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RECURSIVE BIJECTIONS FOR CATALAN OBJECTS.

STEFAN FORCEY, MOHAMMADMEHDI KAFASHAN, MEHDI MALEKI,
AND MICHAEL STRAYER

Abstract. In this note we introduce several instructive examples of bijections found
between several different combinatorially defined sequences of sets. Each sequence
has cardinalities given by the Catalan numbers. Our results answer some questions
posed by R. Stanley in the addendum to his textbook. We actually discuss two types
of bijection, one defined recursively and the other defined in a more local, relative,
fashion. It is interesting to compare the results of the two.

1. Introduction

1.1. Catalan objects. In the work that led to this note we set out to find explicit
bijections between several sequences of sets that are known to be counted by the Catalan
numbers, sequence A000108 in [4]. One sequence of sets we call the right-swept planar

unary-binary trees, or right-swept trees for short. These are the same restriction of
planar unary-binary trees that are labeled as example “www” in R. Stanley’s Catalan
Addendum (version of July 2012) [5]. They are also described in [2] as a special kind
of planar unary-binary trees, and there is given in that article a bijection to the non-
crossing partitions. We were inspired to find bijections from these right-swept trees to
other familiar sets of objects counted by the Catalan numbers, due to the fact that they
have a nice recursive description that is different from the standard Catalan recursion.
In this paper we find bijections from the right-swept trees to staircase tilings, planar
trees, planar binary trees and arc tree diagrams, allowing the reader to construct many
more implied bijections to non-crossing partitions, polygonal dissections and lattice
paths. Our first set of recursive bijections is described in Section 2. Our second bijection
between staircase tilings and right-swept trees is discussed in Section 3.

A right-swept tree is a rooted planar tree with the following restrictions. In general
a node may be a leaf, may have a single child which must be left, middle, or right; or
instead may have two children: left and right. Any left child has further restrictions: it
may not be a leaf, and it may not have a middle child. Thus any branching to the left
is eventually swept right before it can end in a leaf. Figure 1 shows a right-swept tree.

Our second featured sequence is known as the diagonal rectangular tilings of staircase
shapes, or staircase tilings for short. A staircase shape is the outline of a Young diagram
corresponding to a partition given by (n, n − 1, . . . , 1). The Catalan numbers count
tilings whose rectangles each include some of the stepped diagonal–i.e. each intersects
the end of a row in the Young diagram. These are equivalently described as rectangular
tilings of height n staircase shapes that contain exactly n rectangles. The fact that
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Figure 1. Two views of a right-swept tree. We will use the first, with
root at the top. The (remixed) photo is a windswept hawthorne near
Galway, original taken by Eoin Gardiner (creative commons).

having n rectangles is equivalent to being a diagonal tiling is also true for diagonal
rectangulations of the square, and we refer the reader to [3] both for a proof and for
some very nice related combinatorics. The staircase tilings are also referred to as tilings
of stair-step shapes, as in [1].

There is a well known bijection from staircase tilings to the sets of rooted planar bi-
nary trees. Simply removing the “steps,” the vertical and horizontal boundary segments
of unit length at the far right and bottom of the figure, and adding a root, yields a
binary tree (whose drawing has been rotated from its normal presentation.) A staircase
tiling and its corresponding binary tree is shown in Figure 2.

Figure 2. Two views of a staircase tiling. We will use the version on
the left. The binary tree in the center is the image of the staircase tiling
under the classical bijection: it is formed by removing the steps. We will
draw rooted binary trees with the root at the bottom.

The bijection exemplified in Figure 2 is trivially described in recursive terms. A planar
binary tree t with more than one leaf (and thus the corresponding staircase tiling) is
formed by joining a pair of smaller binary trees–the left and right subtrees whose root
is the first branch point of t. Many other Catalan objects have a similar recursive
description–triangular dissections of a polygon, bracketings of a string of symbols, and
Dyck paths, to name a few. This description leads to Segner’s classic recursion relation
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for the Catalan numbers cn:

(1.1) c0 = 1 and cn+1 =

n
∑

k=0

ckcn−k for n > 0,

...where n is the number of branch points for the binary tree, or the number of rectangles
in the staircase tiling. The recursion yields the closed formula:

cn =
1

n+ 1

(

2n

n

)

.

IfXn and X ′

n are any two of the sequences of sets that have Segner’s recursive descrip-
tion then they are in piecewise bijection (both counted by cn), and the correspondence
is explicitly described using the recursion. If a bijection is given between the kth sets
of the two sequences, for k = 1 . . . n, then given an object of Xn+1 we can decompose it
into two objects from earlier in the sequence, find their corresponding objects and use
them to construct the corresponding object in X ′

n+1.

We began by seeking similar explicit bijections between the staircase tilings and
the right-swept trees. We found two such bijections. The first bijection discussed in
Section 2 is based on an alternate recursive description of the staircase tilings, which
fits well with the natural recursive description of the right-swept trees. By finding
analogous ways to recursively construct other sorts of Catalan objects we can describe
them as being in bijection with the right-swept trees, and each other, in new ways. As
an example we include non-crossing arc diagrams with distinct left endpoints, or arc

trees for short.
Arc trees are defined to be the ways of connecting n+1 points lying on a horizontal line

on the plane with n non-crossing arcs lying above the line such that the left endpoints
of the arcs are distinct. There is always a unique series of arcs traveled from left to
right from any point to the rightmost point. Thus there is always a unique shortest
path to travel from one point to another. These are easily seen to be in bijection with
planar rooted trees with n edges, simply by choosing the rightmost point to be the root
and then straightening the arcs. See Figure 3.

Figure 3. The bijection from non-crossing arc diagrams with distinct
left endpoints to planar rooted trees: from left to right we gradually
straighten the arcs. We will draw planar rooted trees with the root at
the bottom (as opposed to the right-swept trees with their root at the
top.)
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2. Recursive bijections

As mentioned, in order to keep this paper self contained, we have repeated the defi-
nitions given in R. Stanley’s Catalan addendum (version of 13 July 2012) to [5] of the
combinatorial objects www, h8, and h5: called here respectively the right-swept trees,
staircase tilings and arc trees.

We represent the set of right-swept trees with n nodes as Tn, the set of stair-case
tilings with n rectangles as Sn and the set of arc trees with n arcs as An. We refer to
the sets as the shapes of size n. The five objects for size n = 3 are seen in Figures 4, 5
and 6.

Figure 4. Right-swept trees T3.

Figure 5. Staircase tilings S3.

Figure 6. (Non crossing) arc trees A3.

Here we introduce a recursive method to construct a shape with size of n+1 in any of
these three combinatorial sets using shapes of smaller size. We construct four different
types of shapes of size n+ 1 using four methods:

(1) We define functions fR : Xn → Xn+1, X ∈ {T,S,A} , n ≥ 1 ∈ N. Depending
on which combinatorial object is the input to this function, we perform the fol-
lowing procedures:

a) X = T: In this case, the output in Tn+1 = fR (Tn) is a right-swept tree
with n+ 1 vertices constructed by adding one vertex to t ∈ Tn as the new root
whose right child is the root of t.
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b) X = S: In this case, the output in Sn+1 = fR (Sn) is a staircase tiling with
n + 1 rectangles constructed by adding one ((n + 1)× 1) rectangle to the left
side of an input from Sn.

c) X = A: In this case, the output in An+1 = fR (An) is is an arc tree with
n + 2 points constructed by adding one point to the left side of a ∈ An and
connecting it to the nearest point in a.

Figure 7 represents the operation of fR whose input can be any possible shape
with size of n. Thus the number of shapes of size n+1 which can be constructed
by fR is denoted cn+1,1 = cn.

T n

S n

An

Figure 7. Construction of Xn+1 using fR.

(2) We define functions fM : Xn → Xn+1, X ∈ {T,S,A} , n ∈ N, and for the case
n = 0. Depending on which combinatorial object is the input to this function,
we perform the following procedures:

a) X = T: In this case, the output in Tn+1 = fM (Tn) is a tree with n + 1
vertices constructed by adding one vertex to t ∈ Tn as the new root whose mid-
dle child is the root of t. We define T0 to be {∅} and define the single element
of T1 as fM(∅).

b) X = S: In this case, the output in Sn+1 = fM (Sn) is a tiling with n + 1
rectangles constructed by removing the left edge of s ∈ Sn, extending s one
column to the left and then adding one single square to the bottom of the new
column. We define S0 to be {∅} and define the single element of S1 as fM(∅).

c) X = A: In this case, the output in An+1 = fM (An) is an arc tree with
n + 2 points constructed by adding one point to the left side of a ∈ An and
connecting it to the farthest point in a. We define A0 to consist of a single point
and define the single element of A1 as the image of that point under fM .

Figures 8 and 9 represent the operation of fM whose input can be any possible
shape with size of n. Thus the number of shapes of size n + 1 which can be
constructed by fM is denoted cn+1,2 = cn.

(3) We define functions fL : (Xn − fM(Xn−1)) → Xn+1, X ∈ {T,S,A} , n ≥ 1 ∈
N. Depending on which combinatorial object is the input to this function, we
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T n

S n

An

Figure 8. Construction of Xn+1 using fM .

T 5 S 5

T 4 S 4

f f
M M

A5

A4

f
M

Figure 9. Examples of the construction of Xn+1 using fM .

perform the following procedures:

a) X = T: In this case, the output of fL is a tree with n + 1 vertices con-
structed by adding one vertex to a size n right-swept tree t as the new root
whose left child is the root of t. Here the original root of t will not have a
middle child.

b) X = S: In this case, the output of fL is a tiling with n + 1 rectangles
constructed by adding one ((n+ 1)× 1) rectangle to the top of a shape from
Sn. Here s ∈ Sn should not have a single square as its lowest tile. In other
words s should not be constructed by fM (Sn−1).

c) X = A: In this case, the output of fL is an arc tree with n + 2 points
constructed by adding one point to the left side of a size n arc tree a and con-
necting it to the second nearest point (but not the rightmost one) in a such that
the connection does not intersect with any other arc in a. Notice that this is
impossible if the input arc tree has an arc between its first and last points. In
other words a should not be constructed by fM (An−1).

Figure 10 represents the operation of fL whose input can be any possible shape
with size of n except the shapes constructed by fM (Xn−1). Thus the number of
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shapes of size n+1 which can be constructed by fL is denoted cn+1,3 = cn−cn−1.

T n

S n

An

Figure 10. Construction of Xn+1 using fL.

(4) For the last case we define functions f : ((Xn1
− fM(Xn1−1))×Xn2

) → Xn+1, X ∈
{T,S,A} , n1 > 1 ∈ N, n2 ∈ N, n = (n1+n2) ≥ 3. Depending on which combi-
natorial object is the input to this function, we perform the following procedures:

a) X = T: In this case, the output in Tn1+n2+1 is a tree with n1 +n2 +1 ver-
tices constructed by adding one vertex as the root whose left and right children
are the roots of trees from Tn1

− fM (Tn1−1) and Tn2
respectively.

b) X = S: In this case, the output in Sn1+n2+1 is a shape with n1 + n2 + 1
rectangles constructed by introducing a rectangle of size ((n1 + 1)× (n2 + 1)) in
the top left corner of the shape and adding staircase tilings t1 ∈ Sn1

−fM(Sn1−1)
and t2 ∈ Sn2

to the bottom and right of the rectangle respectively. The tiling
added to the bottom should not have a single square as its bottom-most tile.

c)X = A: In this case, the output in An1+n2+1 is a shape with points con-
structed by concatenating arc trees fromAn1

−fM (An1−1) andAn2
in that order,

left to right, by identifying their respective rightmost and leftmost points. Then
we add a point to the left side of both and connect it to the identified common
point. The input arc tree on the left should not have an arc between its first
and last points.

Figure 11 represents the operation of f (., .) to construct a shape of size n1 +
n2+1. The first input argument can be any shape with size of n1 > 1 except the
shapes constructed by fM (Xn1−1). However the second argument can be any
shape of size n2 . The number of shapes of size n+ 1 which can be constructed

with this function is denoted cn+1,4 =
n−1
∑

k=2

cn−k (ck − ck−1).

2.1. Bijections implied by the construction. The functions we have defined allow
the shapes to be built recursively, and to be deconstructed as well. Unique construction
and deconstruction allow us to realize a bijection between any two sets whose shapes
are built with the four functions defined above. First we note that there is only one
element of X1 for each of the shapes we consider. Figure 12 shows the three sets of size
one.

Definition 2.1. For n ≥ 1 we define maps α : Xn → X′

n for X,X′ ∈ {T,S,A} as

follows:
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Tn 1
Tn 2 S n 1

S n 2

An 1
An 2

Figure 11. Construction of Xn1+n2+1 using f (Xn1
,Xn2

)

T 1 S 1 A1

Figure 12. Trivial bijections between T1, S1 and A1. Recall that these
are each defined as an image of fM .

For x ∈ Xn we consider x to be the shape that results from applying exactly n functions

fi, i = 1 . . . n in a particular order to k initial copies of x0 ∈ X0, the single element of

size zero for k ≥ 1. Here fi ∈ {f, fL, fR, fM}. We denote as Fx the function that is

the composition of cartesian products of the n functions fi, whose domain is k copies

of X0, and whose sole image is x.

Then α(x) = Fx(x
′

0, x
′

0, . . . , x
′

0) for k copies of x′

0 ∈ X′

0, the element of size zero.

For examples see Figures 13, 15 and 16.

Theorem 2.2. α : Xn → X′

n as just defined gives bijections for all X,X′ ∈ {T,S,A}.

Proof. We show that α is well defined, surjective and invertible by demonstrating that
for any shape x′ ∈ X′

n there is a unique composition of cartesian products of functions
from fL, fM , fR and f that constructs it. Since a given composition constructs only
one shape in each of T,S,A, having that composition means having knowledge of a
unique shape x ∈ Xn corresponding to x′. The existence of a unique composition is
argued using strong induction, since the function f takes inputs from sets with smaller
indices than just n− 1. We note that the single shapes for n = 1 (in Figure 12) are all
constructed uniquely by fM by definition. Assuming that shapes smaller than size n

are uniquely constructed, we then check for size n as follows:

T : For any right-swept tree t ∈ Tn, depending on whether the root has left, middle,
right or both left and right children, the tree is uniquely constructed from one
or two smaller trees. For the right-swept trees this follows from their definition.

S : For any staircase tiling s ∈ Sn the shape is uniquely constructed from one or
two smaller shapes. The construction is determined first by whether s has a
single square as its bottom-most tile. If that is the case, then s is constructed
from a single smaller tiling by fM . Otherwise, we can determine whether it was
constructed by fL, fR or f respectively by whether s has a a single long rectangle
along its top, along its left side, or neither (instead it has a thick rectangle that
covers some of both but neither the entire top nor the entire left edges.)
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A : For any arc tree a ∈ An the shape is constructed from one or two smaller shapes.
The construction is determined first by whether a has a single arc connecting
its first and last points. If that is the case, then a is constructed from a single
smaller arc tree by fM . Otherwise, we can determine whether it was constructed
by fR, fL or f respectively by whether a has a a single short arc connecting
its first (leftmost) and second points, a single arc connecting its left-most point
with the second available point, or neither (instead it has a single longer arc
connecting its left-most point to another, more central, point.)

�

It is instructive to show that the total number of shapes constructed by our four

functions is equal to cn+1. That is, that the Catalan number cn+1 =
4
∑

i=1

cn+1,i. Equiv-

alently we need to prove that
n−1
∑

k=1

ckcn−k = cn+1 − 2cn. To prove this we use Segner’s

recurrence relation for Catalan numbers.

(2.1) c0 = 1 and cn+1 =

n
∑

k=0

ckcn−k for n > 0

So we have

(2.2) cn+1 =
n

∑

k=0

ckcn−k = c0cn +
n−1
∑

k=1

ckcn−k + cnc0 ⇒
n−1
∑

k=1

ckcn−k = cn+1 − 2cn

2.2. Examples. Example 1: We want to demonstrate the bijections between right-
swept trees, staircase tilings and arc trees for n = 3. For this we use the proposed
method twice. So for n = 2 the bijection between these combinatorial objects is illus-
trated in Figure 13:

T 2 S 2 A2

Figure 13. Bijections between right-swept trees, staircase tilings and
arc trees for n = 2. The top row is formed by fM ◦ fM and the bottom
row by fR ◦ fM .

Now the bijections between right-swept trees, staircase tilings and arc trees for n = 3
can be illustrated, in Figure 18:

Example 2: Here we take a shape in S12, seen in Figure 14. We want to find its
images under α in T12 and A12. First we apply the inverses of our functions introduced
before in order to uniquely reduce the size of the shape to n = 1, shown in Figure 15.
Now by applying the functions we found in Figure 15, we can construct bijective images
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Figure 14. An example of a staircase tiling with n = 12.

f
-1

M

f
-1

f
-1

L

f
-1

R

f
-1

f
-1

R

f
-1

R

f
-1

R

f
-1

M

Figure 15. The inverse process on shape of Figure 14. Darkly shaded
tiles are discarded by the inverse functions. Thus the tiling x shown here
is formed by:

Fx(x0, x0, x0) = f(fM ◦ fL ◦ fR ◦ fM ◦ fM (x0), fR ◦ f(fM(x0), fR ◦ fR ◦ fM(x0))).

of the staircase tiling in the sets of right-swept trees and arc trees, which are shown in
Figure 16. Finally we present the induced bijective correspondence for a binary tree
with 12 internal nodes and a planar tree with 12 edges. This is seen in Figure 17.
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Figure 16. Images (under α) of the shape of Figure 14 in T12 and A12

Figure 17. Corresponding binary tree and planar tree, under bijection
induced by α between arc trees and staircase tilings. This example uses
the staircase tiling from Figure 14 and Figure 15.

3. Relative bijection from Tn to Sn

For contrast, we consider a different method for constructing a bijection from right-
swept trees to staircase tilings.

We start by describing a second new mapping β : Tn → Sn. Rather than using
recursion, this time we declare several rules about the relative positions of rectangles
on one hand and tree nodes on the other. To characterize this mapping, we need several
rules which describe how two labeled nodes attached by an edge of the right-swept tree
are translated to two labeled rectangles in the staircase tiling.

(1) Let two nodes be attached by a tree edge with a positive slope, so that node
a is a left child of node b. Then rectangle b will be immediately to the right of
rectangle a. See Figure 19.

(2) For two nodes attached by a negative sloped edge the situation is more complex.
If a right child b is the only child of a root, middle child, or right child a, and
b itself is a leaf or has only a middle or right child, then the rectangle b will be
immediately right of the rectangle corresponding to a. See Figure 20.
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right-swept

trees

staircase

tilings
arc

trees

(planar rooted)

binary trees

(planar rooted)

 trees

f     f     f o      o   
M      M      M

f     f     f o      o   
R      M      M

f     f     f o      o   
M      R       M

f     f     f o      o   
R       R       M

f     f     f o      o   
L       R       M

Figure 18. Bijections for n = 3. Each row represents a class of objects
mapped to each other, the first three columns by the bijection α and the
last two columns via canonical bijections from the staircase tilings and
arc trees.

Figure 19. Example of Rule 1 (β : Tn → Sn).

Figure 20. Example of Rule 2 (β : Tn → Sn).
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(3) However, if a right child is produced from a left child (or as part of a left and
right child), the corresponding rectangle will be immediately below the rectangle
corresponding to the spawning vertex. See Figure 21.

Figure 21. Examples of Rule 3 (β : Tn → Sn).

(4) A middle child b will always correspond to a rectangle directly below the rec-
tangle corresponding to the spawning vertex a. See Figure 22.

Figure 22. Example of Rule 4 (β : Tn → Sn).

(5) There is only one case in which adjacent nodes do not correspond to adjacent
rectangles: if b is a right child of a, and b has a left child d. Then rectangle b is
right of rectangle a, but Rule 1 is used to place the left child of b (and its left
child, etc.) between rectangles a and b. See Figure 23.

This method gives a specific set of instructions at each vertex point for how to proceed
with no ambiguity in the decision-making process. Therefore each tree in Tn will give
a unique structure in Sn.

Figure 24 is a final example for the case that n = 10 for the mapping from Tn to Sn.

Theorem 3.1. The mapping β : Tn → Sn determined by the above rules is a bijection.

Proof. We consider the reverse mapping β−1 : Sn → Tn. In a similar fashion, we
develop a series of rules for this mapping.
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Figure 23. Example of Rule 5 (β : Tn → Sn).

Figure 24. A full example for the case n = 10 (β : Tn → Sn).

(1) If the top-left rectangle goes to the bottom of the figure (i.e. width = 1 unit),
the root spawns a right child. If the top-left rectangle goes to the farthest right
edge (i.e. depth = 1 unit), the root spawns a middle child. This process is
repeated as necessary. See Figure 25.

Figure 25. Examples of Rule 1 (β−1 : Sn → Tn).
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(2) If the top-left rectangle has width greater than 1 unit and depth greater than 1
unit, then a limb of left children is formed where the bottom vertex on this limb
corresponds to the left-most rectangle. The length of this limb of left children
is determined by the number of rectangles read from left to right, going as far
right as possible. See Figure 26.

Figure 26. Example of Rule 2 (β−1 : Sn → Tn).

(3) Any remaining rectangles are treated as right children of the vertex correspond-
ing to the rectangle directly above and the process repeats with these remaining
rectangles acting as miniature versions of Sn. Notice this rule satisfies the re-
striction in Tn to have a right child or a right and left child following a left child.
See Figure 27.

Figure 27. Example of Rule 3 (β−1 : Sn → Tn).

As in the previous case, we now illustrate with a final example, the reverse image
for the case n = 10 that we considered earlier. See Figure 28. We use the set of rules
developed here, and see that we arrive at the same pre-image in Tn.

Once again, no ambiguity arises from the rules developed above, and so each output
of this algorithm is unique for each unique input.

We now argue that these sets of rules form an inverse function. We define Tier One
rules to be Rules 2 and 4 from the former direction and Rule 1 from the latter direction.
We define Tier Two rules to be Rules 1 and 5 in the former direction and Rule 2 in the
latter direction. We define Tier Three rules to be Rule 3 from the former direction and
Rule 3 from the latter direction.

Tier One rules are easily seen to be inverse rules, and when using any Tier One rule
from the outset, the resulting figure in the next step is a new tree or staircase shape
with n− 1 vertices or rectangles for Tn and Sn, respectively.
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Figure 28. A full example for the case n = 10 (β−1 : Sn → Tn).

The real key to this process occurs in Tier Two and Tier Three rules. In Tn, the
Tier Two rules occur any time a left child is introduced, whether it is from the root
(Rule 1) or somewhere else in the tree (Rule 5). In Sn, the Tier Two rules occur any
time a rectangle having width and depth both greater than 1 unit is introduced, either
as the top-left rectangle (corresponding to the root in Tn) or somewhere else in the
staircase (corresponding to a different branch in Tn). These two phases are clearly
inverses of each other, since Rules 1 and 5 of Tn imply Rule 2 of Sn and vice versa, and
in corresponding sections of the tree and staircase.

Tier Three rules in Tn occur whenever a right child branches off of a left limb (where
the length of the limb is anywhere from 1 to n − 1 branches). Similarly, Tier Three
rules in Sn occur any time there are leftover rectangles underneath of a Tier Two
structure in Sn. In both Tn and Sn, the process renews itself when Tier Three rules
are utilized, leaving smaller tree and staircase structures of corresponding size, both
starting independently with the same set of rules the larger structure obeys. Therefore,
Tier Three rules in Tn imply Tier Three rules in Sn and vice verse, and in corresponding
sections of the tree and staircase.

Breaking down our algorithm into three tiers of rules has allowed us to show that
this function is indeed an inverse function. We therefore have successfully described
the bijection between Sn and Tn. �

3.1. Examples contrasting the bijections. Interestingly, the two bijections α :
Tn → Sn and β : Tn → Sn set up precisely the same correspondence between right-
swept trees and staircase tilings for n = 0, 1, 2. An obvious question is raised: are the
two bijections we have described the same? The answer is no. We see this at n = 3, by
comparing the tables in Figures 29 and 18.

The slightly larger example we include next in Figure 30 was suggested by the referee.
In fact we’d like to take this opportunity to thank the referee, who went to a great deal
of trouble on our behalf. This example is in n = 5.

Finally we include here in Figure 31 a larger example to highlight the differences. A
tree from T12 (the same example as in Figure 16) is shown in the center, and then its
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Figure 29. Bijections for n = 3 for the bijection β. Note that the third
and fifth images are switched from those of α in Figure 18.

αβ

Figure 30. Contrasted pre-images of an S5 tiling.

two images in S12: on the left is the image of the recursive bijection from Section 2 and
on the right the image of the relative bijection from Section 3.
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α

β

Figure 31. Two images of a right-swept tree from T12.
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