n[3]−d−3+i
i

)

−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)
− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)

=

d+2
2∑ ∗

i=0

(
(
d+2−i
k−i

)
+
(

i
k−d−2+i

)
)
(n[3]−d−3+i

i

)
−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)

− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)

= fk−1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+2−i
k−i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS−d−3+i

i

)

− δ
( b d

2
c+1

k−b d
2
c−2

) 3∑

i=1

(ni−b d2 c−2

b d
2
c+1

)
,

where:
m
2∑ ∗

i=0

Ti =

bm
2
c−1∑

i=0

Ti + 1
2

(
1 +m− 2bm2 c

)
Tbm

2
c.

Our upper bounds follow from the fact that fk−1(P1 + P2 + P3) = fk+1(F[3]), 1 ≤ k ≤ d.
In what follows we concentrate on the necessary and sufficient conditions for the upper

bounds in (45) to hold as equalities. From the derivation of the upper bounds above (see also
relation (47)), it is clear that the bounds are tight if and only if:

(1) hk(F[3]) is maximal, for all 0 ≤ k ≤ bd+2
2 c, and

(2) hk(K[3]) is maximal, for all 0 ≤ k ≤ bd+1
2 c.

According to Lemma 9 and Lemma 10, these conditions are, respectively, equivalent to requiring
that:
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(1) fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ bd+2

2 c, and

(2) fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤ min{bd+1

2 c, b
d+|R|−1

2 c}, and for all
∅ ⊂ R ⊆ [3].

For R ≡ [3], condition (1) implies condition (2), while for R ⊂ [3], min{bd+1
2 c, b

d+|R|−1
2 c} =

bd+|R|−1
2 c. We, therefore, conclude that the bounds in (45) are attained if and only if, conditions

(46) hold true for all 0 ≤ k ≤ bd−|R|+1
2 c and for all ∅ ⊂ R ⊆ [3].

6 Tightness of upper bounds

In this section we show that the bounds in Theorem 11 are tight. We distinguish between the
cases d = 2, d = 3 and d ≥ 4. For d = 2, it is easy to verify that for k = 1, 2, the right-hard side
of inequality (45) evaluates to n1 + n2 + n3, which is known to be tight.

6.1 Three dimensions

For d = 3, the upper bounds in Theorem 11 are as follows:

f0(P1 + P2 + P3) ≤ n1n2 + n2n3 + n1n3 − n1 − n2 − n3 + 2,

f1(P1 + P2 + P3) ≤ 2n1n2 + 2n2n3 + 2n1n3 − n1 − n2 − n3 − 6,

f2(P1 + P2 + P3) ≤ n1n2 + n2n3 + n1n3 − 6.

(48)

In order to prove that these bounds are tight, we exploit two results: one by Fukuda and Weibel
[FW07] and one by Weibel [Wei12]. Weibel [Wei12] has shown that the number of k-faces of
the Minkowski sum of r d-polytopes P1, . . . , Pr in Rd, where r ≥ d, is related to the number of
k-faces of the Minkowski sum of subsets of these polytopes of size at most d− 1 as follows:

fk(P1 + P2 + · · ·+ Pr)− α =

d−1∑

j=1

(−1)d−1−j
(
r − 1− j
d− 1− j

) ∑

S∈Srj

(fk(PS)− α), (49)

where Sr
j is the family of subsets of [r] of size j, PS is the Minkowski sum of the polytopes in S,

and α = 2 if k = 0 and d is odd, and α = 0 otherwise. For d = r = 3, equation (49) simplifies
to:

fk(P1 + P2 + P3) = α+

2∑

j=1

(−1)2−j(2−j
2−j
) ∑

S∈S3
j

(fk(PS)− α)

= α−
3∑

i=1

(fk(Pi)− α) +

3∑

i=1

(fk(P[3]\{i})− α)

= α−
3∑

i=1

fk(Pi) + 3α+

3∑

i=1

fk(P[3]\{i})− 3α

= α+
∑

1≤i<j≤3

fk(Pi + Pj)−
3∑

i=1

fk(Pi).

(50)

Besides relation (49), Weibel [Wei12] also presented a construction of r simplicial d-polytopes,
such that any subset S of these polytopes of size at most d − 1 has the maximum possible
number of vertices, namely, f0(PS) =

∏
i∈S ni. Specializing this construction in our case, i.e.,

for r = d = 3, we deduce that it is possible to construct three simplicial 3-polytopes P1, P2, P3
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in R3, such that f0(Pi) = ni, 1 ≤ i ≤ 3, and f0(Pi + Pj) = ninj , 1 ≤ i < j ≤ 3. Substituting in
(50) for k = 0, we get:

f0(P1 + P2 + P3) = 2 +
∑

1≤i<j≤3

ninj −
3∑

i=1

ni = n1n2 + n2n3 + n1n3 − n1 − n2 − n3 + 2,

i.e., the upper bound in (48) is tight for k = 03. Since all Pi’s are simplicial, we have

f1(Pi) = 3ni − 6, f2(Pi) = 2ni − 4, 1 ≤ i ≤ 3. (51)

On the other hand, since f0(Pi + Pj) is maximal, for all 1 ≤ i < j ≤ 3, we get, by [FW07,
Corollary 4], that fk(Pi + Pj) is also maximal for k = 1, 2, and for all 1 ≤ i < j ≤ 3. Hence:

f1(Pi + Pj) = 2ninj + ni + nj − 8, f2(Pi + Pj) = ninj + ni + nj − 6. (52)

Substituting from (51) and (52) in (50), and recalling that α = 0 for k > 0, we get:

f1(P1 + P2 + P3) =
∑

1≤i<j≤3

(2ninj + ni + nj − 8)−
3∑

i=1

(3ni − 6)

= [2(n1n2 + n2n3 + n1n3) + 2(n1 + n2 + n3)− 24]− [3(n1 + n2 + n3)− 18]

= 2n1n2 + 2n2n3 + 2n1n3 − n1 − n2 − n3 − 6,

and

f2(P1 + P2 + P3) =
∑

1≤i<j≤3

(ninj + ni + nj − 6)−
3∑

i=1

(2ni − 4)

= [n1n2 + n2n3 + n1n3 + 2(n1 + n2 + n3)− 18]− [2(n1 + n2 + n3)− 12]

= n1n2 + n2n3 + n1n3 − 6,

i.e., the upper bounds in (48) are tight for k = 1, 2.

6.2 Four or more dimensions

We now focus on the case d ≥ 4. We shall construct three d-polytopes P1, P2 and P3 in Rd, such
that they satisfy the conditions in relation (46). Consequently, as Theorem 11 asserts, these
polytopes attain the upper bounds in (45).

Consider the following d-dimensional moment-like curves in Rd:

γ1(t) = (t, ζt2, ζt3, t4, t5, . . . , td),

γ2(t) = (ζt, t2, ζt3, t4, t5, . . . , td),

γ3(t) = (ζt, ζt2, t3, t4, t5, . . . , td),

where t > 0, and ζ ≥ 0. Let e1,1 = (0), e1,2 = (1) be the standard affine basis of R and recall
that e2,1 = (0, 0), e2,2 = (1, 0), e2,3 = (0, 1) is the standard affine basis of R2. We shall define
three polytopes as the convex hulls of points, chosen appropriately on each of these d-curves.
We then proceed to show that FR, R ∈ S2, and F[3], have the following property: every set of
k = bd+1

2 c vertices from FR, or k ≤ bd+2
2 c vertices from F[3], defines a (k−1)-face of FR or F[3],

respectively. This property readily yields the necessary and sufficient conditions establishing the
tightness of the upper bounds (cf. rel. (46)).

3This is essentially the result of Theorem 3 in [Wei12] for d = r = 3; however, we recapitulate this result in
order to show that Weibel’s construction yields tights bounds for k = 1, 2 also.
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Let xi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ 3, be n[3] positive real numbers, such that xi,j < xi,j+1,
1 ≤ j ≤ ni − 1, and let τ be a positive real parameter. Let xεi,j = xi,j + ε, ti,j = xi,jτ

νi ,
tεi,j = xεi,jτ

νi , where 1 ≤ j ≤ ni, 1 ≤ i ≤ 3, ε > 0, and νi = 3 − i, 1 ≤ i ≤ 3. The value of ε is
chosen such that xεi,j < xi,j+1, for all 1 ≤ j < ni, and for all 1 ≤ i ≤ 3. Finally, we set ζ = τM ,
where M ≥ d(d+ 1). We are going to define three vertex sets Vi as follows:

Vi = {γi(ti,1),γi(ti,2), . . .γi(ti,ni)} 1 ≤ i ≤ 3. (53)

Call Pi the d-polytope we get as the convex hull of the vertices in Vi, and let Vi be the image of
Vi via the Cayley embedding. As in Section 2, call C the Cayley polytope of the Pi’s in Rd+2,
and FR, ∅ ⊂ R ⊆ [3], the set of faces of C with at least one vertex from each Vi, i ∈ R. Note
that, by construction, Pi is a bd2c-neighborly polytope in Rd with ni vertices, which immediately
implies that conditions (46) hold for R ∈ S1 and for all 0 ≤ l ≤ bd2c. Hence, it suffices to show
that:

fl−1(FR) =
∑

∅⊂S⊆R
(−1)|R|−|S|

(
nS
l

)
, 0 ≤ l ≤ bd+|R|−1

2 c, 2 ≤ |R| ≤ 3, (54)

which we will succeed by choosing a sufficiently small value for τ .
To prove that the constructed polytopes have the desired properties (see Lemmas 12 and

13, bellow), we adopt the key idea used in the proofs of [Zie95, Theorem 0.7 & Corollary 0.8]
on basic properties of cyclic d-polytopes, and adapt this idea to our setting, where we view the
faces the Minkowski sum of the polytopes Pi, i ∈ R, via the face set FR of their Cayley polytope,
where 2 ≤ |R| ≤ 3.

We start off with subsets R of size two. To show that fk−1(FR) is according to relation (54),
recall (cf. Section 2) that the polytope C contains the Cayley polytope CR of the polytopes in
R as a d-subcomplex embedded in Rd+2. Thus, in order to prove relation (54) for FR, we may
consider CR and FR independently of C, i.e., we can disassociate the polytopes Pi, i ∈ R, from
the Cayley polytope C. In other words, we think of the polytopes Pi, i ∈ R, as d-polytopes
in Rd, while their Cayley polytope CR is seen as a (d + 1)-polytope in Rd+1. We exploit this
observation in order to prove the following lemma.

Lemma 12. There exists a sufficiently small positive value τ̂R for τ such that, for all τ ∈ (0, τ̂R),

fk−1(FR) =
∑

∅⊂S⊆R
(−1)2−|S|(nS

k

)
, 2 ≤ k ≤ bd+1

2 c, R ∈ S2.

Proof. Without loss of generality let R = {1, 3}. The rest of the cases are analogous. The condi-
tion in the statement of the lemma is equivalent to the requirement that C{1,3} is a (V1, bd+1

2 c)-
bineighborly polytope (see [KT12] for definitions and details), which in turn is equivalent to the
requirement that

fb d+1
2
c−1(F{1,3}) =

∑

∅⊂S⊆{1,3}
(−1)2−|S|( nS

b d+1
2
c
)
. (55)

We shall prove that condition (55) holds true for the Cayley polytope C{1,3} of the polytopes
P1, P3, and for sufficiently small values of τ , as described in the statement of the lemma.

Define δ := d+ 1− 2bd+1
2 c. Let X be a positive real number such that X > xε3,n3

, and let4

T = Xτν3 . Choose a set U of km 6= 0 vertices γm(tm,jm,1),γm(tm,jm,2), . . . ,γm(tm,jm,km ) from
the set Vm, such that jm,1 < jm,2 < . . . < jm,km , for m ∈ {1, 3}, and k1 + k3 = bd+1

2 c. Let
U = {βm(tm,jm,1),βm(tm,jm,2), . . . ,βm(tm,jm,km ) | m ∈ {1, 3}}, be the Cayley embedding of U
in Rd+1 (using the affine basis e1,1, e1,2). For a vector x = (x1, x2, . . . , xd+1) ∈ Rd+1, we define
the (d+ 2)× (d+ 2) determinant HU(x) as follows:

4Although we have set ν3 = 0, we keep ν3 as is in the proof, so as to make more profound the analogy of the
proof presented here for R = {1, 3} with the cases R = {1, 2} and R = {2, 3}.
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(−1)6

∣∣∣∣∣
1 1 1 · · · 1 1 1 1 · · · 1 1 1

x β1(t1,j1,1) β1(t
ǫ
1,j1,1) · · · β1(t1,j1,k1 ) β1(t

ǫ
1,j1,k1

) β3(t3,j3,1) β3(t
ǫ
3,j3,1) · · · β3(t3,j3,k3 ) β3(t

ǫ
3,j3,k3

) β3(δT )

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1 1 · · · 1 1 1

x1 0 0 · · · 0 0 1 1 · · · 1 1 1

x2 t1,j1,1 tǫ1,j1,1 · · · t1,j1,k1 tǫ1,j1,k1
τM t3,j3,1 τM tǫ3,j3,1 · · · τM t3,j3,k3 τM tǫ3,j3,k3

τMδT

x3 τM (t1,j1,1)
2 τM(tǫ1,j1,1)

2 · · · τM(t1,j1,k1 )
2 τM(tǫ1,j1,k1

)2 τM (t3,j3,1)
2 τM(tǫ3,j3,1)

2 · · · τM (t3,j3,k3 )
2 τM(tǫ3,j3,k3

)2 τM(δT )2

x4 τM (t1,j1,1)
3 τM(tǫ1,j1,1)

3 · · · τM(t1,j1,k1 )
3 τM(tǫ1,j1,k1

)3 (t3,j3,1)
2 (tǫ3,j3,1)

3 · · · (t3,j3,k3 )
3 (tǫ3,j3,k3

)3 (δT )3

x5 (t1,j1,1)
4 (tǫ1,j1,1)

4 · · · (t1,j1,k1 )
4 (tǫ1,j1,k1

)4 (t3,j3,1)
2 (tǫ3,j3,1)

4 · · · (t3,j3,k3 )
4 (tǫ3,j3,k3

)4 (δT )4

...
...

...
...

...
...

...
...

...
...

...
...

xd+1 (t1,j1,1)
d (tǫ1,j1,1)

d · · · (t1,j1,k1 )
d (tǫ1,j1,k1

)d (t3,j3,1)
d (tǫ3,j3,1)

d · · · (t3,j3,k3 )
d (tǫ3,j3,k3

)d (δT )d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Notice that for d odd the last column
(

1
β3(δT )

)
of HU(x) does not exist. The equation HU(x) = 0

is the equation of a hyperplane in Rd+1 that passes through the points in U. We are going to
show that, for any choice of U, and for all vertices v in V{1,3} \ U, V{1,3} = V1 ∪ V3, we have
HU(v) > 0 for sufficiently small values of τ .

Suppose we have some vertex v ∈ V{1,3} \ U. Then, v = βs(ts,λ), ts,λ = xs,λτ
νs , where

1 ≤ λ ≤ ns, s is either 1 or 3, and λ /∈ {js,1, js,2, . . . , js,ks}. We perform the following determinant
transformations on HU(v): initially we subtract its second row from its first, and then we shift
its first column to the right via an even number of column swaps. More precisely, we need to shift
the first column of HU(v) to the right so that the values ts,λ, ts,js,1 , tεs,js,1 , ts,js,2 , t

ε
s,js,2

, . . . , ts,js,ks ,
tεs,js,ks

appear consecutively in the columns of HU(v) and in increasing order. To do that we
always need an even number of column swaps, due to the way we have chosen ε.

Consider the case where s = 1 and suppose that all necessary operations on HU(v) have
been performed. Then HU(v) is in the form of the determinant Dn,m(τ ; I, J,µ) of Lemma 16
(multiplied by τM ), with n ← 2k1 + 1, m ← 2k3, l ← d + 2, µ ← (0, 0, 1, 2, . . . , d), α ← ν1,
β ← ν3, I ← 3, and J ← 5. Note that the requirement for M in Lemma 16 is satisfied by our
choice of M . According to Lemma 16, HU(v) has the following asymptotic expansion in terms
of τ :

HU(v) = τM (Cτ ξ + Θ(τ ξ+1)), ξ = ν1(−2 +

2k1+3∑

i=4

(i− 2)) + ν3(3 +
d+2∑

i=2k1+4

(i− 2)), (56)

where C is a positive constant independent of τ . The asymptotic expansion in (56) implies that
there exists a positive value τ̂v,U for τ such that for all τ ∈ (0, τ̂v,U), HU(v) > 0. The case s = 3
is completely analogous.

Since the number of the subsets U is finite, while for each such subset U we need to consider
a finite number of vertices in V{1,3} \U, it suffices to consider a positive value τ̂{1,3} for τ that is
small enough, so that all possible determinants HU(v) are strictly positive for any τ ∈ (0, τ̂{1,3}).
For τ ∈ (0, τ̂{1,3}), our analysis above immediately implies that for each set U the equation
HU(x) = 0, x ∈ Rd+1, is the equation of a supporting hyperplane of CR passing through the
vertices of U, and those only. In other words, every set U, where |U| = bd+1

2 c, |U∩V1| = k1 6= 0,
and |U ∩ V3| = k3 6= 0, defines a (bd+1

2 c − 1)-face of CR. Taking into account that the number

of such subsets U is
∑b d+1

2
c−1

i=1

(
n1

i

)( n3

b d+1
2
c−i
)
, we deduce that

fb d+1
2
c−1(F{1,3}) =

b d+1
2
c−1∑

i=1

(
n1

i

)( n3

b d+1
2
c−i
)

=
(n1+n3

b d+1
2
c
)
−
( n1

b d+1
2
c
)
−
( n3

b d+1
2
c
)

=
∑

∅⊂S⊆{1,3}
(−1)2−|S|( nS

b d+1
2
c
)
.

Hence, condition (55) is satisfied for all τ ∈ (0, τ̂{1,3}).
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We now consider the case R = [3]. In this case we can show that:

Lemma 13. There exists a sufficiently small positive value τ̂[3] for τ such that, for all τ ∈
(0, τ̂[3]),

fk−1(F[3]) =
∑

∅⊂S⊆[3]

(−1)3−|S|(nS
k

)
, 3 ≤ k ≤ bd+2

2 c, (57)

Proof. Define δ := d+ 2− 2k and let T be a positive real number such that T > tε3,n3
(= xε3,n3

).
Choose a set U of ki 6= 0 vertices from Vi, 1 ≤ i ≤ 3, such that k1 + k2 + k3 = k, and
denote by U the Cayley embedding of U in Rd+2 (using the affine basis e2,i, 1 ≤ i ≤ 3). Let
γi(ti,ji,1),γ(ti,ji,2),. . ., γi(ti,ji,ki ), be the vertices in U , and βi(ti,ji,1),βi(ti,ji,2), . . . ,βi(ti,ji,ki ),
be their corresponding vertices in U, where ji,1 < ji,2 < . . . < ji,ki for all 1 ≤ i ≤ 3. Let
x = (x1, x2, . . . , xd+2) and define the (d+ 3)× (d+ 3) determinant HU(x) as follows:

−
∣∣∣∣
1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1

x β1(t1,j1,1) · · · β1(t
ǫ
1,j1,k1

) β2(t2,j2,1) · · · β2(t
ǫ
j2,k2

) β3(t
ǫ
3,j3,1

) · · · β3(t
ǫ
3,j3,k3

) β3(T ) · · · β3(δT )

∣∣∣∣ =

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1

x1 0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0

x2 0 · · · 0 0 · · · 0 1 · · · 1 1 · · · 1

x3 t1,j1,1 · · · tǫ1,j1,k1
τM t2,j2,1 · · · τM tǫ2,j2,k2

τM t3,j3,1 · · · τM tǫ3,j3,k3
τMT · · · τMδT

x4 τM (t1,j1,1)
2 · · · τM (tǫ1,j1,k1

)2 (t2,j2,1)
2 · · · (tǫ2,j2,k2

)2 τM (t3,j3,1)
2 · · · τM (tǫ3,j3,k3

)2 τMT 2 · · · τM (δT )2

x5 τM (t1,j1,1)
3 · · · τM (tǫ1,j1,k1

)3 τM (t2,j2,1)
3 · · · τM (tǫ2,j2,k2

)3 (t3,j3,1)
3 · · · (tǫ3,j3,k3

)3 T 3 · · · (δT )3

x6 (t1,j1,1)
4 · · · (tǫ1,j1,k1

)4 (t2,j2,1)
4 · · · (tǫ2,j2,k2

)4 (t3,j3,1)
4 · · · (tǫ3,j3,k3

)4 T 4 · · · (δT )4

...
...

...
...

...
...

...
...

...
...

...
...

...

xd+2 (t1,j1,1)
d · · · (tǫ1,j1,k1

)d (t2,j2,1)
d · · · (tǫ2,j2,k2

)d (t3,j3,1)
d · · · (tǫ3,j3,k3

)d T d · · · (δT )d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We can alternatively describe HU(x) as follows:

(i) The first column of HU(x) is
(

1
x

)
.

(ii) For i ranging from 1 to 3, and for λ ranging from 1 to ki, the next ki pairs of columns of
HU(x) are

(
1

βi(ti,ji,λ )

)
and

(
1

βi(t
ε
i,ji,λ

)

)
.

(iii) For λ ranging from 1 to δ, the last δ columns of HU(x) are
(

1
β3(λT )

)
. Notice that if

k = bd+2
2 c and d is even, this category of columns of HU(x) does not exist.

The equation HU(x) = 0 is the equation of a hyperplane in Rd+2 that passes through the
points in U. Recall that V[3] = V1 ∪ V2 ∪ V3. We are going to show that, for any choice of U,
and for all vertices v in V[3] \ U, we have HU(v) > 0 for sufficiently small τ .

Suppose we have some vertex v ∈ V[3] \ U. Then, v = βs(ts,λ), ts,λ = xs,λτ
νs , for some

1 ≤ λ ≤ ns and 1 ≤ s ≤ 3, such that λ /∈ {js,1, js,2, . . . , js,ks}. Then we can transform HU(v)
in the form of the determinant En,m,k(τ ;µ) of Lemma 17, by subtracting the second and third
row of HU(v) from its first row and shifting the first column of HU(v) to the right via an even
number of column swaps. More precisely, we need to shift the first column of HU(v) to the
right so that the values ts,λ, ts,js,1 , tεs,js,1 , ts,js,2 , t

ε
s,js,2

, . . . , ts,js,ks , t
ε
s,js,ks

, appear consecutively in
the columns of HU(v) and in increasing order. To do that we always need an even number of
column swaps, due to the way we have chosen ε.

Now, suppose that v ∈ V1. Then HU(v) is in the form of the determinant En,m,k(τ ;µ) of
Lemma 17, where n← 2k1 + 1, m← 2k2, k ← 2k3 + δ, l← d+ 3, and µ← (0, 0, 0, 1, 2, . . . , d).
Obviously, M ≥ 2|µ| = d(d + 1). Applying now Lemma 17, we deduce that HU(v) can be
written as:

HU(v) = C ′τ ξ + Θ(τ ξ+1), ξ = 4 + 2

2k1+5∑

i=7

(i− 3) +

2k1+2k2+3∑

i=2k1+6

(i− 3),
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where C ′ is a positive constant independent of τ . The asymptotic estimate above implies that
HU(v) > 0, for sufficiently small τ .

The remaining cases, i.e., the cases v ∈ V2 and v ∈ V3, are completely analogous and we
omit them. We thus conclude that, for any specific choice of U , and for any specific vertex
v ∈ V[3] \U, there exists some τv,U > 0 (cf. Lemma 17) that depends on v and U, such that for
all τ ∈ (0, τv,U) we have HU(v) > 0. For each k with 3 ≤ k ≤ bd+2

2 c, the number of the sets U
of size k containing at least one vertex from each Vi, 1 ≤ i ≤ 3, is

(
n1+n2+n3

k

)
−
(
n1+n2

k

)
−
(
n1+n3

k

)
−
(
n2+n3

k

)
+
(
n1

k

)
+
(
n2

k

)
+
(
n3

k

)
=

∑

∅⊂S⊆[3]

(−1)3−|S|(nS
k

)
.

For each such subset U we need to consider the (n1 + n2 + n3 − k) vertices in V[3] \U, therefore
it suffices to consider a positive value τ̂[3] for τ that is small enough, so that all

b d+1
2
c∑

k=2

(n1 + n2 + n3 − k)
∑

∅⊂S⊆[3]

(−1)3−|S|(nS
k

)
,

possible determinants HU(v) are strictly positive. For τ ← τ̂[3], our analysis above immediately
implies that for each set U the equation HU(x) = 0, x ∈ Rd+2, is the equation of a supporting
hyperplane for C passing through the vertices of U, and those only. In other words, every set
U, of k vertices, for 3 ≤ k ≤ bd+2

2 c, with at least one vertex from each Vi, 1 ≤ i ≤ 3, defines a
(k − 1)-face of C, which means that

fk−1(F[3]) =
∑

∅⊂S⊆R
(−1)3−|S|(nS

k

)
, for all 3 ≤ k ≤ bd+2

2 c.

Relation (54) now immediately follows from Lemmas 12 and 13. First choose a value τ? for
τ , smaller that τ̂R, for all 2 ≤ |R| ≤ 3. Then for this value of τ , the results of both Lemma 12
and Lemma 13 hold true. Moreover, since P1, P2 and P3 are bd2c-neighborly for any τ > 0, and
since f−1(FR) = (−1)|R|−1, for all ∅ ⊂ R ⊆ [3], while fk−1(FR) = 0, for all 1 ≤ k ≤ |R|, we
conclude that, for τ ≡ τ?, relations (54) hold.

Based on the analysis above, as well as the analysis in Section 6.1, we conclude that the
upper bounds stated in Theorem 11 are actually tight for any d ≥ 2. We can, thus, restate
Theorem 11 in its complete and definitive form:

Theorem 14. Let P1, P2 and P3 be three d-polytopes in Rd, d ≥ 2, with ni ≥ d + 1 vertices,
1 ≤ i ≤ 3. Then, for all 1 ≤ k ≤ d, we have:

fk−1(P1 + P2 + P3) ≤ fk+1(Cd+2(n[3]))−
b d+2

2
c∑

i=0

(
d+ 2− i
k + 2− i

) ∑

∅⊂S⊂[3]

(−1)|S|
(
nS − d− 3 + i

i

)

− δ
(bd2c+ 1

k − bd2c

) 3∑

i=1

(
ni − bd2c − 2

bd2c+ 1

)
,

where δ = d − 2bd2c, and nS =
∑

i∈S ni. Moreover, for any d ≥ 2, there exist three d-polytopes
in Rd for which the bounds above are attained for all 1 ≤ k ≤ d.

7 Summary and open problems

In this paper we have computed the maximum number of k-faces, fk(P1+P2+P3), 0 ≤ k ≤ d−1,
of the Minkowski sum of three d-polytopes P1, P2 and P3 in Rd as a function of the number

27



of their vertices n1, n2 and n3. When d = 2 our expressions reduce to known tight bounds,
while for d = 3 we show the tightness of our upper bounds by exploiting results from [FW07]
and [Wei12]. In four or more dimensions we present a novel construction that achieves the
upper bounds: we consider the d-dimensional moment-like curves γ1(t) = (t, ζt2, ζt3, t4, . . . , td),
γ2(t) = (ζt, t2, ζt3, t4, . . . , td), and γ3(t) = (ζt, ζt2, t3, t4, . . . , td), and we show that our maximal
values are attained when Pi is the d-polytope with vertex set

Vi = {γi(xi,1τ?),γi(xi,2τ?), . . . ,γi(xi,niτ?)}, i = 1, 2, 3,

with 0 < xi,1 < xi,2 < · · · < xi,ni and ζ = (τ?)M . The parameter value τ? is a sufficiently small
positive number, while M is chosen sufficiently large.

Our ultimate goal is to extend our results for the Minkowski sum of r d-polytopes in Rd, for
r ≥ 4 and d ≥ 3. Towards this direction, we can extend our methodology and tools so as to
prove relations for r polytopes that generalize certain relations that hold true for two or three
polytopes. For example, relation (12) in Lemma 3 generalizes to:

hk(KR) =
∑

∅⊂S⊆R
g

(|R|−|S|)
k (FS), 0 ≤ k ≤ d+ |R| − 1,

while the Dehn-Sommerville-like equations in the same lemma (cf. rel. (14)), generalize to:

hd+r−1−k(F[r]) = hk(K[r]), 0 ≤ k ≤ d+ r − 1, (58)

where [r] = {1, 2, . . . , r}, while FR and KR, ∅ ⊂ R ⊆ [r], are defined as in Section 2. Notice
that, since for r = 1 we have F[1] ≡ K[1] ≡ ∂P1, the equations in (58) reduce to the well-known
Dehn-Sommerville equations for a simplicial d-polytope. We can also obtain a generalization of
relation (13). Let Q be the simplicial (d+r−1)-sphere we get by performing stellar subdivisions
on the non-simplicial faces of the Cayley polytope of the r polytopes. For all 0 ≤ k ≤ d+ r− 1,
we can obtain the following two expressions relating the h-vector elements of ∂Q with those of
FS and KS , ∅ ⊂ S ⊆ [r]:

hk(∂Q) = hk(F[r]) +
∑

∅⊂S⊂[r]

r−|S|−1∑

i=0

Er−|S|,i hk−i(FS),

hk(∂Q) = hk(F[r]) +
∑

∅⊂S⊂[r]

r−|S|−1∑

i=0

Er−|S|,i hk−1−i(KS),

where Em,k, m ≥ k + 1 > 0, are the Eulerian numbers [GKP89, A00]:

Em,k =
k∑

i=0

(−1)i
(
m+ 1

i

)
(k + 1− i)m, m ≥ k + 1 > 0.

A recurrence relation similar to (36) in Lemma 7 is not as straightforward to obtain. However,
we conjecture that the following recurrence relation holds for all 0 ≤ k ≤ d+ r − 2:

hk+1(F[r]) ≤
n[r] − d− r + 1 + k

k + 1
hk(F[r]) +

r∑

i=1

ni
k + 1

gk(F[r]\{i}), n[r] =

r∑

i=1

ni.

The bounds presented in this paper refer to polytopes of the same dimension. We would
like to derive similar bounds for two or more polytopes when the dimensions of these polytopes
differ, as well as in the special case of simple polytopes. Finally, a similar problem is to express
the number of k-faces of the Minkowski sum of r d-polytopes in terms of the number of facets
of these polytopes. Results in this direction are known for d = 2 and d = 3 only. We would like
to derive such expressions for any d ≥ 4 and any number, r, of summands.
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A Omitted & full proofs

A.1 Omitted & full proofs of Section 3

Proof of Lemma 1. The result clearly holds for m = 0, since:

g
(0)
k (Y) = hk(Y) =

0∑

i=0

(−1)i
(

0
i

)
hk−i(Y).

Suppose the relation holds for some m ≥ 0. We will show it holds for m+ 1. Indeed:

g
(m+1)
k (Y) = g

(m)
k (Y)− g(m)

k−1(Y)

=
m∑

i=0

(−1)i
(
m
i

)
hk−i(Y)−

m∑

i=0

(−1)i
(
m
i

)
hk−1−i(Y)

=

m+1∑

i=0

(−1)i
(
m
i

)
hk−i(Y)−

m+1∑

j=1

(−1)j−1
(
m
j−1

)
hk−j(Y)

=
m+1∑

i=0

(−1)i
(
m
i

)
hk−i(Y)−

m+1∑

j=0

(−1)j−1
(
m
j−1

)
hk−j(Y)

=

m+1∑

i=0

(−1)i
(
m
i

)
hk−i(Y) +

m+1∑

i=0

(−1)i
(
m
i−1

)
hk−i(Y)

=

m+1∑

i=0

(−1)i
[(
m
i

)
+
(
m
i−1

)]
hk−i(Y)

=
m+1∑

i=0

(−1)i
(
m+1
i

)
hk−i(Y).

Proof of Lemma 2. By replacing hk−ν−j(Y) from its defining equation, we get:

g
(D−δ−ν)
k−ν (Y) =

D−δ−ν∑

j=0

(−1)j
(
D−δ−ν

j

)
hk−ν−j(Y)

=

D−δ−ν∑

j=0

(−1)j
(
D−δ−ν

j

) δ+1∑

i=0

(−1)k−ν−j−i
(

δ+1−i
δ+1−k+ν+j

)
fi−1(Y) (59)

=

D−δ−ν∑

j=0

(−1)j
(
D−δ−ν

j

)D+1∑

i=0

(−1)k−ν−j−i
(

δ+1−i
δ+1−k+ν+j

)
fi−1(Y) (60)

=

D+1∑

i=0

(−1)k−ν−ifi−1(Y)

D−δ−ν∑

j=0

(
D−δ−ν

j

)(
δ+1−i

k−ν−i−j
)

(61)

=
D+1∑

i=0

(−1)k−ν−i
(
D+1−ν−i
k−ν−i

)
fi−1(Y) (62)
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=
k−ν∑

i=0

(−1)k−ν−i
(
D+1−ν−i
D+1−k

)
fi−1(Y) (63)

=

k∑

j=ν

(−1)k−j
(
D+1−j
D+1−k

)
fj−ν−1(Y) (64)

=
D+1∑

j=0

(−1)k−j
(
D+1−j
D+1−k

)
fj−ν−1(Y) (65)

= Sk(Y;D, ν),

where:

• in order to go from (59) to (60), we used that
(

δ+1−i
δ+1−k+ν+j

)
= 0 for i > δ + 1,

• in order to go from (61) to (62), we used the combinatorial identity:
n∑

i=0

(
n
i

)(
m
k−i
)

=
(
n+m
k

)
=

k∑

i=0

(
n
i

)(
m
k−i
)

=
(
n+m
k

)
,

with n← D − δ − ν, m← δ + 1− i, i← j, k ← k − ν − i,
• in order to go from (62) to (63), we used that

(
D+1−ν−i
k−ν−i

)
= 0 for i > k − ν, and that(

D+1−ν−i
k−ν−i

)
=
(

D+1−ν−i
(D+1−ν−i)−(k−ν−i)

)
=
(
D+1−ν−i
D+1−k

)
, and, finally,

• in order to go from (64) to (65), we used that fj−ν−1(Y) = 0 for j < ν (i.e., for j−ν−1 <
−1), and that

(
D+1−j
D+1−k

)
= 0 for j > k.

A.2 Omitted & full proofs of Section 4

Proof of Lemma 5. Using relation (13), and after rearranging the terms, the left hand side of
relation (18) becomes:

T1︷ ︸︸ ︷
(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) +

T2︷ ︸︸ ︷∑

R∈S2

[(k + 1)hk+1(FR) + (d+ 2− k)hk(FR)]

+

T3︷ ︸︸ ︷∑

R∈S1

[(k + 1)hk+1(FR) + (d+ 2− k)hk(FR)] +

T4︷ ︸︸ ︷∑

R∈S1

[(k + 1)hk(FR) + (d+ 2− k)hk−1(FR)] .

(66)
We are going to analyze each term in the expression above separately. For any R ∈ S2: (i) the
relation at the top of page 18 in [KT12, Lemma 3.2], (ii) relations (12), with R ∈ S2, and (iii)
relation (3.9) in [KT12], give:

(k + 1)hk+1(FR) + (d+ 1− k)hk(FR) =
∑

i∈R

∑

v∈Vi
[hk(KR/v)− gk(K{i}/v)]

=
∑

v∈VR
hk(KR/v)−

∑

∅⊂S⊂R

∑

v∈VS
gk(KS/v).

Hence term T2 can be rewritten as:

T2 =
∑

R∈S2

hk(FR) +
∑

R∈S2

∑

v∈VR
hk(KR/v)−

∑

R∈S2

∑

∅⊂S⊂R

∑

v∈VS
gk(KS/v)

=

T5︷ ︸︸ ︷∑

R∈S2

hk(FR) +

T6︷ ︸︸ ︷∑

R∈S2

∑

v∈VR
hk(KR/v)−

T7︷ ︸︸ ︷
2
∑

R∈S1

∑

v∈VR
gk(KR/v) .

(67)
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Applying relation (17) to the (d − 1)-complex FR, R ∈ S1, and using the identity FR ≡
KR(≡ ∂PR), we derive the following expressions:

(k + 1)hk+1(FR) + (d− k)hk(FR) =
∑

v∈VR
hk(KR/v),

khk(FR) + (d− (k − 1))hk−1(FR) =
∑

v∈VR
hk−1(KR/v),

which, in turn yield the following expansions for T3 and T4:

T3 =

T8︷ ︸︸ ︷∑

R∈S1

∑

v∈VR
hk(KR/v) +

T9︷ ︸︸ ︷
2
∑

R∈S1

hk(FR), (68)

T4 =

T10︷ ︸︸ ︷∑

R∈S1

∑

v∈VR
hk−1(KR/v) +

T11︷ ︸︸ ︷∑

R∈S1

[hk(FR) + hk−1(FR)] . (69)

On the other hand, utilizing the expressions in Lemma 4, we arrive at the following expansion
for the right-hand side of (18):

3∑

i=1

∑

v∈Vi


hk(K[3]/v) +

∑

{i}⊆R⊂[3]

hk−1(KR/v) + hk−2(K{i}/v)




+
∑

R∈S1

[hk(FR) + hk−1(FR)] +
∑

R∈S2

∑

∅⊂S⊆R
hk(FS).

(70)

Since
3∑

i=1

∑

v∈Vi
hk(K[3]/v) =

∑

v∈V[3]

hk(K[3]/v),

3∑

i=1

∑

v∈Vi

∑

{i}⊆R⊂[3]

hk−1(KR/v) =
∑

R∈S2

∑

v∈VR
hk−1(KR/v) +

∑

R∈S1

∑

v∈VR
hk−1(KR/v),

3∑

i=1

∑

v∈Vi
hk−2(K{i}/v) =

∑

R∈S1

∑

v∈VR
hk−2(KR/v),

and ∑

R∈S2

∑

∅⊂S⊆R
hk(FS) =

∑

R∈S2

hk(FR) + 2
∑

R∈S1

hk(FR),

the expression in (70) can be rewritten in the following more convenient form:

T12︷ ︸︸ ︷∑

v∈V[3]

hk(K[3]/v) +

T13︷ ︸︸ ︷∑

R∈S2

∑

v∈VR
hk−1(KR/v) +

T14︷ ︸︸ ︷∑

R∈S1

∑

v∈VR
[hk−1(KR/v) + hk−2(KR/v)]

+

T15︷ ︸︸ ︷∑

R∈S1

[hk(FR) + hk−1(FR)] +
∑

R∈S2

hk(FR) + 2
∑

R∈S1

hk(FR) .

Solving relation (18) in terms of the term T1, we get:

T1 = T12 + T13 + T14 + T15 − (T2 + T3 + T4)
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= T12 + T13 + T14 + T15 − [(T5 + T6 − T7) + (T8 + T9) + (T10 + T11)]

= T12 + (T13 − T6) + (T14 + T7 − T8 − T10) + (T15 − T5 − T9 − T11)

= T12 + (T13 − T6) + (T14 + T7 − T8 − T10),

where we used the fact that the terms T5, T9 and T11 cancel-out with the term T15. Observe
now that:

T13 − T6 =
∑

R∈S2

∑

v∈VR
hk−1(KR/v)−

∑

R∈S2

∑

v∈VR
hk(KR/v) = −

∑

R∈S2

∑

v∈VR
gk(KR/v),

while

T14 + T7 − T8 − T10 =
∑

R∈S1

∑

v∈VR
[hk−1(KR/v) + hk−2(KR/v)] + 2

∑

R∈S1

∑

v∈VR
gk(KR/v)

−
∑

R∈S1

∑

v∈VR
hk(KR/v)−

∑

R∈S1

∑

v∈VR
hk−1(KR/v)

=
∑

R∈S1

∑

v∈VR
{hk−1(KR/v) + hk−2(KR/v) + 2[hk(KR/v)− hk−1(KR/v)]

− hk(KR/v)− hk−1(KR/v)}
=
∑

R∈S1

∑

v∈VR
[hk(KR/v)− 2hk−1(KR/v) + hk−2(KR/v)]

=
∑

R∈S1

∑

v∈VR
g

(2)
k (KR/v).

Hence,

T1 =
∑

v∈V[3]

hk(K[3]/v)−
∑

R∈S2

∑

v∈VR
gk(KR/v) +

∑

R∈S1

∑

v∈VR
g

(2)
k (KR/v)

=
∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR/v).

Proof of Lemma 7. By Lemma 6, relation (25) yields:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) ≤
∑

∅⊂R⊆[3]

(−1)3−|R| ∑

v∈VR
g

(3−|R|)
k (KR)

= n[3]hk(K[3])−
∑

R∈S2

nRgk(KR) +
∑

R∈S1

nRg
(2)
k (KR)

(71)

By relation (12) with R ≡ [3], we can write hk(K[3]) as:

hk(K[3]) = hk(F[3]) +
∑

R∈S2

gk(FR) +
∑

R∈S1

g
(2)
k (FR), (72)

whereas from relation (12) for all R ∈ S2 we easily get:

gk(KR) = gk(FR) +
∑

∅⊂S⊂R
g

(2)
k (FS). (73)
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Since KR ≡ FR, for any R ∈ S1, we can employ relations (72) and (73) to rewrite the right
hand side of (71) as follows:

n[3]hk(K[3])−
∑

R∈S2

nR gk(KR) +
∑

R∈S1

nRg
(2)
k (KR)

= n[3]hk(F[3]) + n[3]

∑

R∈S2

gk(FR) + n[3]

∑

R∈S1

g
(2)
k (FR)

−


 ∑

R∈S2

nRgk(FR) +
∑

R∈S2

nR
∑

∅⊂S⊂R
g

(2)
k (FS)


+

∑

R∈S1

nRg
(2)
k (FR)

= n[3]hk(F[3]) +
∑

R∈S2

(n[3] − nR)gk(FR)

+

T︷ ︸︸ ︷
n[3]

3∑

i=1

g
(2)
k (F{i})−

∑

R∈S2

nR
∑

∅⊂S⊂R
g

(2)
k (FS) +

3∑

i=1

nig
(2)
k (F{i})


 .

Using the identity:

∑

R∈S2

nR
∑

∅⊂S⊂R
g

(2)
k (FS) = 2

3∑

i=1

nig
(2)
k (F{i}) +

3∑

i=1

n[3]\{i} g
(2)
k (F{i}),

we see that the last term (term T ) in the relation above vanishes:

n[3]

3∑

i=1

g
(2)
k (F{i})−

∑

R∈S2

nR
∑

∅⊂S⊂R
g

(2)
k (FS) +

3∑

i=1

n{i}g
(2)
k (F{i})

= n[3]

3∑

i=1

g
(2)
k (F{i})−

[
2

3∑

i=1

nig
(2)
k (F{i}) +

3∑

i=1

n[3]\{i} g
(2)
k (F{i})

]
+

3∑

i=1

nig
(2)
k (F{i})

=

3∑

i=1

(n[3] − 2ni − n[3]\{i} + ni) g
(2)
k (F{i}) = 0.

Hence, relation (71) simplifies to:

(k + 1)hk+1(F[3]) + (d+ 2− k)hk(F[3]) ≤ n[3]hk(F[3]) +
∑

R∈S2

(n[3] − nR)gk(FR)

= n[3]hk(F[3]) +
∑

R∈S2

n[3]\Rgk(FR) = n[3]hk(F[3]) +

3∑

i=1

nigk(F[3]\{i}),

from which we obtain the relation in the statement of the lemma.

A.3 Omitted & full proofs of Section 5

Proof of Lemma 10. The bound for hk(K[3]) holds as equality for k = 0, since by relation (12)
with R = [3], (see also (72)), we have

h0(K[3]) = h0(F[3]) +
∑

R∈S2

g0(FR) +
3∑

i=1

g
(2)
0 (∂Pi)
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= 1 +
∑

R∈S2

[h0(FR)− h−1(FR)] +

3∑

i=1

[h0(∂Pi)− 2h−1(∂Pi) + h−2(∂Pi)]

= 1 +
∑

R∈S2

[(−1)− 0] +
3∑

i=1

[1− 2 · 0 + 0] = 1.

Suppose now that k ≥ 1. Then, using relation (39), we get, for k ≥ 1:

hk(K[3]) = hk(F[3]) +
∑

R∈S2

gk(FR) +
∑

R∈S1

g
(2)
k (FR)

≤ hk(F[3]) +
∑

R∈S2

[
nR−d−3

k hk−1(FR) +
∑

i∈R

nR\{i}
k gk−1(∂Pi)

]
+

3∑

i=1

g
(2)
k (∂Pi)

= hk(F[3]) +
∑

R∈S2

nR−d−3
k hk−1(FR) +

3∑

i=1

[
n[3]\{i}

k gk−1(∂Pi) + gk(∂Pi)− gk−1(∂Pi)
]
,

which finally yields:

hk(K[3]) ≤ hk(F[3]) +
∑

R∈S2

nR−d−3
k hk−1(FR) +

3∑

i=1

[
n[3]\{i}−k

k gk−1(∂Pi) + gk(∂Pi)
]
. (74)

Since nR−d−3 ≥ 2(d+1)−d−3 = d−1 > 0, for R ∈ S2, and n[3]\{i}−k ≥ 2(d+1)−(d+2) = d >
0 for any 0 ≤ k ≤ d+ 2, we can use the upper bounds for hk(F[3]) and hk−1(FR), R ∈ S2 from
Lemma 9 and [KT12, Lemma 3.3], respectively, in conjunction with the known upper bounds
for the elements of the g-vector of a d-polytope (cf. [Zie95, Corollary 8.38]). More precisely:

hk(K[3]) ≤
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
+
∑

R∈S2

nR−d−3
k

[
(
nR−d−2+k−1

k−1

)
−
∑

i∈R

(
ni−d−2+k−1

k−1

)
]

+
3∑

i=1

[
n[3]\{i}−k

k

(
ni−d−2+k−1

k−1

)
+ gk(∂Pi)

]

=
∑

∅⊂S⊆[3]

(−1)3−|S|(nS−d−3+k
k

)
+
∑

R∈R2

nR−d−3
k

[
(
nR−d−3+k

k−1

)
−
∑

i∈R

(
ni−d−3+k

k−1

)
]

+
3∑

i=1

[
n[3]\{i}

k

(
ni−d−3+k

k−1

)
−
(
ni−d−3+k

k−1

)
+
(
ni−d−2+k

k

)
+ gk(∂Pi)−

(
ni−d−2+k

k

)]

=
(n[3]−d−3+k

k

)
−

3∑

i=1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

(
ni−d−3+k

k

)

+
∑

R∈S2

nR−d−3
k

[
(
nR−d−3+k

k−1

)
−
∑

i∈R

(
ni−d−3+k

k−1

)
]

+

3∑

i=1

n[3]\{i}
k

(
ni−d−3+k

k−1

)
+

3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

[
gk(∂Pi)−

(
ni−d−2+k

k

)]
.

From the proof of Lemma 8 it is easy to see that:

∑

R∈S2

nR−d−3
k

[
(
nR−d−3+k

k−1

)
−
∑

i∈R

(
ni−d−3+k

k−1

)
]

+

3∑

i=1

n[3]\{i}
k

(
ni−d−3+k

k−1

)
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=
∑

R∈S2

[
(
nR−d−3+k

k

)
−
∑

i∈R

(
ni−d−3+k

k

)
]

=

3∑

i=1

(n[3]\{i}−d−3+k

k

)
− 2

3∑

i=1

(
ni−d−3+k

k

)

Hence we have:

hk(K[3]) ≤
(n[3]−d−3+k

k

)
−

3∑

i=1

(n[3]\{i}−d−3+k

k

)
+

3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

(n[3]\{i}−d−3+k

k

)

− 2
3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

(
ni−d−3+k

k

)
+

3∑

i=1

[
gk(∂Pi)−

(
ni−d−2+k

k

)]

=
(n[3]−d−3+k

k

)
+

3∑

i=1

[
gk(∂Pi)−

(
ni−d−2+k

k

)]
.

Since gk(∂Pi)−
(
ni−d−2+k

k

)
≤ 0, for all k ≥ 0, we get the sought-for bound in (43) for 0 ≤ k ≤

d+ 2. Furthermore, for d odd and k = bd2c+ 1, we have gk(∂Pi) = 0, which yields the bound in
(44).

To prove the equality claim, we distinguish between the cases k ≤ bd2c, and k = bd2c+ 1 with
d odd. Consider the case k ≤ bd2c first, and assume that hk(K[3]) =

(n[3]−d−3+k

k

)
. From relation

(74) we deduce that both hk(F[3]) and gk(∂Pi), 1 ≤ i ≤ 3, must be equal to their maximum
values, since otherwise we would have that hk(K[3]) <

(n[3]−d−3+k

k

)
. In view of Lemma 9, the

maximality of hk(F[3]) implies that fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ k,

whereas the maximality of gk(∂Pi) implies that Pi is k-neighborly, for all 1 ≤ i ≤ 3, i.e., for
all 1 ≤ i ≤ 3, fl−1(∂Pi) = fl−1(F{i}) =

(
ni
l

)
, for all 0 ≤ l ≤ k. But then we also have that

gk−1(∂Pi) =
(
ni−d−2+k−1

k−1

)
, which gives:

g
(2)
k (∂Pi) = gk(∂Pi)− gk−1(∂Pi) =

(
ni−d−2+k

k

)
−
(
ni−d−2−k−1

k−1

)
=
(
ni−d−3+k

k

)
. (75)

By relation (36), the maximality of hk(F[3]) implies that gk−1(F[3]\{i}) attains its maximum value
for all 1 ≤ i ≤ 3. By following the argumentation in the proof of Lemma 8, the maximality of
gk−1(F[3]\{i}) further implies that hl(F[3]\{i}) is maximal, for all 0 ≤ l ≤ k − 1. Solving, now,
equation (12) (for R ≡ [3]) in terms of the sum of the hk(F[3]\{i})’s we get:

3∑

i=1

hk(F[3]\{i}) = hk(K[3])− hk(F[3]) +
3∑

i=1

hk−1(F[3]\{i})−
3∑

i=1

g
(2)
k (∂Pi).

Substituting in the above equation the values for hk(K[3]), hk(F[3]), hk−1(F[3]\{i}) and g
(2)
k (∂Pi),

it is easy to verify that

3∑

i=1

hk(F[3]\{i}) =

3∑

i=1


(n[3]\{i}−d−2+k

k

)
−

∑

j∈[3]\{i}

(nj−d−2+k
k

)

 .

In other words, the sum of the hk(F[3]\{i})’s attains its maximum value, which implies that each
of the summands attains its maximum value. We thus conclude that hl(F[3]\{i}) is maximal,
for all 0 ≤ l ≤ k, which, by [KT12, Lemma 3.3], implies that, for all R ∈ S2, fl−1(FR) =∑
∅⊂S⊆R(−1)2−|S|(nS

l

)
, for all 0 ≤ l ≤ k.

Let us now consider the reverse direction and assume that for all ∅ ⊂ R ⊆ [3], fl−1(FR) =∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤ k (for k ≤ bd2c, min{k, bd+|R|−1

2 c} = k). Using Lemma
9, the condition above, for R = [3], implies that hl(F[3]) attains its upper bound value for
all 0 ≤ l ≤ k. Using [KT12, Lemma 3.3], the condition above, for R ∈ S2, implies that
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hl(FR) attains its upper bound value for all 0 ≤ l ≤ k, and thus gk(FR) attains its upper
bound value. Finally, the condition above, for 1 ≤ i ≤ 3, implies that Pi is k-neighborly,
which means that gl(∂Pi) = gl(F{i}) =

(
ni−d−2+l

l

)
, for all 0 ≤ l ≤ k, and thus (cf. (75))

g
(2)
k (∂Pi) = g

(2)
k (F{i}) =

(
ni−d−3+k

k

)
. Appealing now to relation (12) for R ≡ [3], it is easy to

verify that hk(K[3]) =
(n[3]−d−3+k

k

)
.

We end the equality claim proof by considering the case k = bd2c+ 1, for d odd. Since for d
odd, gb d

2
c+1(∂Pi) = 0, relation (74), simplifies to:

hb d
2
c+1(K[3]) ≤ hb d

2
c+1(F[3]) +

∑

R∈S2

nR−d−3

b d
2
c+1

hb d
2
c(FR) +

3∑

i=1

n[3]\{i}−b d2 c−1

b d
2
c+1

gb d
2
c(∂Pi), (76)

while relation (12) (with R ≡ [3]) simplifies to:

hb d
2
c+1(K[3]) = hb d

2
c+1(F[3]) +

3∑

i=1

gb d
2
c+1(F[3]\{i})−

3∑

i=1

gb d
2
c(∂Pi). (77)

The argument in this case is essentially the same as before. Assuming that hb d
2
c+1(K[3]) is

maximal, we deduce, from (76), that both hb d
2
c+1(F[3]) and gb d

2
c(∂Pi) are maximal, which,

imply, respectively, that fl−1(F[3]) =
∑
∅⊂S⊆[3](−1)3−|S|(nS

l

)
, for all 0 ≤ l ≤ bd2c + 1 = bd+2

2 c,
and that, for all 1 ≤ i ≤ 3, fl−1(F{i}) =

(
ni
l

)
, for all 0 ≤ l ≤ bd2c. The maximality of hb d

2
c+1(F[3])

implies also the maximality of gl(FR), for all R ∈ S2, and for all 0 ≤ l ≤ bd2c, and thus the
maximality of hl(FR), for all R ∈ S2, and for all 0 ≤ l ≤ bd2c. By solving equation (77) in terms
of the sum of the hb d

2
c+1(FR)’s, we also deduce that hb d

2
c+1(FR) is maximal, for all R ∈ S2.

Hence, we have that hl(FR) is maximal, for all R ∈ S2, and for all 0 ≤ l ≤ bd2c + 1 = bd+1
2 c,

which, by [KT12, Lemma 3.3], gives that fl−1(FR) =
∑
∅⊂S⊆R(−1)2−|S|(nS

l

)
, for all R ∈ S2,

and for all 0 ≤ l ≤ bd+1
2 c.

Assuming now that, for all ∅ ⊂ R ⊆ [3], fl−1(FR) =
∑
∅⊂S⊆R(−1)|R|−|S|

(
nS
l

)
, for all 0 ≤ l ≤

min{bd2c + 1, bd+|R|−1
2 c}, we deduce, from Lemma 9, that that hb d

2
c+1(F[3]) attains its upper

bound value for all 0 ≤ l ≤ bd+2
2 c = bd2c+ 1. Furthermore, Lemma 3.3 in [KT12], implies that,

for all R ∈ S2, hl(FR) attains its upper bound value for all 0 ≤ l ≤ bd+1
2 c = bd2c + 1, which

means that gb d+1
2
c(FR) attains its upper bound value, for all R ∈ S2. Finally, our assumption

above, implies that, for all 1 ≤ i ≤ 3, Pi is neighborly, which means that gb d
2
c(∂Pi) =

(ni−b d2 c−3

b d
2
c
)
.

Appealing to relation (77) above, it is easy to verify that hb d
2
c+1(K[3]) attains its upper bound

in (44).

B Asymptotic analysis of Vandermonde-like determinants

We start by introducing what is known as Laplace’s Expansion Theorem for determinants (see
[Gan60, HK71] for details and proofs). Consider a n × n matrix A. Let r = (r1, r2, . . . , rk),
be a vector of k row indices for A, where 1 ≤ k < n and 1 ≤ r1 < r2 < . . . < rk ≤ n. Let
c = (c1, c2, . . . , ck) be a vector of k column indices for A, where 1 ≤ k < n and 1 ≤ c1 <
c2 < . . . < ck ≤ n. We denote by S(A; r, c) the k × k submatrix of A constructed by keeping
the entries of A that belong to a row in r and a column in c. The complementary submatrix
for S(A; r, c), denoted by S̄(A; r, c), is the (n − k) × (n − k) submatrix of A constructed by
removing the rows and columns of A in r and c, respectively. Then, the determinant of A can be
computed by expanding in terms of the k columns of A in c according to the following theorem.
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Theorem 15 (Laplace’s Expansion Theorem). Let A be a n×n matrix. Let c = (c1, c2, . . . ,
ck) be a vector of k column indices for A, where 1 ≤ k < n and 1 ≤ c1 < c2 < . . . < ck ≤ n.
Then:

det(A) =
∑

r

(−1)|r|+|c| det(S(A; r, c)) det(S̄(A; r, c)), (78)

where |r| = r1 + r2 + . . .+ rk, |c| = c1 + c2 + . . .+ ck, and the summation is taken over all row
vectors r = (r1, r2, . . . , rk) of k row indices for A, where 1 ≤ r1 < r2 < . . . < rk ≤ n.

In what follows we recall some facts concerning generalized Vandermonde determinants that
will be in use to us later. Let n ≥ 2, x = (x1, . . . , xn) and µ = (µ1, µ2, . . . , µn), where we
require that 0 ≤ µ1 < µ2 < . . . < µn. The generalized Vandermonde determinant, denoted by
GVD(x;µ), is the n × n determinant whose i-th row is the vector x with all its entries raised
to µi. While there is no general formula for the generalized Vandermonde determinant, it is a
well-known fact that, if the elements of x are in strictly increasing order, then GVD(x;µ) > 0
(for example, see [Gan05] for a proof of this fact).

In the remainder of this section we consider two determinants that are parameterized by
a positive parameter τ , and we study their asymptotic behavior with respect to τ . These
determinants are generalizations of the determinants that arise in the proofs of Lemmas 12 and
13 in Section 6, and are directly associated with the equations of some appropriately defined
supporting hyperplanes for the faces of FR where R ∈ S2 or R ≡ [3] (recall that FR stands
for the set of faces of the Cayley polytope of |R| polytopes Pi, i ∈ R, with the property that
each face in FR has at least one vertex from each polytope Pi). The two determinants that we
study are generalized-Vandermonde-like determinants that are polynomial functions of τ , and
correspond, respectively, to the two cases R ∈ S2 and R ≡ [3] mentioned above. Since in Section
6 we are interested in small values of τ , our asymptotic analysis in the two lemmas below is
targeted towards revealing the term of τ of minimal exponent.

We start-off with the generalized version of the determinant that arises in the upper bound
tightness construction in Section 6 when R ∈ S2.

Lemma 16. Fix two integers m ≥ 2 and n ≥ 2, with n + m ≥ 5. Let Dn,m(τ ; I, J,µ) be the
(n+m)× (n+m) determinant:

(−1)J+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x1τ
α)µ1 · · · (xnτ

α)µ1 0 · · · 0

0 · · · 0 (y1τ
β)µ2 · · · (ymτ

β)µ2

f3(τ)(x1τ
α)µ3 · · · f3(τ)(xnτ

α)µ3 g3(τ)(y1τ
β)µ3 · · · g3(τ)(ymτ

β)µ3

f4(τ)(x1τ
α)µ4 · · · f4(τ)(xnτ

α)µ4 g4(τ)(y1τ
β)µ4 · · · g4(τ)(ymτ

β)µ4

f5(τ)(x1τ
α)µ5 · · · f5(τ)(xnτ

α)µ5 g5(τ)(y1τ
β)µ5 · · · g5(τ)(ymτ

β)µ3

(x1τ
α)µ6 · · · (xnτ

α)µ6 (y1τ
β)µ6 · · · (ymτ

β)µ6

(x1τ
α)µ7 · · · (xnτ

α)µ7 (y1τ
β)µ7 · · · (ymτ

β)µ7

...
. . .

...
...

. . .
...

(x1τ
α)µ` · · · (xnτ

α)µ` (y1τ
β)µ` · · · (ymτ

β)µ`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where 0 < x1 < x2 < . . . < xn, 0 < y1 < y2 < . . . < ym, ` = n+m, µ = (µ1, . . . , µ`), with 0 ≤
µ1 ≤ µ2 < µ3 < . . . < µ`, (I, J) ∈ {(3, 4), (3, 5), (4, 5)}, fI(τ) = gJ(τ) = 1, fi(τ) = gj(τ) = τM ,
for i 6= I and j 6= J , α > β ≥ 0, M ≥ α|µ| and τ > 0. Then:

Dn,m(τ ; I, J,µ) = Cτ ξ + Θ(τ ξ+1), ξ = α

(
µ1 + µ3 +

n+2∑

i=4

µi − µJ
)

+β

(
µ2 + µJ +

∑̀

i=n+3

µi

)
,

where C is a positive constant independent of τ .
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Proof. For simplicity, we write Dn,m(τ) instead of Dn,m(τ ; I, J,µ), suppressing I, J and µ in the
notation. We denote by ∆n,m(τ) the matrix corresponding to the determinant (−1)J+1Dn,m(τ).
If we apply Laplace’s expansion with respect to the first n columns, i.e., when c = (1, 2, . . . , n),
we get:

Dn,m(τ) = (−1)J+1
∑

r=(r1,r2,...,rn)
1≤r1<r2<···<rn≤n+m

(−1)|r|+|c| det(S(∆n,m(τ); r, c)) det(S̄(∆n,m(τ); r, c))

=
∑

r=(r1,r2,...,rn)
1≤r1<r2<···<rn≤n+m

(−1)|r|+
n(n+1)

2
+J+1 det(S(∆n,m(τ); r, c)) det(S̄(∆n,m(τ); r, c)).

(79)

The above sum consists of
(
n+m
n

)
terms. Among these terms:

(i) all those for which r contains the second row vanish (in this case the corresponding row
of S(∆n,m(τ); r, c) consists of zeros), and

(ii) all those for which r does not contain the first row vanish (in this case at least two rows
of S̄(∆n,m(τ); r, c) consist of zeros).

The remaining terms of the expansion are the
(
n+m−2
n−1

)
terms for which r contains 1 but not 2,

i.e., r = (1, r2, r3, . . . , rn), with 3 ≤ r2 < r3 < . . . < rn ≤ n + m. For any given r, we denote
by r̄ the vector of the m, among the n + m, row indices for ∆n,m(τ) that do not belong to r
(recall that 2 always belongs to r̄). Notice that the elements of the k-th row of ∆n,m(τ) have
exponent µk. Denoting by µr the vector the i-th element of which is µri , we have that:

(i) det(S(∆n,m(τ); r, c)) is the n× n generalized Vandermonde determinant GVD(ταx;µr),
multiplied by τM if J ∈ r.

(ii) det(S̄(∆n,m(τ); r, c)) is the m×m generalized Vandermonde determinant GVD(τβy;µr̄),
multiplied by τM if I ∈ r̄.

We can, thus, simplify the expansion in (79) to get:

Dn,m(τ) =
∑

{r|1∈r,26∈r}
(−1)|r|+

n(n+1)
2

+J+1 h(r, τ ; I, J)GVD(ταx;µr)GVD(τβy;µr̄)

=
∑

{r|1∈r,26∈r}
(−1)|r|+

n(n+1)
2

+J+1 h(r, τ ; I, J)τα|µr |+β|µr̄ |GVD(x;µr)GVD(y;µr̄),

(80)
where

h(r, τ ; I, J) =





1, I ∈ r and J 6∈ r,
τ2M , I 6∈ r and J ∈ r,
τM , otherwise.

In the remainder of the proof we seek to find the unique term in the expansion (80) that
corresponds to the minimum order of τ , or, equivalently, the minimum exponent for τ . Since
α > β ≥ 0, for any r, with I ∈ r and J 6∈ r, the exponent of τ is:

α|µr|+ β|µr̄| < α|µr|+ α|µr̄| = α|µ| ≤M,

where we used the fact that:

|µr|+ |µr̄| =
n∑

i=1

µri +
m∑

i=1

µr̄i =
∑

i∈r
µi +

∑

i∈r̄
µi =

∑̀

i=1

µi = |µ|.
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This implies that the terms in (80) that correspond to the row vectors r that contain J cannot
be the terms of minimal order of τ , since for these terms the exponent of τ is at least

α|µr|+ β|µr̄|+M > β|µr|+ β|µr̄|+M = β|µ|+M ≥M.

For the remaining terms, i.e., for those r that do not contain J , we have h(r, τ ; I, J) = 1.
For these terms the exponent of τ is α|µr| + β|µr̄|. Since α > β, we may write α = β + θ for
some θ > 0. This gives:

α|µr|+ β|µr̄| = (β + θ)|µr|+ β|µr̄| = β|µ|+ θ|µr|.

Clearly, in this case, the quantity α|µr|+ β|µr̄| attains its minimum when |µr| is minimal. We
distinguish between the following cases:

• (I, J) = (3, 4). In this case |µr| attains its minimal value if and only if r is equal to
ρ = (1, 3, 5, 6, . . . , n+ 2). Furthermore,

|µρ| = µ1 + µ3 +
n+2∑

i=5

µi = µ1 + µ3 +
n+2∑

i=4

µi − µJ ,

|µρ̄| = µ2 + µ4 +
∑̀

i=n+3

µi = µ2 + µJ +
∑̀

i=n+3

µi

and

|ρ|+ n(n+ 1)

2
+ J + 1 =

n+2∑

i=1

i− (2 + 4) +
n(n+ 1)

2
+ 4 + 1

=
(n+ 2)(n+ 3)

2
+
n(n+ 1)

2
− 1

= n2 + 3n+ 3− 1

= (n+ 1)(n+ 2),

which is even for any n ≥ 2.

• I ∈ {3, 4} and J = 5. In this case |µr| attains its minimal value if and only if r is equal
to ρ = (1, 3, 4, 6, . . . , n+ 2). Furthermore,

|µρ| = µ1 + µ3 + µ4 +

n+2∑

i=6

= µ1 + µ3 +

n+2∑

i=4

−µJ ,

|µρ̄| = µ2 + µ5 +
∑̀

i=n+3

= µ2 + µJ +
∑̀

i=n+3

µi,

and

|ρ|+ n(n+ 1)

2
+ J + 1 =

n+1∑

i=1

i− (2 + 5) +
n(n+ 1)

2
+ 5 + 1

=
(n+ 2)(n+ 3)

2
+
n(n+ 1)

2
− 1

= n2 + 3n+ 3− 1

= (n+ 1)(n+ 2),

which is again even for any n ≥ 2.
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We can thus rewrite (80) in the following form:

Dn,m(τ) = τα|µρ|+β|µρ̄|GVD(x;µρ)GVD(y;µρ̄) + Θ(τα|µρ|+β|µρ̄|+1).

The lemma immediately follows from the positivity of the generalized Vandermonde determi-
nants GVD(x;µρ) and GVD(y;µρ̄).

We end with the following lemma, where we perform the asymptotic analysis of the general-
ized version of the determinant that arises in the upper bound tightness construction in Section
6 when R ≡ [3].

Lemma 17. Fix three integers m ≥ 2, n ≥ 2 and k ≥ 2, with n+m+ k ≥ 7. Let En,m,k(τ ;µ)
be the (n+m+ k)× (n+m+ k) determinant:

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x1τ
2)µ1 · · · (xnτ

2)µ1 0 · · · 0 0 · · · 0

0 · · · 0 (y1τ)µ2 · · · (ymτ)µ2 0 · · · 0

0 · · · 0 0 · · · 0 zµ31 · · · zµ3k
(x1τ

2)µ4 · · · (xnτ
2)µ4 τM (y1τ)µ4 · · · τM (ynτ)µ4 τMzµ41 · · · τMzµ4n

τM (x1τ
2)µ5 · · · τM (xnτ

2)µ5 (y1τ)µ5 · · · (ymτ)µ5 τMzµ51 · · · τMzµ5n

τM (x1τ
2)µ6 · · · τM (xnτ

2)µ6 τM (y1τ)µ6 · · · τM (ymτ)µ6 zµ61 · · · zµ6m

(x1τ
2)µ7 · · · (xnτ

2)µ7 (y1τ)µ7 · · · (ymτ)µ7 zµ71 · · · zµ7k
...

. . .
...

...
. . .

...
...

. . .
...

(x1τ
2)µ` · · · (xnτ

2)µ` (y1τ)µ` · · · (ymτ)µ` zµ`1 · · · zµ`k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where 0 < x1 < x2 < . . . < xn, 0 < y1 < y2 < . . . < ym, 0 < z1 < z2 < . . . < zk, ` = n+m+ k,
µ = (µ1, µ2, . . . , µ`), with 0 ≤ µ1 ≤ µ2 ≤ µ3 < µ4 < µ5 < . . . < µ`, M ≥ 2|µ| and τ > 0. Then,

En,m,k(τ ;µ) = C ′τ ξ + Θ(τ ξ+1), ξ = 2

(
µ1 + µ4 +

n+4∑

i=7

µi

)
+ µ2 + µ5 +

n+m+2∑

i=n+5

µi,

where C ′ is a positive constant independent of τ .

Proof. We write En,m,k(τ) instead of En,m,k(τ ;µ), suppressing µ in the notation. We denote
by En,m,k(τ) the matrix corresponding to the determinant −En,m,k(τ). If we apply Laplace’s
expansion theorem with respect to the first n columns, i.e., when c = (1, 2, . . . , n), we get:

En,m,k(τ) = −
∑

r

(−1)|r|+|c| det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c))

=
∑

r

(−1)|r|+
n(n+1)

2
+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c)). (81)

The above sum consists of
(
n+m+k

n

)
terms. Among these terms:

(i) all those for which r contains the second or third row vanish (the corresponding row of
S(En,m,k(τ); r, c) consists of zeros), and

(ii) all those for which r does not contain the first row vanish (in this case there exists a row
of S̄(En,m,k(τ); r, c) that consists of zeros).

The remaining terms of the expansion are the
(
n+m+k−3

n−1

)
terms for which r = (1, r2, r3, . . . , rn),

with 4 ≤ r2 < r3 < . . . < rn ≤ n+m+ k. As a result, the expansion in (81) simplifies to:

En,m,k(τ) =
∑

{r|1∈r,2,36∈r}
(−1)|r|+

n(n+1)
2

+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c)). (82)
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For any given r, we denote by r̄ the vector of the m + k row indices for En,m,k(τ) that do
not belong to r. Moreover, µr is the vector the i-th element of which is µri . As in the proof of
Lemma 16, we seek to find the unique minimum term in the expansion (82) that corresponds to
the minimum order of τ , or, equivalently, the minimum exponent for τ .

Let us denote by R the set of row vectors R = {r | 1, 4 ∈ r and 2, 3, 5, 6 6∈ r}. For any
r ∈ R, observe that:

(i) det(S(En,m,k(τ); r, c)) is the n× n generalized Vandermonde determinant GVD(τ2x;µr).

(ii) det(S̄(En,m,k(τ); r, c)) is the (m+k)× (m+k) determinant Dm,k(τ ; 3, 4,µr̄) of Lemma 16
multiplied by (−1)4+1 = −1, with x← y, y ← z, µ← µr̄, (I, J) = (3, 4), α← 1, β ← 0
and M ←M (since M ≥ 2|µ| > |µr̄|, the condition for M in Lemma 16 is satisfied).

We can, thus, rewrite the expansion in (82) to get:

En,m,k(τ) =
∑

r∈R
(−1)|r|+

n(n+1)
2

+1 GVD(τ2x;µr) (−Dm,k(τ ; 3, 4,µr̄))

+
∑

r 6∈R
(−1)|r|+

n(n+1)
2

+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c))

=
∑

r∈R
(−1)|r|+

n(n+1)
2 τ2|µr |GVD(x;µr)Dm,k(τ ; 3, 4,µr̄)

+
∑

r 6∈R
(−1)|r|+

n(n+1)
2

+1 det(S(En,m,k(τ); r, c)) det(S̄(En,m,k(τ); r, c))

(83)

By Lemma 16 we have:

Dm,k(τ ; 3, 4,µr̄) = Cr τ
1·|µū|+0·|µv̄| + Θ(τ1·|µū|+0·|µv̄|+1) = Cr τ

|µū| + Θ(τ |µū|+1),

where ū = (2, 5, r̄5, . . . , r̄m+2), v̄ = (3, 6, r̄m+3, . . . , r̄m+k) and Cr > 0. Hence, for any r ∈ R,
the term in the expansion of En,m,k(τ) that corresponds to r becomes:

(−1)|r|+
n(n+1)

2 Cr τ
2|µr |+|µū|GVD(x;µr) + Θ(τ2|µr |+|µū|+1).

From this expression we deduce that the minimum exponent of τ for any specific r ∈ R is:

2|µr|+ |µū| < 2|µr|+ |µr̄| < 2|µr|+ 2|µr̄| = 2|µ| ≤M,

where we used the fact that:

|µr|+ |µr̄| =
n∑

i=1

µri +
m+k∑

i=1

µr̄i =
∑

i∈r
µi +

∑

i∈r̄
µi =

∑̀

i=1

µi = |µ|.

On the other hand, the terms in (83) that correspond to the row vectors r 6∈ R cannot be the
terms of minimal order of τ , since for these terms the exponent of τ is greater than M . We can
thus restrict our attention to the terms for which r ∈ R, and rewrite (83) as:

En,m,k(τ) =
∑

r∈R

(
(−1)|r|+

n(n+1)
2 Cr τ

2|µr |+|µū|GVD(x;µr) + Θ(τ2|µr |+|µū|+1)
)

+ Ω(τM ).

From the expression above, we infer that the term of En,m,k(τ) for which the exponent of τ is
minimal is the term for which the quantity 2|µr|+ |µū| is minimized. However, we have that:

2|µr|+ |µū| = 2|µr|+ |µū|+ |µv̄| − |µv̄| = |µr|+ |µr|+ |µr̄| − |µv̄| = |µr|+ |µ| − |µv̄|.

So, minimizing 2|µr|+ |µū| amounts to determining the vectors r and v̄ for which the difference
|µr|−|µv̄| becomes minimal. Let ρ = (1, 4, 7, 8, . . . , n+4), ρ̄′ = (2, 5, n+5, n+6, . . . , n+m+2)
and ρ̄′′ = (3, 6, n+m+ 3, n+m+ 4, . . . , `). It is trivial to verify that
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• |µr| > |µρ|, for all r 6= ρ, and

• |µv̄| < |µρ̄′′ |, for all v̄ 6= ρ̄′′.

From this observation we deduce that the unique minimal value for 2|µr|+ |µū| is attained when
r, ū and v̄ are equal to ρ, ρ̄′ and ρ̄′′, respectively. Moreover,

|ρ|+ n(n+ 1)

2
=

n+4∑

i=1

i− (2 + 3 + 5 + 6) +
n(n+ 1)

2
=

(n+ 4)(n+ 5)

2
− 16 +

n(n+ 1)

2

=
(n2 + 9n+ 20) + (n2 + n)

2
− 16 = (n2 + 5n+ 10)− 16 = (n− 1)(n+ 6).

Since (n− 1)(n+ 6) is even for any n, the term in the expansion of En,m,k(τ) corresponding to
the minimum exponent for τ becomes Cρ τ2|µρ|+|µρ̄′ |GVD(x;µρ). The claim in the statement
of the lemma immediately follows from the positivity of Cρ and GVD(x;µρ), and by observing
that 2|µρ|+ |µρ̄′ | equals ξ.
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