ON INTERVALS $(k n,(k+1) n)$ CONTAINING A PRIME FOR ALL $n>1$

VLADIMIR SHEVELEV, CHARLES R. GREATHOUSE IV, AND PETER J. C. MOSES

Abstract

We study values of k for which the interval $(k n,(k+1) n)$ contains a prime for every $n>1$. We prove that the list of such integers k includes $k=1,2,3,5,9,14$, and no others, at least for $k \leq 50,000,000$. For every known k of this list, we give a good upper estimate of the smallest $N_{k}(m)$, such that, if $n \geq N_{k}(m)$, then the interval $(k n,(k+1) n)$ contains at least m primes.

1. Introduction and main results

In 1850 , P. L. Chebyshev proved the famous Bertrand postulate (1845) that every interval $[n, 2 n]$ contains a prime (for a very elegant version of his proof, see Theorem 9.2 in [10]). Other nice proofs were given by S. Ramamujan in 1919 [8] and P. Erdős in 1932 (reproduced in [4], pp.171173). In 2006, M. El. Bachraoui [1] proved that every interval [2n, 3n] contains a prime, while A. Loo [6] proved the same statement for every interval $[3 n, 4 n]$. Moreover, A. Loo found a lower estimate for the number of primes in the interval [$3 n, 4 n$]. Note also that already in 1952 J. Nagura [7] proved that, for $n \geq 25$, there is always a prime between n and $\frac{6}{5} n$. From his result it follows that the interval [$5 n, 6 n$] always contains a prime. In this paper we prove the following.

Theorem 1. The list of integers k for which every interval $(k n,(k+$ 1) n), $n>1$, contains a prime includes $k=1,2,3,5,9,14$ and no others, at least for $k \leq 50,000,000$.

Besides, in this paper, for every $k=1,2,3,5,9,14$, we give an algorithm for finding the smallest $N_{k}(m)$, such that, for $n \geq N_{k}(m)$, the interval $(k n,(k+1) n)$ contains at least m primes.

[^0]
2. CaSe $k=1$

Ramanujan [8] not only proved Bertrand's postulate but also indicated the smallest integers $\{R(m)\}$, such that, if $x \geq R(m)$, then the interval $\left(\frac{x}{2}, x\right]$ contains at least m primes, or, the same, $\pi(x)-\pi(x / 2) \geq m$. It is easy to see that here it is sufficient to consider integer x and it is evident that every term of $\{R(m)\}$ is prime. The numbers $\{R(m)\}$ are called Ramanujan primes [14]. It is the sequence (A104272 in [13]):

$$
\begin{equation*}
2,11,17,29,41,47,59,67,71,97, \ldots \tag{1}
\end{equation*}
$$

Since $\pi(x)-\pi(x / 2)$ is not a monotonic function, to calculate the Ramanujan numbers one should have an effective upper estimate of $R(m)$. In [8] Ramanujan showed that

$$
\begin{equation*}
\pi(x)-\pi(x / 2)>\frac{1}{\ln x}\left(\frac{x}{6}-3 \sqrt{x}\right), x>300 \tag{2}
\end{equation*}
$$

In particular, for $x \geq 324$, the left hand side is positive and thus ≥ 1. Using direct descent, he found that $\pi(x)-\pi(x / 2) \geq 1$ already from $x \geq 2$. Thus $R(1)=2$ which proves the Bertrand postulate. Further, e.g., for $x \geq 400$, the left hand side of (2) is more than 1 and thus ≥ 2. Again, using direct descent, he found that $\pi(x)-\pi(x / 2) \geq 2$ already from $x \geq 11$. Thus $R(2)=11$, etc. Sondow [14] found that $R(m)<4 m \ln (4 m)$ and conjectured that

$$
\begin{equation*}
R(m)<p_{3 m} \tag{3}
\end{equation*}
$$

which was proved by Laishram [5]. Since, for $n \geq 2, p_{n} \leq e n \ln n$ (cf. [3], Section 4), then (3) yields $R(m) \leq 3 e m \ln (3 m), m \geq 1$. Set $x=2 n$. Then, if $2 n \geq R(m)$, then $\pi(2 n)-\pi(n) \geq m$. Thus the interval $(n, 2 n)$ contains at least m primes, if

$$
n \geq\left\lceil\frac{R(m)+1}{2}\right\rceil=\left\{\begin{array}{l}
2, \quad \text { if } m=1 \\
\frac{R(m)+1}{2}, \quad \text { if } m \geq 2
\end{array}\right.
$$

Denote by $N_{1}(m)$ the smallest number such that, if $n \geq N_{1}(m)$, then the interval $(n, 2 n)$ contains at least m primes. It is clear, that $N_{1}(1)=$ $R(1)=2$. If $m \geq 2$, formally the condition $x=2 n \geq 2 N_{1}(m)$ is not stronger than the condition $x \geq R(m)$, since the latter holds for x even and odd. Therefore, for $m \geq 2$, we have $N_{1}(m) \leq \frac{R(m)+1}{2}$. Let us show that in fact we have here the equality.

Proposition 2. For $m \geq 2$,

$$
\begin{equation*}
N_{1}(m)=\frac{R(m)+1}{2} . \tag{4}
\end{equation*}
$$

Proof. Note that the interval $\left(\frac{R(m)-1}{2}, R(m)-1\right)$ cannot contain more than $m-1$ primes. Indeed, it is an interval of type $\left(\frac{x}{2}, x\right)$ for integer x and the following such interval is $\left(\frac{R(m)}{2}, R(m)\right)$. By the definition, $R(m)$ is the smallest number such that if $x \geq R(m)$, then $\left\{\left(\frac{x}{2}, x\right)\right\}$ contains $\geq m$ primes. Therefore, the supposition that already interval $\left(\frac{R(m)-1}{2}, R(m)-1\right)$ contains $\geq m$ primes contradicts the minimality of $R(m)$. Since the following interval of type $(y, 2 y)$ with integer $y \geq \frac{R(m)-1}{2}$ is $\left(\frac{R(m)+1}{2}, R(m)+1\right)$, then (4) follows.

So the sequence $\left\{N_{1}(m)\right\}$, by (1), is (A084140 in [13])

$$
\begin{equation*}
2,6,9,15,21,24,30,34,36,49, \ldots \tag{5}
\end{equation*}
$$

3. Generalized Ramanujan numbers

Further our research is based on a generalization of Ramanujan's method. With this aim, we define generalized Ramanujan numbers (cf. [12], Section 10, and earlier (2009) comment in A164952 [13]).

Definition 3. Let $v>1$ be a real number. A v-Ramanujan number $\left(R_{v}(m)\right)$, is the smallest integer such that if $x \geq R_{v}(m)$, then $\pi(x)-$ $\pi(x / v) \geq m$.

It is known [10] that all v-Ramanujan numbers are primes. In particular, $R_{2}(m)=R(m), m=1,2, \ldots$, are the proper Ramanujan primes.

Definition 4. For a real number $v>1$ the v-Chebyshev number $C_{v}(m)$ is the smallest integer, such that if $x \geq C_{v}(m)$, then $\vartheta(x)-\vartheta(x / v) \geq m \ln x$, where $\vartheta(x)=\sum_{p \leq x} \ln p$ is the Chebyshev function.

Since $\frac{\vartheta(x)-\vartheta(x / v)}{\ln x}$ can enlarge on 1 only when x is prime, then all v Chebyshev numbers $C_{v}(m)$ are primes.

Proposition 5. We have

$$
\begin{equation*}
R_{v}(m) \leq C_{v}(m) \tag{6}
\end{equation*}
$$

Proof. Let $x \geq C_{v}(m)$. Then we have

$$
\begin{equation*}
m \leq \frac{\vartheta(x)-\vartheta(x / v)}{\ln x}=\sum_{\frac{x}{v}<p \leq x} \frac{\ln p}{\ln x} \leq \sum_{\frac{x}{v}<p \leq x} 1=\pi(x)-\pi(x / v) \tag{7}
\end{equation*}
$$

Thus, if $x \geq C_{v}(m)$, then always $\pi(x)-\pi(x / v) \geq m$. By the Definition 3, this means that $R_{v}(m) \leq C_{v}(m)$.

Now we give an upper estimates for $C_{v}(m)$ and $R_{v}(m)$.
Proposition 6. Let $x=x_{v}(m) \geq 2$ be any number for which

$$
\begin{equation*}
\frac{x}{\ln x}\left(1-\frac{1300}{\ln ^{4} x}\right) \geq \frac{v m}{v-1} . \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
R_{v}(m) \leq C_{v}(m) \leq x_{v}(m) \tag{9}
\end{equation*}
$$

Proof. We use the following inequality of Dusart 3] (see his Theorem 5.2):

$$
|\vartheta(x)-x| \leq \frac{1300 x}{\ln ^{4} x}, x \geq 2
$$

Thus we have

$$
\begin{aligned}
\vartheta(x)-\vartheta(x / v) & \geq x\left(1-\frac{1}{v}-1300\left(\frac{1}{\ln ^{4} x}-\frac{1}{v \ln ^{4} \frac{x}{v}}\right)\right) \\
& \geq x\left(1-\frac{1}{v}\right)\left(1-\frac{1300}{\ln ^{4} x}\right)
\end{aligned}
$$

If now

$$
x\left(1-\frac{1}{v}\right)\left(1-\frac{1300}{\ln ^{4} x}\right) \geq m \ln x, x \geq x_{v}(m)
$$

then

$$
\vartheta(x)-\vartheta(x / v) \geq m \ln x, x \geq x_{v}(m)
$$

and, by the Definition 4, $C_{v}(m) \leq x_{v}(m)$. So, according to (6), we conclude that $R_{v}(m) \leq x_{v}(m)$.

Remark 7. In fact, in Theorem 5.2 [3] Dusart gives several inequalities of the form

$$
|\vartheta(x)-x| \leq \frac{a x}{\ln ^{b} x}, x \geq x_{0}(a, b)
$$

In the proof we used the maximal value $b=4$. However, with the computer point of view, the values $a=1300, b=4$ from Dusart's theorem not always are the best. The analysis for $x \geq 25$ shows that the condition

$$
x\left(1-\frac{1}{v}\right)\left(1-\frac{a x}{\ln ^{b} x}\right) \geq m \ln x
$$

is the weakest and thus satisfies for the smallest $x_{v}(x)=x_{v}(a, b)$, if to use the following values of a and b from Dusart's theorem:
$a=3.965, b=2$ for x in range $\left(25,7 \cdot 10^{7}\right]$;
$a=1300, b=4$ for x in range $\left(7 \cdot 10^{7}, 10^{9}\right]$;
$a=0.001, b=1$ for x in range $\left(10^{9}, 8 \cdot 10^{9}\right]$;
$a=0.78, b=3$ for x in range $\left(8 \cdot 10^{9}, 7 \cdot 10^{33}\right]$;
$a=1300, b=4$ for $x>7 \cdot 10^{33}$.
Proposition 6 gives the terms of sequences $\left\{C_{v}(m)\right\},\left\{R_{v}(m)\right\}$ for every $v>1, m \geq 1$. In particular, if $k=1$ we find $\left\{C_{2}(m)\right\}$:

$$
11,17,29,41,47,59,67,71,97,101,107,127,149,151,167,179,223
$$

$229,233,239,241,263,269,281,307,311,347,349,367,373,401,409$,

$$
\begin{equation*}
419,431,433,443, \ldots \tag{10}
\end{equation*}
$$

This sequence requires a separate comment. We observe that up to $C_{2}(100)=$ 1489 only two terms of this sequence $\left(C_{2}(17)=223\right.$ and $\left.C_{2}(36)=443\right)$ are not Ramanujan numbers, and the sequence is missing only the following Ramanujan numbers: 181,227,439,491,1283,1301 and no others up to 1489. The latter observation shows how much the ratio $\frac{\vartheta(x)}{\ln x}$ exactly approximates $\pi(x)$.

Further, for $v=\frac{k+1}{k}$, we find the following sequences:
for $k=2,\left\{C_{v}(m)\right\}$,

$$
\begin{equation*}
13,37,41,67,73,97,127,137,173,179,181,211,229,239, \ldots ; \tag{11}
\end{equation*}
$$

for $k=2,\left\{R_{v}(m)\right\}$,

$$
\begin{equation*}
2,13,37,41,67,73,97,127,137,173,179,181,211,229,239, \ldots \tag{12}
\end{equation*}
$$

for $k=3,\left\{C_{v}(m)\right\}$,

$$
\begin{equation*}
29,59,67,101,149,157,163,191,227,269,271,307,379, \ldots \tag{13}
\end{equation*}
$$

for $k=3,\left\{R_{v}(m)\right\}$,

$$
\begin{equation*}
11,29,59,67,101,149,157,163,191,227,269,271,307,379, \ldots ; \tag{14}
\end{equation*}
$$

for $k=5,\left\{C_{v}(m)\right\}$,

$$
\begin{equation*}
59,137,139,149,223,241,347,353,383,389,563,569,593, \ldots \tag{15}
\end{equation*}
$$

for $k=5,\left\{R_{v}(m)\right\}$,

$$
\begin{equation*}
29,59,137,139,149,223,241,347,353,383,389,563,569,593, \ldots ; \tag{16}
\end{equation*}
$$

for $k=9,\left\{C_{v}(m)\right\}$,

$$
\begin{equation*}
223,227,269,349,359,569,587,593,739,809,857,991,1009, \ldots ; \tag{17}
\end{equation*}
$$

for $k=9,\left\{R_{v}(m)\right\}$,
(18) $127,223,227,269,349,359,569,587,593,739,809,857,991,1009, \ldots$;
for $k=14,\left\{C_{v}(m)\right\}$,

$$
\begin{equation*}
307,347,563,569,733,821,1427,1429,1433,1439,1447,1481, \ldots ; \tag{19}
\end{equation*}
$$

for $k=14,\left\{R_{v}(m)\right\}$,

$$
\begin{equation*}
127,307,347,563,569,733,1423,1427,1429,1433,1439,1447, \ldots \tag{20}
\end{equation*}
$$

4. Estimates of type (3)

Proposition 8. We have

$$
\begin{gather*}
C_{2}(m-1) \leq p_{3 m}, m \geq 2 \tag{21}\\
R_{\frac{3}{2}}(m) \leq p_{4 m}, m \geq 1 ; C_{\frac{3}{2}}(m-1) \leq p_{4 m}, m \geq 2 \tag{22}\\
R_{\frac{4}{3}}(m) \leq p_{6 m}, m \geq 1 ; C_{\frac{4}{3}}(m-1) \leq p_{6 m}, m \geq 2 \tag{23}\\
R_{\frac{6}{5}}(m) \leq p_{11 m}, m \geq 1 ; C_{\frac{6}{5}}(m-1) \leq p_{11 m}, m \geq 2 \tag{24}\\
R_{\frac{10}{9}}(m) \leq p_{31 m}, m \geq 1 ; C_{\frac{10}{9}}(m-1) \leq p_{31 m}, m \geq 2 \tag{25}\\
R_{\frac{15}{14}}(m) \leq p_{32 m}, m \geq 1 ; C_{\frac{15}{14}}(m-1) \leq p_{32 m}, m \geq 2 \tag{26}
\end{gather*}
$$

Proof. Firstly let us find some values of $m_{0}=m_{0}(k)$, such that, at least, for $m \geq m_{0}$ all formulas (21)-(26) hold. According to (8)-(9)), it is sufficient to show that, for $m \geq m_{0}$, we can take $p_{t m}$, where $t=3,4,6,11,31,32$ for formulas (21)-(26) respectively, in the capacity of $x_{v}(m)$. As we noted in Remark 7, in order to get possibly smaller values of m_{0}, we use, instead of (8), the estimate

$$
\begin{equation*}
\frac{x}{\ln x}\left(1-\frac{3.965}{\ln ^{2} x}\right) \geq \frac{v m}{v-1} \tag{27}
\end{equation*}
$$

In order to get $x=p_{m t}$ satisfying this inequality, note that [11]

$$
p_{n} \geq n \ln n
$$

Therefore, it is sufficient to consider $p_{m t}$ satisfying the inequality

$$
\ln p_{t m} \leq\left(1-\frac{1}{v}\right) t \ln (t m)\left(1-\frac{3.965}{\ln ^{2}(t m \ln (t m))}\right)
$$

On the other hand, for $n \geq 2$, (see (4.2) in [3])

$$
\ln p_{n} \leq \ln n+\ln \ln n+1
$$

Thus it is sufficient to choose m so large that the following inequality holds

$$
\ln (t m)+\ln \ln (t m)+1 \leq\left(1-\frac{1}{v}\right) t \ln (t m)\left(1-\frac{3.965}{\ln ^{2}(t m \ln (t m))}\right)
$$

or, since $1-\frac{1}{v}=\frac{1}{k+1}$, that

$$
\begin{equation*}
\frac{\ln (t m)+\ln \ln (t m)+1}{\ln (t m)\left(1-\frac{3.965}{\ln ^{2}(t m \ln (t m))}\right)} \leq \frac{t}{k+1} \tag{28}
\end{equation*}
$$

Let, e.g., $k=1, t=3$. We can choose $m_{0}=350$. Then the left hand side of (28) equals $1.4976 \ldots<1.5$. This means that that at least, for $m \geq 350$, the estimate (3) and, for $m \geq 351$, the estimate (21) are valid. Using a computer verification for $m \leq 350$, we obtain both of these estimates. Note that another short proof of (3) was obtained in [12] (see there Remark 32). Other estimates of the proposition are proved in the same way.

5. Estimates and formulas for $N_{k}(m)$

Proposition 9.

$$
\begin{equation*}
N_{k}(1)=2, k=2,3,5,9,14 \tag{29}
\end{equation*}
$$

For $m \geq 2$,

$$
\begin{equation*}
N_{k}(m) \leq\left\lceil\frac{R_{\frac{k+1}{k}}(m)}{k+1}\right\rceil \tag{30}
\end{equation*}
$$

besides, if $R_{\frac{k+1}{k}}(m) \equiv 1(\bmod k+1)$, then

$$
\begin{equation*}
N_{k}(m)=\left\lceil\frac{R_{\frac{k+1}{k}}(m)}{k+1}\right\rceil=\frac{R_{\frac{k+1}{k}}(m)+k}{k+1} \tag{31}
\end{equation*}
$$

and, if $R_{\frac{k+1}{k}}(m) \equiv 2(\bmod k+1)$, then

$$
\begin{equation*}
N_{k}(m)=\left\lceil\frac{R_{\frac{k+1}{k}}(m)}{k+1}\right\rceil=\frac{R_{\frac{k+1}{k}}(m)+k-1}{k+1} . \tag{32}
\end{equation*}
$$

Proof. If $m \geq 2$, formally the condition $x=(k+1) n \geq(k+1) N_{k}(m)$ is not stronger than the condition $x \geq R_{\frac{k+1}{k}}(m)$, since the first one is valid only for x multiple of $k+1$. Therefore, for $m \geq 2$, (30) holds. It allows to calculate the terms of sequence $\left\{N_{k}(m)\right\}$ for every $k>1, m \geq 2$. Since $N_{k}(1) \leq N_{k}(2)$, then, having $N_{k}(2)$, we also can prove (29), using direct calculations. Now
let $R_{\frac{k+1}{k}}(m) \equiv 1(\bmod k+1)$. Note that, for $y=\left(R_{\frac{k+1}{k}}(m)-1\right) /(k+1)$ the interval

$$
\begin{equation*}
(k y,(k+1) y)=\left(\frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)-1\right), R_{\frac{k+1}{k}}(m)-1\right) \tag{33}
\end{equation*}
$$

cannot contain more than $m-1$ primes. Indeed, it is an interval of type $\left(\frac{k}{k+1} x, x\right)$ for integer x and the following such interval is

$$
\left(\frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)\right), R_{\frac{k+1}{k}}(m)\right)
$$

By the definition, $R_{\frac{k+1}{k}}(m)$ is the smallest number such that if $x \geq R_{\frac{k+1}{k}}(m)$, then $\left\{\left(\frac{k}{k+1} x, x\right)\right\}$ contains $\geq m$ primes. Therefore, the supposition that already interval (33) contains $\geq m$ primes contradicts the minimality of $R_{\frac{k+1}{k}}(m)$. Since the following interval of type $(k y,(k+1) y)$ with integer $y \geq \frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)-1\right)$ is

$$
\left(\frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)+k\right), R_{\frac{k+1}{k}}(m)+k\right),
$$

then (31) follows.
Finally, let $R_{\frac{k+1}{k}}(m) \equiv 2(\bmod k+1)$. Again show that, for $y=\left(R_{\frac{k+1}{k}}(m)-\right.$ 2) $/(k+1)$ the interval

$$
\begin{equation*}
(k y,(k+1) y)=\left(\frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)-2\right), R_{\frac{k+1}{k}}(m)-2\right) \tag{34}
\end{equation*}
$$

cannot contain more than $m-1$ primes. Indeed, comparing interval (34) with interval (33), we see that they contain the same integers except for $R_{\frac{k+1}{k}}(m)-2$ which is multiple of $k+1$. Therefore, they contain the same number of primes and this number does not exceed $m-1$. Again, since the following interval of type $(k y,(k+1) y)$ with integer $y \geq \frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)-2\right)$ is

$$
\left(\frac{k}{k+1}\left(R_{\frac{k+1}{k}}(m)+k-1\right), R_{\frac{k+1}{k}}(m)+k-1\right),
$$

then (32) follows.

Remark 10. Obviously formulas (30)-(32) are valid for not only for the considered values of k, but for arbitrary $k \geq 1$.

As a corollary from (29), (31)-(32), we obtain the following formula in case $k=2$.

Proposition 11.

$$
N_{2}(m)=\left\{\begin{array}{l}
2, \text { if } m=1 \tag{35}\\
\left\lceil\left[\frac{R_{\frac{3}{2}}(m)}{3}\right\rceil, \text { if } m \geq 2 .\right.
\end{array}\right.
$$

Formula (35) shows that the case $k=2$ over its regularity not concedes to a classic case $k=1$. Note that, if $k \geq 3$ and $R_{\frac{k+1}{k}}(m) \equiv j(\bmod k+$ 1), $3 \leq j \leq k$, then, generally speaking, (30) is not an equality. Evidently, $N_{k}(m) \geq N_{k}(m-1)$ and it is interesting that the equality is attainable (see below sequences (37)-(40)).

Example 12. Let $k=3, m=2$. Then $v=\frac{4}{3}$ and, by (14), $R_{\frac{4}{3}}(2)=29 \equiv 1$ $(\bmod 4)$. Therefore, by (31), $N_{3}(2)=\frac{29+3}{4}=8$. Indeed, interval $(3 \cdot 7,4 \cdot 7)$ already contains only prime 23 .

Example 13. Let $k=3, m=3$. Then, by (14), $R_{\frac{4}{3}}(3)=59 \equiv 3(\bmod 4)$. Here $N_{3}(3)=11$ which is essentially less than $\left[R_{\frac{4}{3}}(3) / 4\right\rceil=15$. Indeed, each interval
$(3 \cdot 15,4 \cdot 15),(3 \cdot 14,4 \cdot 14),(3 \cdot 13,4 \cdot 13),(3 \cdot 12,4 \cdot 12),(3 \cdot 11,4 \cdot 11)$ contains more than 2 primes and only interval (3•10, 4•10) contains only 2 primes.

In any case, Proposition 9 allows to calculate terms of sequence $\left\{N_{k}(m)\right\}$ for every considered values of k. So, we obtain the following few terms of $\left\{N_{k}(m)\right\}$:
for $k=2$,

$$
\begin{equation*}
2,5,13,14,23,25,33,43,46,58,60,61,71,77,80,88,103,104, \ldots ; \tag{36}
\end{equation*}
$$

for $k=3$,

$$
\begin{equation*}
2,8,11,17,26,38,40,41,48,57,68,68,70,87,96,100,108,109, \ldots ; \tag{37}
\end{equation*}
$$

for $k=5$,

$$
\begin{equation*}
2,7,17,24,25,38,41,58,59,64,65,73,95,97,103,106,107,108, \ldots ; \tag{38}
\end{equation*}
$$

for $k=9$,

$$
\begin{equation*}
2,14,23,23,34,36,57,58,60,60,77,86,100,100,102,123,149, \ldots ; \tag{39}
\end{equation*}
$$

for $k=14$,

Remark 14. If, as in [1], [6], instead of intervals $(k n,(k+1) n)$, to consider intervals $[k n,(k+1) n]$, then sequences (5), (36)-(38) would begin with 1.

6. Method of small intervals

If we know a theorem of the type: for $x \geq x_{0}(\Delta)$, the interval $\left(x,\left(1+\frac{1}{\Delta}\right) x\right]$ contains a prime, then we can calculate a bounded number of the first terms of sequences (5) and (36)-(40). Indeed, put $x_{1}=k n$, such that $n \geq \frac{x_{0}}{k}$. Then $(k+1) n=\frac{k+1}{k} x_{1}$ and, if $1+\frac{1}{\Delta}<\frac{k+1}{k}$, i.e., $\Delta>k$, then

$$
\left(x_{1},\left(1+\frac{1}{\Delta}\right) x_{1}\right] \subset(k n,(k+1) n) .
$$

Thus, if $n \geq \frac{x_{0}}{k}$, then the interval $(k n,(k+1) n)$ contains a prime, and, using method of finite descent, we can find $N_{k}(1)$. Further, put $x_{2}=(1+$ $\left.\frac{1}{\Delta}\right) x_{1}$. Then interval $\left(x_{2},\left(1+\frac{1}{\Delta}\right) x_{2}\right]$ also contains a prime. Thus the union

$$
\left(x_{1},\left(1+\frac{1}{\Delta}\right) x_{1}\right] \cup\left(x_{2},\left(1+\frac{1}{\Delta}\right) x_{2}\right]=\left(x_{1},\left(1+\frac{1}{\Delta}\right)^{2} x_{1}\right]
$$

contains at least two primes. This means that if $\left(1+\frac{1}{\Delta}\right)^{2} x_{1}<(k+1) n$ or $\left(1+\frac{1}{\Delta}\right)^{2}<1+\frac{1}{k}$, then

$$
\left(x_{1},\left(1+\frac{1}{\Delta}\right)^{2} x_{1}\right] \subset(k n,(k+1) n)
$$

and the interval $(k n,(k+1) n)$ contains at least two primes; again, using method of finite descent, we can find $N_{k}(2)$, etc., if $\left(1+\frac{1}{\Delta}\right)^{m}<1+\frac{1}{k}$, then

$$
\left(x_{1},\left(1+\frac{1}{\Delta}\right)^{m} x_{1}\right] \subset(k n,(k+1) n)
$$

and the interval $(k n,(k+1) n)$ contains at least m primes and we can find $N_{k}(m)$. In this way, we can find $N_{k}(m)$ for $m<\frac{\ln \left(1+\frac{1}{k}\right)}{\ln \left(1+\frac{1}{\Delta}\right)}$. In 2002, Ramaré and Saouter [9] proved that interval $\left(x\left(1-28314000^{-1}\right), x\right)$ always contains a prime if $x>10726905041$, or, equivalently, interval $\left(x,\left(1+28313999^{-1}\right) x\right)$ contains a prime if $x>10726905419$. This means that, e.g., we can find $N_{14}(m)$ for $m \leq 1954471$. Unfortunately, this method cannot give the exact estimates and formulas for $N_{k}(m)$ as (30)-(32).

We can also to consider a more general application of of this method. Consider a fixed infinite set P of primes which we call P-primes. Furthermore, consider the following generalization of v-Ramanujan numbers.

Definition 15. For $v>1$, a (v, P)-Ramanujan number $\left(R_{v}^{(P)}(m)\right)$, is the smallest integer such that if $x \geq R_{v}^{P}(m)$, then $\pi_{P}(x)-\pi_{P}(x / v) \geq m$, where $\pi_{P}(x)$ is the number of P-primes not exceeding x.

Note that every (v, P)-Ramanujan number is P-prime. If we know a theorem of the type: for $x \geq x_{0}(\Delta)$, the interval $\left(x,\left(1+\frac{1}{\Delta}\right) x\right]$ contains a P-prime, then, using the above described algorithm we can calculate a bounded number of the first (v, P)-Ramanujan numbers. For example, let P be the set of primes $p \equiv 1(\bmod 3)$. From the result of Cullinan and Hajir [2] it follows, in particular, that for $x \geq 106706$, the interval ($x, 1.048 x$) contains a P-prime. Using the considered algorithm, we can calculate the first $14(2, P)$-Ramanujan numbers. They are

$$
\begin{equation*}
7,31,43,67,97,103,151,163,181,223,229,271,331,337 . \tag{41}
\end{equation*}
$$

Analogously, if P is the set of primes $p \equiv 2(\bmod 3)$, then the sequence of $(2, P)$-Ramanujan numbers begins

$$
\begin{equation*}
11,23,47,59,83,107,131,167,227,233,239,251,263,281, \ldots ; \tag{42}
\end{equation*}
$$

if P is the set of primes $p \equiv 1(\bmod 4)$, then the sequence of $(2, P)$ Ramanujan numbers begins

$$
\begin{equation*}
13,37,41,89,97,109,149,229,233,241,257,277,281,317, \ldots ; \tag{43}
\end{equation*}
$$

and, if P is the set of primes $p \equiv 3(\bmod 4)$, then the sequence of $(2, P)$ Ramanujan numbers begins

$$
\begin{equation*}
7,23,47,67,71,103,127,167,179,191,223,227,263,307, \ldots . \tag{44}
\end{equation*}
$$

Denote by $N_{k}^{(P)}(m)$ the smallest number such that, for $n \geq N_{k}^{(P)}(m)$, the interval $(k n,(k+1) n)$ contains at least $m P$-primes. It is easy to see that formulas (30)-(32) hold for $N_{k}^{(P)}(m)$ and $R_{\frac{k+1}{k}}^{(P)}(m)$. In particular, in cases $k=1,2$ we have the formulas

$$
\begin{equation*}
N_{1}^{(P)}(m)=\frac{R_{2}^{(P)}(m)+1}{2}, \quad N_{2}^{(P)}(m)=\left\lceil\frac{R_{\frac{3}{2}}^{(P)}(m)}{3}\right\rceil . \tag{45}
\end{equation*}
$$

Therefore, the following sequences for $N_{1}^{(P)}(m)$ for the considered cases of set P correspond to sequences (41)-(44) respectively:

$$
\begin{gather*}
4,16,22,34,49,52,76,82,91,112,115,136,166,169, \ldots ; \tag{46}\\
6,12,24,30,42,54,66,84,114,117,120,126,132,141, \ldots ; \tag{47}\\
7,19,21,45,49,55,75,115,117,121,129,139,141,159, \ldots ; \tag{48}\\
4,12,24,34,36,52,64,84,90,96,112,114,132,154, \ldots \tag{49}
\end{gather*}
$$

7. Proof of Theorem 1

For $k \geq 1$, denote by $a(k)$ the least integer $n>1$ for which the interval $(k n,(k+1) n)$ contains no prime; in the case, when such n does not exist, we put $a(k)=0$. Taking into account (21), note that $a(k)=0$ for $k=$ $1,2,3,5,9,14, \ldots$. Consider sequence $\{a(k)\}$. Its first few terms are (A218831 in [13])
(50) $0,0,0,2,0,4,2,3,0,2,3,2,2,0,6,2,2,3,2,6,3,2,4,2,2,7,2,2,4,3, \ldots$.

Calculations of $a(k)$ in the range $\left\{15, \ldots, 5 \times 10^{7}\right\}$ lead to values of $a(k)$ in the interval $[2,16]$ which completes the proof.

8. Acknowledgment

The authors are grateful to N. J. A. Sloane for several important remarks.

References

[1] M. El. Buchraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sciences 1 (2006), no. 13, 617-621.
[2] J. Cullinan, and F. Hajir, Primes of prescribed congruence class in short intervals, INTEGERS 12 (2012), Article A56.
[3] P. Dusart, Estimates of some functions over primes without R.H., arXiv:1002.0442 (2010).
[4] P. Erdős, and J. Surányi, Topics in the Theory of Numbers, Undergraduate Texts in Mathematics, Spriger Verlag 2003, viii+287pp.
[5] S. Laishram, On a conjecture on Ramanujan primes, Int. J. Number Theory 6 (2010), 1869-1873.
[6] A. Loo, On the primes in the interval [3n,4n], Int. J. Contemp. Math. Sciences 6 (2011), no. 38, 1871-1882.
[7] J. Nagura, On the interval containing at least one prime number, Proc. of Japan Academy, Ser.A 28 (1952), 177-181.
[8] S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc. 11 (1919), 181-182.
[9] O. Ramaré and Y. Saouter, Short effective intervals containing primes, J. Number Theory 98 (2003), 10-33.
[10] D. Redmond, Number Theory, An Introduction, Marcel Dekker, inc., New York-Basel-Hong Kong ,1996.
[11] B. Rosser, The n-th prime is greater than $n \ln n$, Proc. London Math. Soc. 45 (1939), 21-44.
[12] V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012), Article 12.5.4.
[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org
[14] J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.

Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, IsraEl; e-mail: Shevelev@bGu.ac.il

United States; e-mail: Charles.greathouse@case.edu
United Kingdom; E-MAIL: mOWs@mopar.Freeserve.co.uk

[^0]: 1991 Mathematics Subject Classification. MSC 2010: 11A41. Key words and phrases: prime numbers, generalized Ramanujan primes.

