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Abstract

We study the Hankel transforms of sequences whose generating function can be

expressed as a C-fraction. In particular, we relate the index sequence of the non-zero

terms of the Hankel transform to the powers appearing in the monomials defining the C-

fraction. A closed formula for the Hankel transforms studied is given. As every power-

series can be represented by a C-fraction, this gives in theory a closed form formula

for the Hankel transform of any sequence. The notion of multiplicity is introduced to

differentiate between Hankel transforms.

1 Introduction

Given a sequence an, we denote by hn the general term of the sequence with hn = |ai+j|0≤i,j≤n.
The sequence hn is called the Hankel transform of an [7, 8, 10]. If the sequence an has
generating function g(x), then by an abuse of language we can also refer to hn as the Hankel
transform of g(x).

A well known example of Hankel transform is that of the Catalan numbers, Cn = 1
n+1

(

2n
n

)

,
where we find that hn = 1 for all n. Hankel determinants occur naturally in many branches
of mathematics, from combinatorics [1] to number theory [12] and to mathematical physics
[17].

We shall be interested in characterizing the Hankel transform of sequences whose gener-
ating functions can be expressed as the following type of C-fraction:

g(x) =
1

1 +
a1x

q1

1 +
a2x

q2

1 +
a3x

q3

1 + · · ·

, (1)

for appropriate values of coefficients a1, a2, a3, . . . and exponents q1, q2, q3, . . .. The results
will depend on making explicit the relationship between this type of C-fraction, and h(1/x),
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where h(x) is the following type of continued fraction:

h(x) =
xp0

b1xp1 +
1

b2xp2 +
1

b3xp3 +
1

b4xp4 + · · ·

. (2)

We will then be able to use classical results [5] to conclude our study and to examine
interesting examples.

2 Review of known results

The first part of this section reviews the close link between power series and C-fractions.
Note that the “C” comes from the word “corresponding”.

We commence with a power series

f0(x) = 1 + c1x+ c2x
2 + c3x

3 + . . . . (3)

We form the family of power series {fn(x)} by the relations

fn+1(x) =
an+1x

qn+1

fn(x)− 1
, n = 0, 1, 2, . . . , (4)

where the qn are positive integers chosen together with complex numbers an in such a way
that if fn(x) 6= 1, fn+1(0) = 1. If no fn(x) = 1, this process yields an infinite sequence of
power series f0(x), f1(x), f2(x), . . .. If some fn(x) = 1, the process terminates and yields a
finite set of power series f0(x), f1(x), . . . , fn(x). The continued fraction

1 +
a1x

q1

1 +
a2x

q2

1 +
a3x

q3

1 +
a4x

q4

1 + · · ·

, (5)

formed with these an and qn is said to correspond to the power series (3) [6, 11]. Conversely,
if we begin with a continued fraction of the form (5), we can form the n-th approximant
An(x)
Bn(x)

by means of the recurrence relations

A0 = 1, B0 = 1,

A1 = 1 + a1x
q1 , B1 = 1,

An = An−1 + anx
qnAn−2, Bn = Bn−1 + anx

qnBn−2,

n = 2, 3, . . . .
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We have
An(x)

Bn(x)
−

An−1(x)

Bn−1(x)
=

(−1)n−1a1a2a3 · · · anx
sn

Bn−1(x)Bn−2(x)
, (6)

where
sn = q1 + q2 + · · ·+ qn.

By equation (6) the Taylor development of the rational function An−1(x)
Bn−1(x)

about the origin

agrees with the development of An(x)
Bn(x)

up to but not including the term in xsn . Hence if (5)

is nonterminating, the C-fraction (5) determines uniquely a corresponding power series.
We have the following classical result [11]

Proposition 1. If the continued fraction (5) corresponds to the power series (3), then the
power series (3) corresponds to the continued fraction (5), and conversely.

A division-free algorithm for the construction of the C-fraction (5) from the power series
(3) is given by Frank [2, 3].

If we start with a power series f(x) =
∑∞

i=0 tix
i, then by considering the sequence

1+xf(x), which is in the form (3), we see that f(x) corresponds to a C-fraction of the form

a0x
q0

1 +
a1x

q1

1 +
a2x

q2

1 + · · ·

,

for appropriate values of a0, a1, a2, a3, . . . and q0, q1, q2, q3, . . ..
We now recall known results concerning the Hankel transform of sequences whose gener-

ating functions are of the form f(1/x) where f(x) can be expressed as a continued fraction
of the form

f(x) =
b0x

p0

b1xp1 +
1

b2xp2 +
1

b3xp3 +
1

b4xp4 + · · ·

. (7)

We have the following result [5].

Proposition 2. Let hn denote the Hankel transform of the sequence [xn]f(1/x) where f(x)
has the form (7) (give conditions on b0 = 1 and p0 = 0). Then hn is zero for all n unless
n = p1 + p2 + · · ·+ pm, for some m, in which case

hn =
m
∏

i=1

(−1)
pi(pi−1)

2 · (−1)
∑m−1

i=0 ipi+1

m
∏

i=1

1

b
pi+2

∑m
j=i+1 pj

i

. (8)
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3 Main result

In order to obtain our main result, we need to relate C-fractions of the form

g(x) =
1

1 +
a1x

q1

1 +
a2x

q2

1 +
a3x

q3

1 + · · ·

to continued fractions of the form

f(x) =
xp0

b1xp1 +
1

b2xp2 +
1

b3xp3 +
1

b4xp4 + · · ·

.

We wish to find the conditions under which f(1/x) = g(x). We look at the case of unit
coefficients first. By equation (8), the corresponding Hankel transforms will then take on
values from the set {−1, 0, 1}.

By successive divisions above and below the line, we can cast f(x) in the form

f(x) =
xp0−p1

1 +
x−p1−p2

1 +
x−p2−p3

1 + · · ·

,

and hence we have

f(1/x) =
x−p0+p1

1 +
xp1+p2

1 +
xp2+p3

1 + · · ·

.

Starting from g(x) and proceeding to f(x) is more problematic, since it is not clear what
to choose as p0. The Hankel transforms that we will be concerned with determine that we
require the condition −p0 + p1 = 0, and hence that p1 = p0. We choose to set p0 = 1. Then
starting from the C-fraction

1

1 +
xq1

1 +
xq2

1 +
xq3

1 + · · ·
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we find the following continued fraction of type (2):

xp0

xp0 +
1

xq1−p0 +
1

xq2−q1+p0 +
1

xq3−q2+q1−p0 +
1

xq4−q3+q2−q1+p0 + · · ·

By Proposition (2), the position of the non-zero terms of the corresponding Hankel transform
will be given by the indexing sequence p0, p0 + (q1 − p0), p0 + (q1 − p0) + (q2 − q1 + p0), p0 +
(q1 − p0) + (q2 − q1 + p0) + (q3 − q2 + q1 − p0), . . . or p0, q1, q2 + p0, q3 + q1, q4 + q2 + p0, . . ..
This sequence can be realised by























m0

m1

m2

m3

m4

m5
...























=























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
0 1 0 1 0 0 . . .
1 0 1 0 1 0 . . .
0 1 0 1 0 1 . . .
...

...
...

...
...

...
. . .













































p0
q1
q2
q3
q4
q5
...























.

The n-th term of this sequence mn is given by

mn =
n

∑

k=0

1 + (−1)n−k

2
q̃k =

n
∑

k=0

k
∑

i=0

(−1)k−iq̃i =
n

∑

k=0

pk,

where q̃0 = p0, q̃n = qn for n > 0, and pn =
∑n

k=0(−1)n−kq̃k. Note that since the above
matrix is

(

1
1−x2 , x

)

as a Riordan array, then if the g.f. of the sequence q1, q2, q3, . . . is G(x),
then the g.f. of the index set is

1

1− x2
(1 + xG(x)).

We next note that if

f(x) =
b0x

p0

b1xp1 +
1

b2xp2 +
1

b3xp3 +
1

b4xp4 + · · ·

is to be such that f(1/x) can be represented as

g(x) =
a0x

q0

1 +
a1x

q1

1 +
a2x

q2

1 +
a3x

q3

1 + · · ·
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then we must have

ak =
1

bkbk+1
. (9)

Reversing this set of equations, beginning with b0 = 1, we find that

b2n =
a0a2 · · ·a2n−2

a1a3 · · ·a2n−1

,

and
b2n+1 =

a1a3 · · · a2n−1

a0a2 · · · a2n
.

(See also [9], Theorem 3.6 and its corollaries). Substituting these values into Equation (8)
and simplifying (where we take a0 = 1, p0 = 1), gives us the main result of this note.

Proposition 3. The non-zero elements of the Hankel transform of the sequence with gener-
ating function given by the C-fraction

1

1 +
a1x

q1

1 +
a2x

q2

1 +
a3x

q3

1 + · · ·

are given by

hn =
m
∏

i=1

(−1)
pi(pi+1)

2 · (−1)1+
∑m−1

i=0 ipi+1 ·
m
∏

k=1

a
∑m

i=k pi
k ,

where

pi =

i
∑

j=0

(−1)i−j q̃j and n =

m
∑

k=0

pi,

and the sequence q̃n is given by 1, q1, q2, q3, . . ..

Example 4. We consider the Fibonacci-inspired C-fraction

1

1 +
x

1 +
x

1 +
2x2

1 +
3x3

1 + · · ·

where q̃n = Fn + 0n and an = Fn. Then we find that the non-zero terms of the Hankel
transform are indexed by

n
∑

k=0

pk =

n
∑

k=0

k
∑

i=0

(−1)k−i(Fi + 0i) = Fi+1.
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The non-zero terms, calculated as

m
∏

i=1

(−1)
Fi(Fi+1)

2 · (−1)1+
∑m−1

i=0 iFi+1 ·
m
∏

k=1

F
∑m

i=k pi
k ,

begin
1, 1, 1,−2, 72, 1944000, . . . .

We see emerging here an interesting phenomenon, which we will naturally term “multiplic-
ity”. In this case we note that F2 = F3 = 1, corresponding to the first two 1’s of the non-zero
Hankel elements above. The Hankel transform is thus given by

1, 1,−2, 0, 72, 0, 0, 1944000, 0, 0, 0, 0, 1547934105600000000, 0, 0, . . . ,

where the initial 1 has multiplicity 2.

Example 5. The Catalan numbers Cn = 1
n+1

(

2n
n

)

provide an interesting example of the
notion of multiplicity. They have generating function

1

1−
x

1−
x

1− · · ·

,

and thus an = −1 for all n > 0 and qn = 1 for all n > 0 (and hence q̃n = 1 for all n ≥ 0).
We then have

n
∑

k=0

pk =
n

∑

k=0

n
∑

i=0

(−1)k−i = ⌊
n + 2

2
⌋.

Thus the non-zero terms of the Hankel transform of Cn are indexed by

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . .

These terms are all calculated to equal 1, as is well-known. Thus we can write the Hankel
transform of Cn as

12, 12, 12, . . . ,

where the sub-index 2 indicates that each 1 occurs with “multiplicity” 2. This is a shorthand
way of saying that the index set is 1, 1, 2, 2, 3, 3, . . ..

Example 6. It is well known that the Hankel transform of the aerated Catalan numbers
Cn

2

1+(−1)n

2
is also the all-1’s sequence. This sequence has generating function

1

1−
x2

1−
x2

1− · · ·

,
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where now an = −1 for all n > 0 and qn = 2 for all n > 0 (and hence q̃n = 2 − 0n for all
n ≥ 0). Now

n
∑

k=0

pk =
n

∑

k=0

n
∑

i=0

(−1)k−i(2− 0i) = n+ 1,

and hence the indexing set for this Hankel transform is 1, 2, 3, 4, 5, 6, . . .. That is, each
1 appears with multiplicity 1. Thus in a sense this is the original sequence with Hankel
transform of all 1’s.

Example 7. The generalized Rogers-Ramanujan continued fraction. We consider the con-
tinued fraction

1

1 +
γx

1 +
γx2

1 +
γx3

1 +
γx4

1 + · · ·

.

Here, q̃n = n+ 0n, and an = γ − γ0n = γ(1− 0n). We then have that pn is the sequence

1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, . . . ,

and
∑n

k=0 pk is the sequence that begins

1, 1, 3, 4, 7, 9, 13, 16, 21, 25, 31, . . . .

The non-zero terms of the Hankel transform are, in order,

1, 1,−γ6, γ12, γ32, γ52,−γ94, γ136, γ208, γ280,−γ390, . . . .

The exponent sequence
0, 0, 6, 12, 32, 52, 94, . . .

can be shown to have generating function

2x2(x3 + 3)

(x+ 1)2(x− 1)4
.

4 Conclusion

Since to each sequence an there corresponds the power series
∑∞

k=0 anx
n, and to each power

series there corresponds a C-fraction, the foregoing gives, in theory, a closed form formula for
the Hankel transform of each sequence. Of course, this presupposes that the passage from
generating function to C-fraction can be effected easily. The Q-D algorithm is one method
for this.
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We note that Heilermann’s formula [7, 8] for the Hankel transform of a sequence with
generating function of the form

1

1− α1x−
β1x

2

1− α2x−
β2x

2

1− · · ·

can be derived from the above result, due to the fact that pi = 1 in this case, and the fact
that although in this note Equation (8) has been expressed in the case of monomials bix

pi ,
the result continues to be true for polynomials Qpi(x) = bix

pi + · · · of degree pi.
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