On the Hankel transform of C-fractions

Paul Barry
School of Science
Waterford Institute of Technology
Ireland

Abstract

We study the Hankel transforms of sequences whose generating function can be expressed as a C-fraction. In particular, we relate the index sequence of the non-zero terms of the Hankel transform to the powers appearing in the monomials defining the Cfraction. A closed formula for the Hankel transforms studied is given. As every powerseries can be represented by a C-fraction, this gives in theory a closed form formula for the Hankel transform of any sequence. The notion of multiplicity is introduced to differentiate between Hankel transforms.

1 Introduction

Given a sequence a_{n}, we denote by h_{n} the general term of the sequence with $h_{n}=\left|a_{i+j}\right|_{0 \leq i, j \leq n}$. The sequence h_{n} is called the Hankel transform of $a_{n}[7,8,10]$. If the sequence a_{n} has generating function $g(x)$, then by an abuse of language we can also refer to h_{n} as the Hankel transform of $g(x)$.

A well known example of Hankel transform is that of the Catalan numbers, $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, where we find that $h_{n}=1$ for all n. Hankel determinants occur naturally in many branches of mathematics, from combinatorics [1] to number theory [12] and to mathematical physics [17].

We shall be interested in characterizing the Hankel transform of sequences whose generating functions can be expressed as the following type of C-fraction:

$$
\begin{equation*}
g(x)=\frac{1}{1+\frac{a_{1} x^{q_{1}}}{1+\frac{a_{2} x^{q_{2}}}{1+\frac{a_{3} x^{q_{3}}}{1+\cdots}}},} \tag{1}
\end{equation*}
$$

for appropriate values of coefficients $a_{1}, a_{2}, a_{3}, \ldots$ and exponents $q_{1}, q_{2}, q_{3}, \ldots$ The results will depend on making explicit the relationship between this type of C-fraction, and $h(1 / x)$,
where $h(x)$ is the following type of continued fraction:

$$
\begin{equation*}
h(x)=\frac{x^{p_{0}}}{b_{1} x^{p_{1}}+\frac{1}{b_{2} x^{p_{2}}+\frac{1}{b_{3} x^{p_{3}}+\frac{1}{b_{4} x^{p_{4}}+\cdots}}}} \tag{2}
\end{equation*}
$$

We will then be able to use classical results [5] to conclude our study and to examine interesting examples.

2 Review of known results

The first part of this section reviews the close link between power series and C-fractions. Note that the "C" comes from the word "corresponding".

We commence with a power series

$$
\begin{equation*}
f_{0}(x)=1+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots . \tag{3}
\end{equation*}
$$

We form the family of power series $\left\{f_{n}(x)\right\}$ by the relations

$$
\begin{equation*}
f_{n+1}(x)=\frac{a_{n+1} x^{q_{n+1}}}{f_{n}(x)-1}, \quad n=0,1,2, \ldots, \tag{4}
\end{equation*}
$$

where the q_{n} are positive integers chosen together with complex numbers a_{n} in such a way that if $f_{n}(x) \neq 1, f_{n+1}(0)=1$. If no $f_{n}(x)=1$, this process yields an infinite sequence of power series $f_{0}(x), f_{1}(x), f_{2}(x), \ldots$. If some $f_{n}(x)=1$, the process terminates and yields a finite set of power series $f_{0}(x), f_{1}(x), \ldots, f_{n}(x)$. The continued fraction

$$
\begin{equation*}
1+\frac{a_{1} x^{q_{1}}}{1+\frac{a_{2} x^{q_{2}}}{1+\frac{a_{3} x^{q_{3}}}{1+\frac{a_{4} x^{q_{4}}}{1+\cdots}}},} \tag{5}
\end{equation*}
$$

formed with these a_{n} and q_{n} is said to correspond to the power series (3) [6, 11]. Conversely, if we begin with a continued fraction of the form (5), we can form the n-th approximant $\frac{A_{n}(x)}{B_{n}(x)}$ by means of the recurrence relations

$$
\begin{array}{r}
A_{0}=1, \quad B_{0}=1, \\
A_{1}=1+a_{1} x^{q_{1}}, \quad B_{1}=1, \\
A_{n}=A_{n-1}+a_{n} x^{q_{n}} A_{n-2}, \quad B_{n}=B_{n-1}+a_{n} x^{q_{n}} B_{n-2}, \\
n=2,3, \ldots
\end{array}
$$

We have

$$
\begin{equation*}
\frac{A_{n}(x)}{B_{n}(x)}-\frac{A_{n-1}(x)}{B_{n-1}(x)}=\frac{(-1)^{n-1} a_{1} a_{2} a_{3} \cdots a_{n} x^{s_{n}}}{B_{n-1}(x) B_{n-2}(x)} \tag{6}
\end{equation*}
$$

where

$$
s_{n}=q_{1}+q_{2}+\cdots+q_{n} .
$$

By equation (6) the Taylor development of the rational function $\frac{A_{n-1}(x)}{B_{n-1}(x)}$ about the origin agrees with the development of $\frac{A_{n}(x)}{B_{n}(x)}$ up to but not including the term in $x^{s_{n}}$. Hence if (5) is nonterminating, the C-fraction (5) determines uniquely a corresponding power series.

We have the following classical result [11]
Proposition 1. If the continued fraction (5) corresponds to the power series (3), then the power series (3) corresponds to the continued fraction (5), and conversely.

A division-free algorithm for the construction of the C-fraction (5) from the power series (3) is given by Frank [2, 3].

If we start with a power series $f(x)=\sum_{i=0}^{\infty} t_{i} x^{i}$, then by considering the sequence $1+x f(x)$, which is in the form (3), we see that $f(x)$ corresponds to a C-fraction of the form

$$
\frac{a_{0} x^{q_{0}}}{1+\frac{a_{1} x^{q_{1}}}{1+\frac{a_{2} x^{q_{2}}}{1+\cdots}}},
$$

for appropriate values of $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ and $q_{0}, q_{1}, q_{2}, q_{3}, \ldots$.
We now recall known results concerning the Hankel transform of sequences whose generating functions are of the form $f(1 / x)$ where $f(x)$ can be expressed as a continued fraction of the form

$$
\begin{equation*}
f(x)=\frac{b_{0} x^{p_{0}}}{b_{1} x^{p_{1}}+\frac{1}{b_{2} x^{p_{2}}+\frac{1}{b_{3} x^{p_{3}}+\frac{1}{b_{4} x^{p_{4}}+\cdots}}}} \tag{7}
\end{equation*}
$$

We have the following result [5].
Proposition 2. Let h_{n} denote the Hankel transform of the sequence $\left[x^{n}\right] f(1 / x)$ where $f(x)$ has the form (7) (give conditions on $b_{0}=1$ and $p_{0}=0$). Then h_{n} is zero for all n unless $n=p_{1}+p_{2}+\cdots+p_{m}$, for some m, in which case

$$
\begin{equation*}
h_{n}=\prod_{i=1}^{m}(-1)^{\frac{p_{i}\left(p_{i}-1\right)}{2}} \cdot(-1)^{\sum_{i=0}^{m-1} i p_{i+1}} \prod_{i=1}^{m} \frac{1}{b_{i}^{p_{i}+2 \sum_{j=i+1}^{m} p_{j}}} . \tag{8}
\end{equation*}
$$

3 Main result

In order to obtain our main result, we need to relate C-fractions of the form

$$
g(x)=\frac{1}{1+\frac{a_{1} x^{q_{1}}}{1+\frac{a_{2} x^{q_{2}}}{1+\frac{a_{3} x^{q_{3}}}{1+\cdots}}}}
$$

to continued fractions of the form

$$
f(x)=\frac{x^{p_{0}}}{b_{1} x^{p_{1}}+\frac{1}{b_{2} x^{p_{2}}+\frac{1}{b_{3} x^{p_{3}}+\frac{1}{b_{4} x^{p_{4}}+\cdots}}}}
$$

We wish to find the conditions under which $f(1 / x)=g(x)$. We look at the case of unit coefficients first. By equation (8), the corresponding Hankel transforms will then take on values from the set $\{-1,0,1\}$.

By successive divisions above and below the line, we can cast $f(x)$ in the form

$$
f(x)=\frac{x^{p_{0}-p_{1}}}{1+\frac{x^{-p_{1}-p_{2}}}{1+\frac{x^{-p_{2}-p_{3}}}{1+\cdots}}}
$$

and hence we have

$$
f(1 / x)=\frac{x^{-p_{0}+p_{1}}}{1+\frac{x^{p_{1}+p_{2}}}{1+\frac{x^{p_{2}+p_{3}}}{1+\cdots}}}
$$

Starting from $g(x)$ and proceeding to $f(x)$ is more problematic, since it is not clear what to choose as p_{0}. The Hankel transforms that we will be concerned with determine that we require the condition $-p_{0}+p_{1}=0$, and hence that $p_{1}=p_{0}$. We choose to set $p_{0}=1$. Then starting from the C-fraction

$$
\frac{1}{1+\frac{x^{q_{1}}}{1+\frac{x^{q_{2}}}{1+\frac{x^{q_{3}}}{1+\cdots}}}}
$$

we find the following continued fraction of type (2):
$\frac{x^{p_{0}}}{x^{p_{0}}+\frac{1}{x^{q_{1}-p_{0}}+\frac{1}{x^{q_{2}-q_{1}+p_{0}}+\frac{1}{x^{q_{3}-q_{2}+q_{1}-p_{0}}+\frac{1}{x^{q_{4}-q_{3}+q_{2}-q_{1}+p_{0}}+\cdots}}}} \text { }}$

By Proposition (2), the position of the non-zero terms of the corresponding Hankel transform will be given by the indexing sequence $p_{0}, p_{0}+\left(q_{1}-p_{0}\right), p_{0}+\left(q_{1}-p_{0}\right)+\left(q_{2}-q_{1}+p_{0}\right), p_{0}+$ $\left(q_{1}-p_{0}\right)+\left(q_{2}-q_{1}+p_{0}\right)+\left(q_{3}-q_{2}+q_{1}-p_{0}\right), \ldots$ or $p_{0}, q_{1}, q_{2}+p_{0}, q_{3}+q_{1}, q_{4}+q_{2}+p_{0}, \ldots$. This sequence can be realised by

$$
\left(\begin{array}{c}
m_{0} \\
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 1 & 0 & 0 & \ldots \\
1 & 0 & 1 & 0 & 1 & 0 & \ldots \\
0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
p_{0} \\
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5} \\
\vdots
\end{array}\right) .
$$

The n-th term of this sequence m_{n} is given by

$$
m_{n}=\sum_{k=0}^{n} \frac{1+(-1)^{n-k}}{2} \tilde{q}_{k}=\sum_{k=0}^{n} \sum_{i=0}^{k}(-1)^{k-i} \tilde{q}_{i}=\sum_{k=0}^{n} p_{k},
$$

where $\tilde{q}_{0}=p_{0}, \tilde{q}_{n}=q_{n}$ for $n>0$, and $p_{n}=\sum_{k=0}^{n}(-1)^{n-k} \tilde{q}_{k}$. Note that since the above matrix is $\left(\frac{1}{1-x^{2}}, x\right)$ as a Riordan array, then if the g.f. of the sequence $q_{1}, q_{2}, q_{3}, \ldots$ is $G(x)$, then the g.f. of the index set is

$$
\frac{1}{1-x^{2}}(1+x G(x)) .
$$

We next note that if

$$
f(x)=\frac{b_{0} x^{p_{0}}}{b_{1} x^{p_{1}}+\frac{1}{b_{2} x^{p_{2}}+\frac{1}{b_{3} x^{p_{3}}+\frac{1}{b_{4} x^{p_{4}}+\cdots}}}}
$$

is to be such that $f(1 / x)$ can be represented as

$$
g(x)=\frac{a_{0} x^{q_{0}}}{1+\frac{a_{1} x^{q_{1}}}{1+\frac{a_{2} x^{q_{2}}}{1+\frac{a_{3} x^{q_{3}}}{1+\cdots}}}}
$$

then we must have

$$
\begin{equation*}
a_{k}=\frac{1}{b_{k} b_{k+1}} . \tag{9}
\end{equation*}
$$

Reversing this set of equations, beginning with $b_{0}=1$, we find that

$$
b_{2 n}=\frac{a_{0} a_{2} \cdots a_{2 n-2}}{a_{1} a_{3} \cdots a_{2 n-1}},
$$

and

$$
b_{2 n+1}=\frac{a_{1} a_{3} \cdots a_{2 n-1}}{a_{0} a_{2} \cdots a_{2 n}} .
$$

(See also [9], Theorem 3.6 and its corollaries). Substituting these values into Equation (8) and simplifying (where we take $a_{0}=1, p_{0}=1$), gives us the main result of this note.

Proposition 3. The non-zero elements of the Hankel transform of the sequence with generating function given by the C-fraction

$$
\frac{1}{1+\frac{a_{1} x^{q_{1}}}{1+\frac{a_{2} x^{q_{2}}}{1+\frac{a_{3} x^{q_{3}}}{1+\cdots}}}}
$$

are given by

$$
h_{n}=\prod_{i=1}^{m}(-1)^{\frac{p_{i}\left(p_{i}+1\right)}{2}} \cdot(-1)^{1+\sum_{i=0}^{m-1} i p_{i+1}} \cdot \prod_{k=1}^{m} a_{k}^{\sum_{i=k}^{m} p_{i}}
$$

where

$$
p_{i}=\sum_{j=0}^{i}(-1)^{i-j} \tilde{q}_{j} \quad \text { and } \quad n=\sum_{k=0}^{m} p_{i}
$$

and the sequence $\tilde{q_{n}}$ is given by $1, q_{1}, q_{2}, q_{3}, \ldots$.
Example 4. We consider the Fibonacci-inspired C-fraction

where $\tilde{q}_{n}=F_{n}+0^{n}$ and $a_{n}=F_{n}$. Then we find that the non-zero terms of the Hankel transform are indexed by

$$
\sum_{k=0}^{n} p_{k}=\sum_{k=0}^{n} \sum_{i=0}^{k}(-1)^{k-i}\left(F_{i}+0^{i}\right)=F_{i+1}
$$

The non-zero terms, calculated as

$$
\prod_{i=1}^{m}(-1)^{\frac{F_{i}\left(F_{i}+1\right)}{2}} \cdot(-1)^{1+\sum_{i=0}^{m-1} i F_{i+1}} \cdot \prod_{k=1}^{m} F_{k}^{\sum_{i=k}^{m} p_{i}},
$$

begin

$$
1,1,1,-2,72,1944000, \ldots .
$$

We see emerging here an interesting phenomenon, which we will naturally term "multiplicity". In this case we note that $F_{2}=F_{3}=1$, corresponding to the first two 1 's of the non-zero Hankel elements above. The Hankel transform is thus given by

$$
1,1,-2,0,72,0,0,1944000,0,0,0,0,1547934105600000000,0,0, \ldots,
$$

where the initial 1 has multiplicity 2 .
Example 5. The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ provide an interesting example of the notion of multiplicity. They have generating function

and thus $a_{n}=-1$ for all $n>0$ and $q_{n}=1$ for all $n>0$ (and hence $\tilde{q}_{n}=1$ for all $n \geq 0$). We then have

$$
\sum_{k=0}^{n} p_{k}=\sum_{k=0}^{n} \sum_{i=0}^{n}(-1)^{k-i}=\left\lfloor\frac{n+2}{2}\right\rfloor .
$$

Thus the non-zero terms of the Hankel transform of C_{n} are indexed by

$$
1,1,2,2,3,3,4,4,5,5, \ldots
$$

These terms are all calculated to equal 1, as is well-known. Thus we can write the Hankel transform of C_{n} as

$$
1_{2}, 1_{2}, 1_{2}, \ldots
$$

where the sub-index 2 indicates that each 1 occurs with "multiplicity" 2. This is a shorthand way of saying that the index set is $1,1,2,2,3,3, \ldots$.

Example 6. It is well known that the Hankel transform of the aerated Catalan numbers $C_{\frac{n}{2}} \frac{1+(-1)^{n}}{2}$ is also the all-1's sequence. This sequence has generating function

$$
\frac{1}{1-\frac{x^{2}}{1-\frac{x^{2}}{1-\cdots}}},
$$

where now $a_{n}=-1$ for all $n>0$ and $q_{n}=2$ for all $n>0$ (and hence $\tilde{q}_{n}=2-0^{n}$ for all $n \geq 0$). Now

$$
\sum_{k=0}^{n} p_{k}=\sum_{k=0}^{n} \sum_{i=0}^{n}(-1)^{k-i}\left(2-0^{i}\right)=n+1
$$

and hence the indexing set for this Hankel transform is $1,2,3,4,5,6, \ldots$. That is, each 1 appears with multiplicity 1 . Thus in a sense this is the original sequence with Hankel transform of all 1's.

Example 7. The generalized Rogers-Ramanujan continued fraction. We consider the continued fraction

$$
\frac{1}{1+\frac{\gamma x}{1+\frac{\gamma x^{2}}{1+\frac{\gamma x^{3}}{1+\frac{\gamma x^{4}}{1+\cdots}}}}}
$$

Here, $\tilde{q}_{n}=n+0^{n}$, and $a_{n}=\gamma-\gamma 0^{n}=\gamma\left(1-0^{n}\right)$. We then have that p_{n} is the sequence

$$
1,0,2,1,3,2,4,3,5,4,6, \ldots
$$

and $\sum_{k=0}^{n} p_{k}$ is the sequence that begins

$$
1,1,3,4,7,9,13,16,21,25,31, \ldots
$$

The non-zero terms of the Hankel transform are, in order,

$$
1,1,-\gamma^{6}, \gamma^{12}, \gamma^{32}, \gamma^{52},-\gamma^{94}, \gamma^{136}, \gamma^{208}, \gamma^{280},-\gamma^{390}, \ldots
$$

The exponent sequence

$$
0,0,6,12,32,52,94, \ldots
$$

can be shown to have generating function

$$
\frac{2 x^{2}\left(x^{3}+3\right)}{(x+1)^{2}(x-1)^{4}} .
$$

4 Conclusion

Since to each sequence a_{n} there corresponds the power series $\sum_{k=0}^{\infty} a_{n} x^{n}$, and to each power series there corresponds a C-fraction, the foregoing gives, in theory, a closed form formula for the Hankel transform of each sequence. Of course, this presupposes that the passage from generating function to C-fraction can be effected easily. The Q-D algorithm is one method for this.

We note that Heilermann's formula [7, 8] for the Hankel transform of a sequence with generating function of the form

$$
\frac{1}{1-\alpha_{1} x-\frac{\beta_{1} x^{2}}{1-\alpha_{2} x-\frac{\beta_{2} x^{2}}{1-\cdots}}}
$$

can be derived from the above result, due to the fact that $p_{i}=1$ in this case, and the fact that although in this note Equation (8) has been expressed in the case of monomials $b_{i} x^{p_{i}}$, the result continues to be true for polynomials $Q_{p_{i}}(x)=b_{i} x^{p_{i}}+\cdots$ of degree p_{i}.

References

[1] R. A. Brualdi, S. Kirklan, Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers, J. Combin. Theory Ser. B 94 (2005), 334-351.
[2] E. Frank, Corresponding type continued fractions, Amer. J. Math., 68 (1946), 89-108.
[3] E. Frank, Orthogonality properties of C-fractions, Bull. Amer. Math. Soc., 55 (1949), 384-390.
[4] I. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1994.
[5] O. Holtz and M. Tyaglov, Structured matrices, continued fractions, and root localization of polynomials, arXiv:0912.4703.
[6] W. B. Jones and W. J. Thron, Continued fractions: analytic theory and applications (Encyclopedia of mathematics and its applications), CUP, 2009.
[7] C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42 (1999), Article B42q., available electronically at http://arxiv.org/PS_cache/math/pdf/9902/9902004.pdf, 2010.
[8] C. Krattenthaler, Advanced determinant calculus: A complement, Lin. Alg. Appl. 411 (2005), 68-166.
[9] S. Krushchev, Orthogonal polynomials and Continued Fractions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2008.
[10] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), Article 01.1.5.
[11] W. Leighton and W.T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc., 45 (1939), 596-605.
[12] S.C. Milne, Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions Ramanujan J. 6 (2002), 7-149.
[13] L. W. Shapiro, S. Getu, W.-J. Woan, and L.C. Woodson, The Riordan Group, Discr. Appl. Math. 34 (1991), 229-239.
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2012.
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Notices Amer. Math. Soc., 50 (2003), 912-915.
[16] W.T. Scott and H.S. Wall, Continued fraction expansions for arbitrary power series, Ann. of Math. (2), 41 (1940), 328-349.
[17] R. Vein and P. Dale, Determinants and their applications in mathematical phyiscs, Springer.
[18] A. J. van der Poorten, Hyperelliptic curves, continued fractions, and Somos sequences, IMS Lecture Notes-Monograph Series Dynamics 63 Stochastics, 48 (2006), 212-224.
[19] G. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux, UQAM, Montréal, Québec, 1983.
[20] H. S. Wall, Analytic Theory of Continued Fractions, AMS Chelsea Publishing, 1967.

2010 Mathematics Subject Classification: Primary 30B70; Secondary 11B83, 11C20, 15A15, 30B10
Keywords: C-fraction, continued fraction, power series, Hankel determinant, Hankel transform, sequences

Concerns sequences
$\underline{A 000045}, \underline{A 000108}$

