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Abstract. We prove that if p ≥ 1 and 0 < r ≤ p then the sequence
(
mp+r

m

)
r

mp+r ,

m = 0, 1, 2, . . ., is positive definite, more precisely, is the moment sequence of a prob-
ability measure µ(p, r) with compact support contained in [0,+∞). This family of
measures encompasses the multiplicative free powers of the Marchenko-Pastur distri-
bution as well as the Wigner’s semicircle distribution centered at x = 2. We show
that if p > 1 is a rational number, 0 < r ≤ p, then µ(p, r) is absolutely continuous
and its density Wp,r(x) can be expressed in terms of the Meijer and the generalized
hypergeometric functions. In some cases, including the multiplicative free square and
the multiplicative free square root of the Marchenko-Pastur measure, Wp,r(x) turns
out to be an elementary function.

August 7, 2018

Introduction

For p, r ∈ R we define the Raney numbers (or two-parameter Fuss-Catalan numbers)
by

(1) Am(p, r) :=
r

m!

m−1∏
i=1

(mp+ r − i),

A0(p, r) := 1. For m = 0, 1, 2, . . . we can also write

(2) Am(p, r) =

(
mp+ r

m

)
r

mp+ r
,

(provided mp+ r 6= 0) where the generalized binomial is defined by(
a

m

)
:=

a(a− 1) . . . (a−m+ 1)

m!
.

Let Bp(z) denote the generating function of the sequence {Am(p, 1)}∞m=0, the Fuss num-
bers of order p:

(3) Bp(z) :=
∞∑
m=0

Am(p, 1)zm,

convergent in some neighborhood of 0. For example

(4) B2(z) =
2

1 +
√

1− 4z
.
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Lambert showed that

(5) Bp(z)r =
∞∑
m=0

Am(p, r)zm,

see [8]. These generating functions also satisfy

(6) Bp(z) = 1 + zBp(z)p,

which reflects the identity Am(p, p) = Am+1(p, 1), and

(7) Bp(z) = Bp−r
(
zBp(z)r

)
.

It was shown in [13] that if p ≥ 1 and 0 ≤ r ≤ p then the sequence {Am(p, r)}∞m=0

is positive definite, i.e. is the moment sequence of a probability measure µ(p, r) on
R. Moreover, µ(p, r) has compact support (and therefore is unique) contained in the
positive half-line [0,∞) (for example µ(p, 0) = δ0). The proof involved methods from
the free probability theory (see [23, 15, 5]). In particular, for p ≥ 1

(8) µ(p, 1) = µ(2, 1)�(p−1),

where � denotes the multiplicative free power, and µ(2, 1) is known as the Marchenko-
Pastur (called also the free Poisson) distribution. It is given by

(9) µ(2, 1) =
1

2π

√
4− x
x

dx on [0,4],

and plays an important role in the theory of random matrices, see [24, 9, 10, 2, 1, 4]. It
was proved in [1] that the measure µ(2, 1)�n = µ(n+1, 1) is the limit of the distribution
of squared singular values of the power Gn of a random matrix G, when the size of the
matrix G goes to infinity.

In this paper we are going to prove positive definiteness of {Am(p, r)}∞m=0 using more
classical methods. Namely, we show that if p > 1, 0 < r ≤ p and if p is a rational number
then µ(p, r) is absolutely continuous and can be represented as Mellin convolution of
modified beta measures. Next we provide a formula for the density Wp,r(x) of µ(p, r)
in terms of the Meijer function and consequently, of the generalized hypergeometric
functions (cf. [25, 18], where p was assumed to be an integer). This allows us to
draw graphs of these densities and, in some particular cases, to express Wp,r(x) as an
elementary function. It is worth to point out that for r = 1 an alternative description of
the densities Wp,1(x) has been recently given by Haagerup and Möller, see Corollary 3
in [11].

Finally let us also mention that the measures µ(p, r) satisfy a peculiar relation:

(10) µ(p, r) . µ(p+ s, s) = µ(p+ s, r + s),

for p ≥ 1, 0 < r ≤ p and s > 0, see [13], involving monotonic convolution “.”, an
associative, noncommutative operation on probability measures on R, introduced by
Muraki [14].

1. Preliminaries

For probability measures µ1, µ2 on the positive half-line [0,∞) the Mellin convolution
is defined by

(11) (µ1 ◦ µ2) (A) :=

∫ ∞
0

∫ ∞
0

1A(xy)dµ1(x)dµ2(y)
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for every Borel set A ⊆ [0,∞). This is the distribution of product X1 · X2 of two
independent nonnegative random variables with Xi ∼ µi. In particular, if c > 0 then
µ ◦ δc is the dilation of µ:

(µ ◦ δc) (A) = Dcµ(A) := µ

(
1

c
A

)
.

Note that if µ has density f(x) then Dc(µ) has density f(x/c)/c.
If both the measures µ1, µ2 have all moments

sm(µi) :=

∫ ∞
0

xm dµi(x)

finite then so has µ1 ◦ µ2 and

sm (µ1 ◦ µ2) = sm(µ1) · sm(µ2)

for all m.
If µ1, µ2 are absolutely continuous, with densities f1, f2 respectively, then so is µ1 ◦µ2

and its density is given by the Mellin convolution:

(f1 ◦ f2) (x) :=

∫ ∞
0

f1(x/y)f2(y)
dy

y
.

We will need the following modified beta distributions :

Lemma 1.1. Let u, v, l > 0. Then{
Γ(u+ n/l)Γ(u+ v)

Γ(u+ v + n/l)Γ(u)

}∞
n=0

is the moment sequence of the probability measure

(12) b(u+ v, u, l) :=
l

B(u, v)
xlu−1

(
1− xl

)v−1
dx

on [0, 1], where B is the Euler beta function.

Proof. Using the substitution t = xl we obtain:

Γ(u+ n/l)Γ(u+ v)

Γ(u+ v + n/l)Γ(u)
=

B(u+ n/l, v)

B(u, v)
=

1

B(u, v)

∫ 1

0

tu+n/l−1(1− t)v−1dt

=
l

B(u, v)

∫ 1

0

xlu+n−1
(
1− xl

)v−1
dx.

�

Note that if X is a positive random variable whose distribution has density f(x) and
if l > 0 then the distribution of X1/l has density lxl−1f(xl). In particular, if X has beta
distribution b(u+ v, u, 1) then X1/l has distribution b(u+ v, u, l).

For u, l > 0 we also define

(13) b(u, u, l) := δ1.
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2. Applying Mellin convolution

From now on we assume that p > 1 is a rational number, say p = k/l, with 1 ≤ l < k,
and that 0 < r ≤ p. We will show, that then the sequence Am(p, r) is a moment sequence
of a probability measure µ(p, r), which can be represented as Mellin convolution of
modified beta distributions. In particular, µ(p, r) is absolutely continuous and we will
denote its density by Wp,r. The case when p is an integer was studied in [18, 25].

First we need to express the numbers Am(p, r) in a special form.

Lemma 2.1. If p = k/l, where k, l are integers, 1 ≤ l < k and 0 < r ≤ p then

(14) Am(p, r) =
r√

2πkl(k − l)

(
p

p− 1

)r ∏k
j=1 Γ(βj +m/l)∏k
j=1 Γ(αj +m/l)

c(p)m,

where c(p) = pp(p− 1)1−p,

αj =


j

l
if 1 ≤ j ≤ l,

r + j − l
k − l

if l + 1 ≤ j ≤ k,

(15)

βj =
r + j − 1

k
, 1 ≤ j ≤ k.(16)

Proof. First we write:

(17)

(
mp+ r

m

)
r

mp+ r
=

rΓ(mp+ r)

Γ(m+ 1)Γ(mp−m+ r + 1)
.

Now we apply the Gauss’s multiplication formula:

Γ(nz) = (2π)(1−n)/2nnz−1/2Γ(z)Γ

(
z +

1

n

)
Γ

(
z +

2

n

)
. . .Γ

(
z +

n− 1

n

)
to get:

Γ(mp+ r) = Γ
(
k
(m
l

+
r

k

))
= (2π)(1−k)/2kmk/l+r−1/2

k∏
j=1

Γ

(
m

l
+
r + j − 1

k

)
,

Γ(m+ 1) = Γ

(
l
m+ 1

l

)
= (2π)(1−l)/2lm+1/2

l∏
j=1

Γ

(
m

l
+
j

l

)
and

Γ(mp−m+ r + 1) = Γ

(
(k − l)

(
m

l
+
r + 1

k − l

))
= (2π)(1−k+l)/2(k − l)m(k−l)/l+r+1/2

k∏
j=l+1

Γ

(
m

l
+
r + j − l
k − l

)
.

It remains to apply them to (17). �

Now we need to modify enumeration of α’s.
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Lemma 2.2. For 1 ≤ i ≤ l + 1 denote

ji :=

⌊
(i− 1)k

l

⌋
+ 1,

where b·c is the floor function, so that

1 = j1 < j2 < . . . < jl < k < k + 1 = jl+1.

For 1 ≤ j ≤ k define

(18) α̃j =


i

l
if j = ji, 1 ≤ i ≤ l,

r + j − i
k − l

if ji < j < ji+1.

Then the sequence {α̃j}kj=1 is a rearrangement of {αj}kj=1. Moreover, if 0 < r ≤ p = k/l

then we have βj ≤ α̃j for all j ≤ k.

Proof. It is easy to verify the first statement.
Assume that j = ji for some i ≤ l. Then we have to show that

r + ji − 1

k
≤ i

l
,

which is equivalent to

lr + l

⌊
k(i− 1)

l

⌋
≤ ki,

and the latter is a consequence of the fact that bxc ≤ x and the assumption r ≤ p = k/l.
Now assume that ji < j < ji+1. We ought to show that

r + j − 1

k
≤ r + j − i

k − l
,

which is equivalent to

lr + lj + k − l − ki ≥ 0.

Using the inequality bxc+ 1 > x we obtain

lj + k − l − ki ≥ l(ji + 1) + k − l − ki = lji + k − ki > k(i− 1) + k − ki = 0,

which completes the proof, as r > 0. �

Now we are ready to prove the main theorem of this section.

Theorem 2.3. Suppose that p = k/l, where k, l are integers such that 1 ≤ l < k, and
that r is a real number, 0 < r ≤ p. Then there exists a unique probability measure
µ(p, r) such that (1) is its moment sequence. Moreover µ(p, r) can be represented as the
following Mellin convolution:

µ(p, r) = b(α̃1, β1, l) ◦ . . . ◦ b(α̃k, βk, l) ◦ δc(p),

where

c(p) :=
pp

(p− 1)p−1
.

Consequently, µ(p, r) is absolutely continuous and its support is [0, c(p)].
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Note that the representation of densities in the form of Mellin convolution of modified
beta distributions was used in different context in [7], see its Appendix A.

Example. For the Marchenko-Pastur measure we get the following decomposition:

(19) µ(2, 1) = b(1, 1/2, 1) ◦ b(2, 1, 1) ◦ δ4,

where b(1, 1/2, 1) has density 1/(π
√
x− x2) on [0, 1], the arcsine distribution with the

moment sequence
(
2m
m

)
4−m, and b(2, 1, 1) is the Lebesgue measure on [0, 1] with the

moment sequence 1/(m+ 1).

Proof. In view of Lemma 2.1 and Lemma 2.2 we can write

Am(p, r) = D
k∏
j=1

Γ(βj +m/l)Γ(α̃j)

Γ(α̃j +m/l)Γ(βj)
· c(p)m

for some constant D. Taking m = 0 we see that D = 1. �

Note that a part of the theorem illustrates a result of Kargin [12], who proved that
if µ is a compactly supported probability measure on [0,∞), with expectation 1 and
variance V , and if Ln denotes the supremum of the support of the multiplicative free
convolution power µ�n, then

(20) lim
n→∞

Ln
n

= eV,

where e = 2.71 . . . is the Euler’s number. The Marchenko-Pastur measure µ(2, 1) has
expectation and variance equal to 1 and µ(2, 1)�n = µ(n + 1, 1), so in this case Ln =
(n+ 1)n+1/nn (this was also proved in [24] and [10]) and (20) holds.

The density function for µ(p, r) will be denoted by Wp,r(x). Since Am(p, p) =
Am+1(p, 1), we have

(21) Wp,p(x) = x ·Wp,1(x),

for example

(22) W2,2(x) =
1

2π

√
x(4− x) on [0, 4],

which is the famous semicircle Wigner distribution with radius 2, centered at x = 2.
Now we can reprove the main result of [13].

Theorem 2.4. Suppose that p, r are real numbers such that p ≥ 1 and 0 ≤ r ≤ p. Then
there exists a unique probability measure µ(p, r), with support contained in [0, c(p)], such
that {Am(p, r)}∞m=0 is its moment sequence.

Proof. It follows from the fact that the class of positive definite sequence is closed under
pointwise limits. �

3. Applying Meijer G-function

The aim of this section is to describe the density function Wp,r(x) of µ(p, r) in terms of
the Meijer G-function (see [16] for example) and consequently, as a linear combination
of generalized hypergeometric functions. We will see that in some particular cases Wp,r

can be represented as an elementary function.
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Theorem 3.1. Let p = k/l > 1, where k, l are integers such that 1 ≤ l < k, and let r be
a positive real number, r ≤ p. Then the density Wp,r of the probability measure µ(p, r)
can be expressed as

(23) Wp,r(x) =
rpr

x(p− 1)r+1/2
√

2kπ
Gk,0
k,k

(
α1, . . . , αk
β1, . . . , βk

∣∣∣∣ xl

c(p)l

)
,

x ∈ (0, c(p)), where c(p) = pp(p− 1)1−p and the parameters αj, βj are given by (15) and
(16).

Proof. Define

φp,r(σ) =
rΓ(σp− p+ r)

Γ(σ)Γ(σp− σ − p+ r + 2)
.

If m is a natural number then

φp,r(m+ 1) =

(
mp+ r

m

)
r

mp+ r

so φp,r is the Mellin transform of the density function Wp,r of µ(p, r):

φp,r(σ) =

∫ ∞
0

xσ−1Wp,r(x) dx.

In order to reconstruct Wp,r we apply the inverse Mellin transform:

Wp,r(x) =
1

2πi

∫ C+i∞

C−i∞
x−σφp,r(σ) dσ,

see [3, 16, 19] for details. Putting m = σ − 1 in (14) we get

φp,r(σ) =
r(p− 1)p−1−r

pp−r
√

2πkl(k − l)

∏k
j=1 Γ(βj − 1/l + σ/l)∏k
j=1 Γ(αj − 1/l + σ/l)

c(p)σ.

Writing the right hand side as Φ(σ/l)c(p)σ, using the substitution σ = lu and the
definition of the Meijer G-function (see [16] for example) we obtain

Wp,r(x) =
1

2πi

∫ C+i∞

C−i∞
Φ(σ/l)c(p)σx−σdσ =

l

2πi

∫ C+i∞

C−i∞
Φ(u)

(
xl/c(p)l

)−u
du

=
r(p− 1)p−r−3/2

pp−r
√

2πk
Gk,0
k,k

(
α−1 , . . . , α

−
k

β−1 , . . . , β
−
k

∣∣∣∣ z) ,
where z = xl/c(p)l, α−j = αj − 1/l, β−j = βj − 1/l. Finally we use formula (16.19.2) in
[16] and obtain

(24) Wp,r(x) =
r(p− 1)p−r−3/2

z1/lpp−r
√

2πk
Gk,0
k,k

(
α1, . . . , αk
β1, . . . , βk

∣∣∣∣ z) ,
which is equivalent to (23). �

Now applying Slater’s theorem (see (16.17.2) in [16]) we can represent Wp,r as a linear
combination of hypergeometric functions.
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Theorem 3.2. For for p = k/l, with 1 ≤ l < k, r > 0 and x ∈ (0, c(p)) we have

(25) Wp,r(x) = γ(k, l, r)
k∑

h=1

c(h, k, l, r) kFk−1

(
a(h, k, l, r)
b(h, k, l, r)

∣∣∣∣ z) z(r+h−1)/k−1/l
where z = xl/c(p)l,

γ(k, l, r) =
r(p− 1)p−r−3/2

pp−r
√

2πk
,(26)

c(h, k, l, r) =

∏h−1
j=1 Γ

(
j−h
k

)∏k
j=h+1 Γ

(
j−h
k

)∏l
j=1 Γ

(
j
l
− r+h−1

k

)∏k
j=l+1 Γ

(
r+j−l
k−l −

r+h−1
k

) ,(27)

and the parameter vectors of the hypergeometric functions are

a(h, k, l, r) =

({
r + h− 1

k
− j − l

l

}l
j=1

,

{
r + h− 1

k
− r + j − k

k − l

}k
j=l+1

)
,(28)

b(h, k, l, r) =

({
k + h− j

k

}h−1
j=1

,

{
k + h− j

k

}k
j=h+1

)
.(29)

The most tractable case is p = 2.

Corollary 3.3. For p = 2, 0 < r ≤ 2, the density function is

W2,r(x) =
sin
(
r · arccos

√
x/4
)

πx1−r/2
,(30)

x ∈ (0, 4). In particular for r = 1/2 we have

W2,1/2(x) =

√
2−
√
x

2πx3/4
,(31)

and for r = 3/2

W2,3/2(x) =
(
√
x+ 1)

√
2−
√
x

2πx1/4
.(32)

Note that if r > 2 then W2,r(x) < 0 for some values of x ∈ (0, 4).

Proof. We take k = 2, l = 1 so that c(2) = 4, z = x/4 and γ(2, 1, r) = r2r/(8
√
π).

Using the Euler’s reflection formula and the identity Γ(1 + r/2) = Γ(r/2)r/2 we get

c(1, 2, 1, r) =
Γ(1/2)

Γ(1− r/2)Γ(1 + r/2)
=

2 sin(πr/2)

r
√
π

,

c(2, 2, 1, r) =
Γ(−1/2)

Γ((1− r)/2)Γ((1 + r)/2)
=
−2 cos(πr/2)√

π
.

We also need formulas for two hypergeometric functions, namely

2F1

(
r

2
,
−r
2

;
1

2

∣∣∣∣ z) = cos(r arcsin
√
z),

2F1

(
1 + r

2
,
1− r

2
;

3

2

∣∣∣∣ z) =
sin(r arcsin

√
z)

r
√
z

,
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see 15.4.12 and 15.4.16 in [16]. Now we can write

W2,r(x) =
sin(πr/2) cos

(
r arcsin

√
x/4
)
− cos(πr/2) sin

(
r arcsin

√
x/4
)

πx1−r/2

=
sin
(
πr/2− r arcsin

√
x/4
)

πx1−r/2
=

sin
(
r arccos

√
x/4
)

πx1−r/2
,

which concludes the proof. �

Remark. Note that

(33)
W2,1 (

√
x)

2
√
x

=
1

4
W2,1/2

(x
4

)
.

It means that if X, Y are random variables such that X ∼ µ(2, 1) and Y ∼ µ(2, 1/2)
then X2 ∼ 4Y . This can be also derived from the relation Am(2, 1/2)4m = A2m(2, 1).

4. Some particular cases

In this part we will see that for k = 3 some densities still can be represented as
elementary functions. We will need two families of formulas (cf. 15.4.17 in [16]).

Lemma 4.1. For c 6= 0,−1,−2, . . . we have

2F1

(
c

2
,
c− 1

2
; c

∣∣∣∣ z) = 2c−1
(
1 +
√

1− z
)1−c

,(34)

2F1

(
c+ 1

2
,
c− 2

2
; c

∣∣∣∣ z) =
2c−1

c

(
1 +
√

1− z
)1−c(

c− 1 +
√

1− z
)
.(35)

Proof. We know that 2F1(a, b; c| z) is the unique function f which is analytic at z = 0,
with f(0) = 1, and satisfies the hypergeometric equation:

z(1− z)f ′′(z) +
[
c− (a+ b+ 1)z

]
f ′(z)− abf(z) = 0

(see [3]). Now one can check that this equation is satisfied by the right hand sides of
(34) and (35) for given parameters a, b, c. �

Now consider p = 3/2.

Theorem 4.2. Assume that p = 3/2. Then for r = 1/2 we have

(36) W3/2,1/2(x) =

(
1 +

√
1− 4x2/27

)2/3
−
(

1−
√

1− 4x2/27
)2/3

25/33−1/2πx2/3
,

for r = 1:

(37) W3/2,1(x) = 31/2

(
1 +

√
1− 4x2/27

)1/3
−
(

1−
√

1− 4x2/27
)1/3

24/3πx1/3

+31/2x1/3

(
1 +

√
1− 4x2/27

)2/3
−
(

1−
√

1− 4x2/27
)2/3

25/3π

and, finally, W3/2,3/2(x) = x ·W3/2,1(x), with x ∈ (0, 3
√

3/2).
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Proof. For arbitrary r we have

W3/2,r(x) =
21−2r/3 sin

(
2πr/3

)
33/2−rπ

3F2

(
3 + 2r

6
,
r

3
,
−2r

3
;

2

3
,
1

3

∣∣∣∣ z)zr/3−1/2
−

2(4−2r)/3r sin
(
(1− 2r)π/3

)
33/2−rπ

3F2

(
5 + 2r

6
,
1 + r

3
,
1− 2r

3
;

4

3
,
2

3

∣∣∣∣ z)z(r+1)/3−1/2

−
r(1 + 2r) sin

(
(1 + 2r)π/3

)
2(1+2r)/333/2−rπ

3F2

(
7 + 2r

6
,
2 + r

3
,
2− 2r

3
;

5

3
,
4

3

∣∣∣∣ z)z(r+2)/3−1/2,

where z = 4x2/27. If r = 1/2 or r = 1 then one term vanishes and in the two others
the hypergeometric functions reduce to 2F1.

For r = 1/2 we apply (34) to obtain:

W3/2,1/2(x) =
z−1/3

21/331/2π
2F1

(
1

6
,
−1

3
;

1

3

∣∣∣∣ z)− z1/3

25/331/2π
2F1

(
5

6
,
1

3
;

5

3

∣∣∣∣ z)

=
z−1/3

21/331/2π
2−2/3

(
1 +
√

1− z
)2/3 − z1/3

25/331/2π
22/3

(
1 +
√

1− z
)−2/3

=
z−1/3

2 · 31/2π

(
1 +
√

1− z
)2/3 − z1/3

2 · 31/2π

(
1−
√

1− z
z

)2/3

=
z−1/3

2 · 31/2π

(
1 +
√

1− z
)2/3 − z−1/3

2 · 31/2π

(
1−
√

1− z
)2/3

and this yields (36).
For r = 1 we use (35):

W3/2,1(x) =
z−1/6

22/3π
2F1

(
5

6
,
−2

3
;

2

3

∣∣∣∣ z)+
z1/6

21/3π
2F1

(
7

6
,
−1

3
;

4

3

∣∣∣∣ z)

=
z−1/6

4π

(
1 +
√

1− z
)1/3 (

3
√

1− z − 1
)

+
z1/6

4π

(
1 +
√

1− z
)−1/3 (

3
√

1− z + 1
)

=
z−1/6

4π

(
1 +
√

1− z
)1/3 (

3
√

1− z − 1
)

+
z−1/6

4π

(
1−
√

1− z
)1/3 (

3
√

1− z + 1
)
.

Now we have(
1 +
√

1− z
)1/3 (

3
√

1− z − 1
)

= −
(
1 +
√

1− z
)1/3 (

3− 3
√

1− z − 2
)

= −3z1/3
(
1−
√

1− z
)2/3

+ 2
(
1 +
√

1− z
)1/3

and similarly(
1−
√

1− z
)1/3 (

3
√

1− z + 1
)

= 3z1/3
(
1 +
√

1− z
)2/3 − 2

(
1−
√

1− z
)1/3

.

Therefore

W3/2,1(x) =
z−1/6

2π

((
1 +
√

1− z
)1/3 − (1−√1− z

)1/3)
+

3z1/6

4π

((
1 +
√

1− z
)2/3 − (1−√1− z

)2/3)
,

which entails (37). The last statement is a consequence of (21). �
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The dilation D2µ(3/2, 1/2), with the density W3/2,1/2(x/2)/2, is known as the Bures
distribution, see (4.4) in [21]. Moreover, the integer sequence 4mAm(3/2, 1/2), moments
of D4µ(3/2, 1/2), appears as A078531 in [20] and counts the number of symmetric
noncrossing connected graphs on 2n + 1 equidistant nodes on a circle. The axis of
symmetry is a diameter of a circle passing through a given node, see [6].

The measure µ(3/2, 1) is equal to µ(2, 1)�1/2, the multiplicative free square root of
the Marchenko-Pastur distribution.

For the sake of completeness we also include the cases p = 3, r = 1 and p = 3, r = 2,
which have already appeared in [17, 18].

Theorem 4.3. Assume that p = 3. Then for r = 1 we have

(38) W3,1(x) =
3
(

1 +
√

1− 4x/27
)2/3
− 22/3x1/3

24/331/2πx2/3
(

1 +
√

1− 4x/27
)1/3 ,

for r = 2:

(39) W3,2(x) =
9
(

1 +
√

1− 4x/27
)4/3
− 24/3x2/3

25/333/2πx1/3
(

1 +
√

1− 4x/27
)2/3

and, finally, W3,3(x) = x ·W3,1(x), with x ∈ (0, 27/4).

Proof. For arbitrary r we have

W3,r(x) =
2(6−2r)/3 sin

(
πr/3

)
33−rπ

3F2

(
r

3
,
3− r

6
,
−r
6

;
2

3
,
1

3

∣∣∣∣ z)z(r−3)/3
−

2(4−2r)/3r sin
(
(1− 2r)π/3

)
33−rπ

3F2

(
1 + r

3
,
5− r

6
,
2− r

6
;

4

3
,
2

3

∣∣∣∣ z)z(r−2)/3
+
r(r − 1) sin

(
(1− r)π/3

)
2(1+2r)/333−rπ

3F2

(
2 + r

3
,
7− r

6
,
4− r

6
;

5

3
,
4

3

∣∣∣∣ z)z(r−1)/3,
where z = 4x/27. For r = 1 and r = 2 we have similar reduction as in the previous
proof. Here we will be using only (34).

Taking r = 1 we get

W3,1(x) =
21/3z−2/3

33/2π
2F1

(
1

3
,
−1

6
;

2

3

∣∣∣∣ z)− z−1/3

21/333/2π
2F1

(
2

3
,
1

6
;

4

3

∣∣∣∣ z)

=
z−2/3

33/2π

(
1 +
√

1− z
)1/3 − z−1/3

33/2π

(
1 +
√

1− z
)−1/3

=

(
1 +
√

1− z
)2/3 − z1/3

33/2πz2/3
(
1 +
√

1− z
)1/3 ,

which implies (38).
Now we take r = 2:

W3,2(x) =
z−1/3

21/331/2π
2F1

(
1

6
,
−1

3
;

1

3

∣∣∣∣ z)− z1/3

25/331/2π
2F1

(
5

6
,
1

3
;

5

3

∣∣∣∣ z)
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=
z−1/3

2 · 31/2π

(
1 +
√

1− z
)2/3 − z1/3

2 · 31/2π

(
1 +
√

1− z
)−2/3

=

(
1 +
√

1− z
)4/3 − z2/3

2 · 31/2πz1/3
(
1 +
√

1− z
)2/3 ,

and this gives us (39). Finally we apply (21). �

Note that the measure µ(3, 1) is equal to µ(2, 1)�2, the multiplicative free square of
the Marchenko-Pastur distribution.

5. Graphical representation of selected cases

The explicit form of Wp,r(x) given in Theorem 3.2 permits a graphical visualization for
any rational p > 0 and arbitrary r > 0. We shall represent some selected cases in Figures
1–9. These graphs which are partly negative are drawn as dashed curves. In Fig. 1 the
graphs of the functions W3/2,r(x) for values of r ranging from 0.9 to 2.3 are given. For
r ≤ 3/2 these functions are positive, otherwise they develop a negative part. In Fig. 2
we represent W5/2,r(x) for r ranging from 2 to 3.4. In Fig. 3 we display the densities
Wp,p(x) for p = 6/5, 5/4, 4/3 and 3/2. All these densities are unimodal and vanish at
the extremities of their supports. They can be therefore considered as generalizations
of the Wigner’s semicircle distribution W2,2(x), see equation (22). In Fig. 4 we depict
the functions W4/3,r(x), for values r ranging from 0.8 to 2.4. Here for r ≥ 1.4 negative
contributions clearly appear. In Fig. 5 and 6 we present six densities expressible through
elementary functions, namely W3/2,r(x) for r = 1/2, 1, 3/2, see Theorem 4.2 and W3,r(x)
for r = 1, 2, 3, see Theorem 4.3. In Fig. 7 the set of densities Wp,1(x) for five fractional
values of p is presented. The appearance of maximum near x = 1 corresponds to the
fact that µ(p, 1) weakly converges to δ1 as p→ 1+. In Fig. 8 the fine details of densities
Wp,1(x) for p = 5/2, 7/3, 9/4, 11/5, on a narrower range 2 ≤ x ≤ 4.5 are presented. In
Fig. 9 we display the densities Wp,1(x) for p = 2, 5/2, 3, 7/2, 4, near the upper edge of
their respective supports, for 3 ≤ x ≤ 9.5.

The Fig. 10 summarizes our results in the p > 0, r > 0 quadrant of the (p, r) plane,
describing the Raney numbers (c.f. Fig. 5.1 in [13] and Fig. 7 in [18]). The shaded
region Σ indicates the probability measures µ(p, r) (i.e. where Wp,r(x) is a nonegative
function). The vertical line p = 2 and the stars indicate the pairs (p, r) for which
Wp,r(x) is an elementary function, see Corollary 3.3, Theorem 4.2 and Theorem 4.3.

The points (3/2, 1) and (3, 1) correspond to the multiplicative free powers MP�1/2 and
MP�2 of the Marchenko-Pastur distribution MP. Symbol B at (3/2, 1/2) indicates the
Bures distribution and SC at (2, 2) denotes the semicircle law centered at x = 2, with
radius 2.

It is our pleasure to thank M. Bożejko, Z. Burda, K. Górska, I. Nechita and M. A. Nowak
for fruitful interactions.
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Figure 1. Raney distributions W3/2,r(x) with values of the parameter r
labeling each curve. For r > p solutions drawn with dashed lines are not
positive.

Figure 2. As in Fig. 1 for Raney distributions W5/2,r(x).
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Figure 3. Diagonal Raney distributions Wp,p(x) with values of the pa-
rameter p labeling each curve.

Figure 4. The functions W4/3,r(x) for r ranging from 0.8 to 2.4.
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Figure 5. Raney distributions W3/2,r(x) with values of the parameter r
labeling each curve. The case W3/2,1(x) represents the multiplicative free
square root of the Marchenko Pastur distribution.

Figure 6. Raney distributions W3,r(x) with values of the parameter r
labeling each curve. The case W3,1(x) represents the multiplicative free
square of the Marchenko Pastur distribution.



DENSITIES OF THE RANEY DISTRIBUTIONS 17

Figure 7. Raney distributions Wp,1(x) with values of the parameter p
labeling each curve. The case W3/2,1(x) represents the multiplicative free

square root of the Marchenko–Pastur distribution, MP�1/2.

Figure 8. Tails of the Raney distributions Wp,1(x) with values of the
parameter p labeling each curve.
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Figure 9. As in Fig. 8 for larger values of the parameter p.

Figure 10. Parameter plane (p, r) describing the Raney numbers. The
shaded set Σ corresponds to nonnegative probability measures µ(p, r).
The vertical line p = 2 and the stars represent values of parameters
for which Wp,r(x) is an elementary function. Here MP denotes the
Marchenko–Pastur distribution, MP�s its s-th free mutiplicative power,
B-the Bures distribution while SC denotes the semicircle law. For p > 1
the points (p, p) on the upper edge of Σ represent the generalizations of
the Wigner semicircle law, see Fig. 3.
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