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Abstract

Letp > 3 be a prime. Euler numbets,_; first appeared in H. S. Vandiver’'s work
(1940) in connection with the first case of Fermat Last Theordandiver proved that
zP + y? = 2P has no solution for integets, y, z with ged(zyz,p) = 1if E,_3 =

0 (mod p). Numerous combinatorial congruences recently obtained . Sun and
by Z.-H. Sun involve the Euler numberfs,_;. This gives a new significance to the
primesp for which E,_s = 0 (mod p).

For the computation of residues of Euler numh&gs s modulo a primep, we use
the congruence which runs significantly faster than othemkmcongruences involv-
ing E,_3. Applying this congruence, a computation ¥athematica 8 shows that
only three primes less thar)” satisfy the conditiorz,_5 = 0 (mod p) (such primes
are 149, 241 and 2946901, and they are given as a Sloanesrs®gA198245). By
using related computational results and statistical ctamations similar to those on
search for Wieferich and Fibonacci-Wieferich and Wolstnte primes, we conjec-
ture that there are infinitely many primgssuch thatt,_; = 0 (modp). Moreover,
we propose a conjecture on the asymptotic estimate of nuailpgimesp in an inter-
val [z,y] such thatt,_3 = A (mod p) for some integerl with |A| € [K, L].

Keywords: Euler numberE,_s, congruence modulo a prime, supercongruence,
Fermat quotient

1. Introduction

Euler numbersE,, (n = 0,1,2,...) (e.g., seel[13, pp. 202-203]) are integers
defined recursively by

Ey=1, and Z (Z)En_k for n=1,2,3,...

0<k<n
k even
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(it is well known thatF,,, _; = 0 for eachn = 1,2, ...). The first few Euler numbers
areky = 1,Ey = —1,FE4y = 5, B = —61,FEs = 1385, Fhg = —50521, Fy =
2702765, B4 = —199360981, E16 = 19391512145. It is well known that Euler num-
bers can also be defined by the generating function

2 > "
— = E,—.
et +e 7 ; " n)

It is well known thatE,, = E,,(0) (n = 0,1,...), whereE, (x) is the classical Euler
polynomial (see e.g., [15, p. &t sed]).
Recall thatBernoulli numbersB,, (n = 0,1,2,...) are rational numbers defined

by the formal identity
T > z"
= B,—.
e? —1 ; n!

It is easy to see thaB,, = 0 for oddn > 3, and the first few nonzero terms @B,,)
areByp=1,B; = —1/2, By = 1/6, B, = —1/30,36 = 1/42 anng = —1/30. Itis
well known thatB,, = B,,(0), whereB,,(z) is the classical Bernoulli polynomial (see
e.g., [15, p. 6%t seq)).

A significance of Euler numbers, and especiallyf 5 with a primep, is closely
related to Fermat Last Theorem (see! [13, Lecture X, Secfjpnl@ 1850 Kummer
(see e.g.,[13, Theorem (3A), p. 86 and Theorems (2A)—(2¥)9p—-103] proved that
Fermat Last Theorem holds for eaggular prime that is, for each prime that does
not divide the numerator of any Bernoulli numbgy,, withn =1,2,..., (p—3)/2. In
1940 H. S. Vandiver [24] likewise proved for Euler-regulainges. Paralleling the pre-
vious definition of a (irr)regular prime (with respect to Bernoulli numbers) follow-
ing Vandiver [24], a prime is said to beEuler-irregular primes(shortly E-irregular)
if and only if it divides at least one of the Euler numbéis, with 1 <n < (p —3)/2.
Otherwise, that is ip does not divideFs, Ey, ..., E,_3, a primep is calledE-regular.
The smalles-irregular prime igp = 19, which dividesE(10) = —50521. The first
few E-irregular primes aré9, 31,43, 47,61,67,71,79,101, 137,139, 149, 193, 223, 241
(with p = 241 dividing both E51 and E»35, and hence having afi-irregularity index
of 2) (seel[4]). In 1954 L. Carlitz [1] proved that there arénitely many E-irregular
primesp, i.e.,p | EsE, - -- E,_3. Using modular arithmetic to determine divisibility
properties of the corresponding Euler numbers AReregular primes less than 10000
were found in 1978 by R. Ernvall and T. Metsankyla [4].

In his book [13, p. 203] P. Ribenboim noticed that “it is nolt @urprizing that
the connection, via Kummer’s theorem, between the primadidg certain Bernoulli
numbers and the truth of Fermat’s theorem, would suggestitasitheorem using the
Euler numbers.” Vandiver [24] proved that + y” = zP has no solution for integers
z,y, z With ged(zyz,p) = 1if E,_3 = 0 (mod p). The analogous result was proved
by Cauchy (1847) and Genocchi (1852) (see [13, p. 29, LedtuBection 2]) with the
Bernoulli numberB,,_3 instead ofE,_3. Further, in 1950 M. Gut [8] proved that the
conditionE,_3 = E,_5 = E,_7 = E,_g = E,_11; = 0(mod p) is necessary for the
Diophantine equation?? + y*» = 22 to be solvable.

Furthermore, numerous combinatorial congruences rgcebthined by Z.-W. Sun
in [20]-[22] and by Z.-H. Sun in/[17] involve Euler numbefs,_3 with a prime
p. Many of these congruences become “supercongruencestibaly if £,_3 =
0 (modp) (A supercongruencé a congruence whose modulus is a prime power.)
This gives a significance to primesfor which E,_s = 0 (modp). The first two
primes 149 and 241 have also been discoverded by Z.-W.[Slin [20




In this note, we focus our attention to the computationaidetor residues of Euler
numbersE,_s modulo a primep. By the congruence obtained in 1938 by E. Lehmer
[9, p. 359], for each primg > 5

[p/4] 1
> 5= (-1)P=YD/24E, 5 (mod p), (1)
k=1

where[a] denotes the integer part of a real numberUsually (cf. [4]), if E,_5 =
0 (mod p) then we say thafp, p — 3) is an E-irregular pair. It was founded in_[4] that
in the rangep < 10* (p, p — 3) is anE-irregular pair forp = 149 andp = 241.

For our computations presented in Section 3 we do not use eehoongruence (1)
including harmonic number of the second order. Our comjartaia Mathematica
8 which uses the expression including the harmonic numbeth@ffirst order) is
very much faster than those related to the congruence (Lje We report that only
three primes less thar)” satisfy the conditiort,_; = 0 (mod p). Using our com-
putational results and statistical considerations sintdla¢hose in relation to a search
for Wieferich and Fibonacci-Wieferich and Wolstenholmérms (cf. [2, p. 447]
and [11]), we conjecture that there are infinitely many psmesuch thatF,_; =
0 (mod p).

2. A congruence used in our computation

Here, as usually in the sequel, for integetsn, rs with n # 0 ands # 0, and a
prime powemn® we putm/n = r/s (mod p¢) if and only if ms = nr (mod p©), and
the residue class of /n is the residue class oin’ wheren' is the inverse ofi modulo
P°.

In what followsp always denotes a prime. The Fermat Little Theorem state# tha
p is a prime and: is an integer not divisible by, thena?~! = 1 (mod p). This gives
rise to the definition of th&ermat quotient op to baseu,

aP™l —1

ap(a) : p
which is an integer. It is well known that divisibility of Feat quotienty,(a) by p
has numerous applications which include the Fermat LastiEme and squarefreeness
testing (see [5])[7] and [13]). b, (2) is divisible byp, p is said to bénieferich prime
Despite several intensive searches, only two Wiefericingsi are knownp = 1093
andp = 3511 (see [2] andl[3]). Another class of primes initially definegichuse
of Fermat Last Theorem afgbonacci-Wieferich primesometimes calletVall-Sun-
Sun primesA primep is said to bd-ibonacci-Wieferich primé the Fibonacci number
pr(%) is divisible byp?, where(g) denotes the Legendre symbol (see [18]). A search

in [11] and [3] shows that there are no Fibonacci-Wieferidmes less thaf.7 x 104,

For the computation of residues of Euler numbgys 3 modulo a primep, it is
suitable to use the following congruence which runs sigaifity faster than Lehmer’s
congruence (1).

Theorem ([17, Theorem 4.1(iii)])Letp > 5 be a prime. Then

1 3
> 2362 - T2 = (-)PVpE, s (modp?),  (2)

where[a] denotes the integer part of a real numher



Proof. Quite recently, Z.-W. Sun[20, Proof of Theorem 1.1, the ¢orgce after (2.3)]
noticed that by a result of Z.-H. Sun [17, Corollary 3.3],

> =0 - 50— (~)TVPpE, 5 (modp).  (3)

=
—

On the other hand, we have

(pzl%/2 (- 1)1%1 (p—1)/2 1 Z 1 (1[171)/2l 1 [10/4]1 ”
k a k 24~
k=1 k=1 1<k<(p—1)/2 k=1 j=1

20k

By the classical congruence proved in 1938 by E. Lehmer @ctingruence (45), p.
358], for each prime > 5

(p—1)/2

3 % = —20,(2) + pap(2)>  (mod p°). ()
k=1

Substituting the congruence (5) into (4), we obtain

(p—l)/2 (_1)]671 ) 1 1
; ’ = —2¢,(2) +pgp(2)* (mod p?) — B 2:: 7 (mod p?). (6)
Finally, substituting (6) into (3), we immediately obtaR) ( O

3. The computation

Using the congruence (2), a computation Mathematica 8 shows that only
three primes less thar0) satisfy the conditionf,_3 = 0 (mod p) (such primes are
149, 241 and 2946901, and they are given as a sequence A188p44). Notice
also thatin 2011.[12, p. 3, Remarks], the author of this lrtieported that these three
primes are only primes less thanx 106.

Recall that investigations of such primes have been recsngigested by Z.-W. Sun
in [20]; namely, in[[20, Remark 1.1] Sun found the first and seeond such primes,
149 and 241, and used them to discover curious supercorggsi¢h.2)—(1.5) from
Theorem 1.1 inl[20] involvingZ,_s.

Motivated by search for Wieferich and Fibonacci-Wiefengichmes given inl[2] and
[3] and search for Wolstenholme primes givenlin/ [11], hereuse similar computa-
tional considerations for Euler numbeits_s wherep is a prime. Our computational
results presented below suggest two conjectures on nurbhegshat are analogous to
those on Wieferich ([2],[3]) and Wolstenholme primgs|[1Akcordingly, we search
primesp in the range10°,5 x 10°] such thatE,_3 = A (modp) with [4] < 100
and/or10* - |A/p| < 1. Our search employed the congruence (2) which runs signifi-
cantly faster than Lehmer’s congruence (1) and than the code

Printf {Prime[n] },Mod[EulerE[Prime[n]-3],Prime[n]]]

HereEulerE[k] givesE; andMod[a,m] givesa(mod m).
in Mathematica 8 , as well as than some other known congruences involvingrEule
numberE,_s.



Namely, in order to obtain data of Table 1 below concerningesp with 105 <
p < 5 x 10° we used the code:

Do[lffMax[Min[Mod[(Mod[Numerator[HarmonicNumber[Flo or[Prime[n]/4]]],
Prime[n]"2]PowerMod[Denominator[HarmonicNumber [Floo r[Prime[n]/4]]],
-1,Prime[n]"2+3 * (2°(Prime[n]-1)-1)/Prime[n]-PowerMod[2,-1,Prime[n]" 2]
* (3 *Prime[n]) *((2°(Prime[n]-1)/Prime[n]"2)/((-1)"((Prime[n]+1)/2)

* Prime[n]),Prime[n]],Prime[n]-Mod[(Mod[Numerator[Har monicNumber
[Floor[Prime[n]/4]]],Prime[n]] * PowerMod[Denominator[HarmonicNumber
[Floor[Prime[n]/4]]],-1,Prime[n]"2+3 * (2°(Prime[n]-1)-1)/Prime[n]
-PowerMod[2,-1,Prime[n]"2] * (3 *Prime[n]) *((2°(Prime[n]-1)-1) /Prime[n])"2)
/((-1)*((Prime[n]+1)/2) * Prime[n]),Prime[n]]]]==1000, Print[ {n},
{Prime[n] }, {Mod[(Mod[Numerator[HarmonicNumber[Floor[Prime[n]/4] 1.
Prime[n]"2]  * PowerMod[Denominator[HarmonicNumber[Floor[Prime[n]/ 4]]1,-1,
Prime[n]"2+3  *(2°(Prime[n]-1)-1)/Prime[n]-PowerMod[2,-1,Prime[n]” 2]

* (3 *Prime[n]) *((2°(Prime[n]-1)/Prime[n]"2)/((-1)"((Prime[n]+1)/2)

* Prime[n]),Prime[n]] }, {Prime[n]-Mod[(Mod[Numerator[HarmonicNumber
[Floor[Prime[n]/4]]],Prime[n] 2] * PowerMod[Denominator[HarmonicNumber
[Floor[Prime[n]/4]]],-1,Prime[n]"2+3 * (2°(Prime[n]-1)-1)/Prime[n]
-PowerMod[2,-1,Prime[n]"2] * (3 *Prime[n]) *((2°(Prime[n]-1)/Prime[n]"2)
/((-1)*((Prime[n]+1)/2) * Prime[n]),Prime[n]] H, {nij }

HereMod[a,m] givesa(mod m), PowerMod[a,b,m]  givesa®(modm) (and
is faster tharMod[a"b,m]

Further, in order to verify that there are no primdsetweers x 106 and107 such
that £,_3 = 0(modp), we used the following code which is very much faster the
previous code:

Do[Printf  {n}, {Prime[n] },Mod[Numerator[2  *HarmonicNumber[Floor[
Prime[n]/4]]+6 * (2°(Prime[n]-1)-1)/Prime[n]-3 * (2°(Prime[n]-1)-1)"2
[Prime[n]],Prime[n]"2]], {nij 1}

Certainly A = A(p) can take any op values(modp). Assuming thatd takes
these values these values randomly, the “probability” thédkes any particular value
(say 0) is1/p. From this, in accordance to the heuristic givenlin [2] rdato the
Wieferich primes, we might argue that the number of primgsan intervalz, y] such
thatE,_s = 0 (mod p) is expected to be

1 1
Z -~ ~log o8y @)
P log x

z<p<y

If this is the case, we would be only expect to find ab@@88529(~ 1), such primes

in the interval[107,10'°]. On the other hand, since 9999991 is the greatest prime
less thanl0” and is is actually 664589th prime, by above estimate, we fiad in

the interval[2, 107] we can expect abodT, 1 1/p = Y poy - 1/px & 3.04145
primesp such thatE,_3; = 0 (mod p) (px is akth prime); as noticed previously, our
computation shows that all these primes are 149, 241 and9®446



Table 1. Primesp with 10° < p < 5 x 10° for which E,,_3 = A (mod p) with
|A| < 100 and/or with related valugst/p| < 10~ (given in multiples ofl0~%)

P A |A/p| p A |A/p|
105829 74 >1 1355269 -60 0.442717
111733 45 >1 1392323 -29 0.208285
127487 38 >1 1462421 -78 0.533362
130489 -27 >1 1546967 -43 0.277963
131617 9 0.683802 1743271 107(>100)  0.613789
162847 -85 >1 1794049 —131(< —100) 0.730192
165157 -46 >1 1808497 —121(< —100) 0.669109
171091 - 17 0.993623 1952131 —153(< —100) 0.783759
171449 7 0.408285 1986539 —157(< —100) 0.790319
191237 37 >1 2053873 18 0.087639
192961 63 >1 2114251  211(>100)  0.997989
200461 7 0.349195 2236349 4 0.017886
209393 27 >1 2342381  143(>100)  0.610490
245471 39 >1 2410627 —219(< —100) 0.908477
246899 -54 >1 2472731  230(>100)  0.930146
276371 -69 >1 2583011  159(> 100)  0.615561
290347 10 0.344415 2619847  224(>100)  0.855011
292183 53 >1 2740421 225 0.821042
306739 -42 >1 2890127 -34 0.117642
317263 -35 >1 2946901 0 0
321509 84 >1 3279833 —111(< —100) 0.338432
342569 25 0.729780 3290689  200(> 100)  0.607775
422789 -40 0.946098 3312653  228(>100)  0.688270
429397 -62 >1 3340277  226(>100)  0.676591
440047 82 >1 3355813  116(> 100)  0.345669
479561 31 0.646425 3652613 —290(< —100) 0.793952
501317 60 >1 3818131 —318(< —100) 0.832868
546631 92 >1 3852677 75 0.194670
628301 73 >1 3960377 -48 0.121201
636137 25 0.392997 4007747  190(>100)  0.474082
656147 -68 >1 4121503 —270(< —100) 0.655101
659171 -22 0.333753 4171229  153(>100)  0.366798
687403 -4 0.058190 4343659 —252(< —100) 0.580156
717667 -42 0.585230 4392007 55 0.125227
719947 53 0.736165 4418497 70 0.158425
766261 -8 0.104403 4475707  193(>100)  0.431217
801709 53 0.661088 4541501  120(>100)  0.264230
920921 -82 0.890413 4551973 —362(—100)  0.795260
924727 -8 0.086512 4564939 -63 0.138008
1064477 106(>100) 0.995794 4631399  367(> 100)  0.792417
1080091 42 0.388856 4674347  302(> 100)  0.646080
1159339 -38 0.327773 4706047  220(> 100)  0.467484
1202843 21 0.174586 4751599 —279(< —100) 0.587171
1228691 15 0.122081 4761677  200(> 100)  0.420020
1285301 47 0.365673 4869517 -100 0.205359
1336469 -5 0.037412 4898099 —236(< —100) 0.481820
1353281 78 0.576377 4928503 —173(< —100) 0.351019



The second column of Table 1 shows that there are 61 primesebrtl0®> and
5 x 10 for which |A| < 100. Since the “probability” thatA| < 100 for a prime
p > 200 is equal to201/p, it follows that expected number of such primes between
Mth primepy, andNth primepy with N > M > 1000 (that is,py > pas > 1000)
is equal to

Q(N, M,100) = 201 Z 1, (8)
PMm<p<PN

where the summation ranges over all prippesich thaip,, < p < py. In particular,
for the values\/ = 9593 and N = 348513 which correspond to the intervalo®, 5 x
106] containing all primes from Table 1, we have

(Q(348513,9593,100) = 201 >

105<p<5x106

~ 201 - 0.292251 = 58.742451. (9)

D=

On the other hand, Table 1 shows that there are 61 primes éetweand5 x 10°
for which |A| < 100, which is~ 3.8431% greater than related “expected number”
58.742451.

Because our program recorder alwith “small |A|”, that is, with|A| < 100, we
compiled a large data set which can be used to give more tigdexperimental) con-
firmation of both our Conjectures 1 and 2. Indeed, our progenarded 568 primes
in the interval[10°, 5 x 10] for which|A| < 1000. On the other hand, according to
the formula (9), it follows that expected number of such @#is equal to

(348513, 9593, 1000) = 2001 Z l ~ 2001 - 0.292251 = 584.794251
105<p<5x106 p
(10)
which is~ 2.956% greater than related “expected number” 568.

Instead, of selecting values based|dih < 100, we suggest to select them based
onA/p < q x 107* (e.g.,q = 1) that would be consistent with the original selection
criterion. In particular, in the third column of Table 1 teare 72 primeg contained
in the interval[10°, 5 x 106 with related valueg0* x A/p < 1.

Furthermore, since the “probability” that /p| < 10~ for a primep >> 10000 is
equalto

2 [18a6] +1 L2
D 10000’
it follows that expected number of such primes betwa&h primep,; and Nth prime
py With N > M > 1000 (thatis,pxy > pas > 10000) is equal to

2(N — M)
10000

In particular, for the valued/ = 9593 and N = 348513 which correspond to the
range(10°,5 x 109) of all primes from Table 1, we have

677840
10000

P(N,M) =

P(348513,9593) = = 67.7840

which is~ 5.855% less than 72.
All the previous considerations and the well known fact thatseries



diverges suggest the following conjecture.
Conjecture 1. There are infinitely many primessuch thatt/,_s = 0 (mod p).
Since )
Z — =~ loglogz — loglogy,

z<p<y
in view of the previous comparison of our computational hsswith expected number
of primesp € [10°,5 x 106] for which |A(p)| < 100 given by (9) (or primep €
[105,5 x 10°] for which |A(p)| < 1000 given by (10)), we can assume that expected
number of prime9 in an interval[x, y] such thatk’ < |A(p)| < L is asymptotically
equal to (cf. (7))

2(L — K) - (loglogb — logloga). (11)

Using a larger data set which our program recorded, congisif total 568 pairs
(p, A(p)) such thatp € [10°,5 x 10 and|A(p)| < 1000, we obtain experimental
results presented in Table 2. In Table 2 the values in “colétvand in first and second
row reflect the number of € [10°,10°] andp € [10%, 5 x 10°], respectively, such that
A= A(p) € [k x 100, (k+1) x 100] (k = 0,1, ...9). Expected numbers given in the
last column of Table 2 are calculated by the formula (11).

Table 2.

k
Interval O 1 2 3 4 5 6 7 8 9| Expected
[10°,10°] 42 51 37 30 29 24 31 34 42 44 36.464

[106,5x 10%] | 22 23 26 20 22 22 21 24 21 20 22.039

Table 2 presents a small snapshot of our experimental seshtitice that by the
data of the last row, the relative error between the conjedtand experimental values
fork = 0,1,...,9 are respectively equal @18%, 4.18%, 15.23%, 10.20%, 0.18%,
0.18%, 4.95%, 8.17%, 4.95%, 10.20%. Accordingly, we propose the following con-
jecture (cf. the same conjecturelin [3, Conjecture 6.1] eomiag the Wieferich primes;
see alsa |2, Section 3]).

Conjecture 2. The number of primeg € [a,b] such thajA| = |A(p)| € [K,L]is
asymptotically

2(L — K) - (loglogb — logloga).

Remarks. Recall that a prime is said to be aVolstenholme primé it satisfies the

congruence
2p—1

(;_1) =1 (mod p?),
or equivalently (cf.|[10, Corollary on page 386]; also sefléatp divides the numera-
tor of B,_3. The only two known such primes are 16843 and 2124679, and &gt
of R.J. MclIntosh and E.L. Roettger from [11, pp. 2092-2088se primes are the
only two Wolstenholme primes less th&8°. Nevertheless, using similar arguments to
those given in Section 3 of this paper, Mcintosh [10, pagq 88ijectured that there
are infinitely many Wolstenholme primes.



References

References
[1] L. Carlitz, Note on irregular prime®roc. Amer. Math. So& (1954) 329-331.

[2] R. Crandall, K. Dilcher and C. Pomerance, A search forféafieh and Wilson
primes,Math. Comp66 (1997) 443-449.

[3] F.G. Dorais and D. Klyve, A Wieferich prime search up6t@ x 10'°, J. Integer
Seq.14 (2011) Article 11.9.2.

[4] R. Ernvall and T. Metsankyla, Cyclotomic invariantedaFE-irregular primes,
Math. Comp32 (1978) 617-629.

[5] R. Ernvall and T. Metsankyla, On thedivisibylity of Fermat quotientsMath.
Comp.66 (1997) 1353-1365.

[6] J.W.L. Glaisher, On the residues of the sums of produidtsefirstp — 1 numbers,
and their powers, to modulyg or p3, Q. J. Math.31 (1900) 321-353.

[7] A. Granville, Some conjectures related to Fermat's Last Theorem, Nuntieory
(Banff, AB, 1988), de Gruyter, Berlin, 1990, 177-192.

[8] M. Gut, Eulersche Zahlen und grosser Fermat'scher Sximment. Math. Helv.
24 (1950) 73-99.

[9] E. Lehmer, On congruences involving Bernoulli numbensl ghe quotients of
Fermat and WilsonAnn. Math.39 (1938) 350-360.

[10] R.J. MclIntosh, On the converse of Wolstenholme’s thegActa Arith.71 (1995)
381-389.

[11] R.J. MciIntosh and E.L. Roettger, A search for Fibonat@ferich and Wolsten-
holme primesMath. Comp76 (2007) 2087—-2094.

[12] R. MeStrovic, An exstension of a congruence by Kohnk® pages, preprint
arxXiv:1109.2340v3 [math.NT] (2011).

[13] P. Ribenboim, 13 ectures on Fermat's Last Theore8pringer-Verlag, New
York, Heidelberg, Berlin, 1979.

[14] N.J.A. SloaneSequenc&198245 in OEIS (On-Line Encyclopedia of Integer
Sequenceshttp://oeis.org/A198245

[15] H.M. Srivastava and J. Chdieries Associated with the Zeta and Related Func-
tions Kluwer Academic Publishers, Dordrecht, Boston and Lon@001.

[16] Z.-H. Sun, Congruences concerning Bernoulli numbadsBernoulli polynomi-
als,Discrete Appl. Math105 (2000) 193—-223.

[17] Z.-H. Sun, Congruences involving Bernoulli and Eulambers,J. Number The-
ory, 128 (2008) 280-312.

[18] Z.-H. Sun and Z.-W. Sun, Fibonacci numbers and FernlasstheoremActa
Arith. 60 (1992) 371-388.


http://arxiv.org/abs/1109.2340
http://oeis.org/A198245

[19] Z.-W. Sun, Binomial coefficients, Catalan numbers andcds quotients,
Sci. China Math.53 (2010) 2473-2488; preprirarXiv:0909.5648v11
[math.NT] (2010).

[20] Z.-W. Sun, On Delannoy numbers and Schroder numBeMumber Theor{31
(2011) 2387-2397; prepriarXiv:1009.2486v4 [math.NT] (2011).

[21] Z.-W. Sun, Super congruences and Euler numlfges, China Math54 (2011)
2509-2535; preprirdrXiv:1001.4453v19| [math.NT] (2011).

[22] Z.-W. Sun, On congruences related to central binomiakfficients, J.
Number Theoryl31 (2011) 2219-2238; preprindrXiv:0911.2415v16
[math.NT] (2011).

[23] Z.-W. Sun, A refinement of a congruence result by van Hanamd Mortenson,
accepted for publication ifilinois J. Math; preprintarXiv:1011.1902v5
[math.NT] (2011).

[24] H.S. Vandiver, Note on Euler number criteria for thetfitase of Fermat's last
theoremAmer. J. Math62 (1940) 79-82.

10


http://arxiv.org/abs/0909.5648
http://arxiv.org/abs/1009.2486
http://arxiv.org/abs/1001.4453
http://arxiv.org/abs/0911.2415
http://arxiv.org/abs/1011.1902

	1 Introduction
	2 A congruence used in our computation
	3 The computation

