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Department of Mathematics, Maritime Faculty Kotor, University of Montenegro
Dobrota 36, 85330 Kotor, Montenegro

e-mail: romeo@ac.me

Abstract

Let p > 3 be a prime. Euler numbersEp−3 first appeared in H. S. Vandiver’s work
(1940) in connection with the first case of Fermat Last Theorem. Vandiver proved that
xp + yp = zp has no solution for integersx, y, z with gcd(xyz, p) = 1 if Ep−3 ≡
0 (mod p). Numerous combinatorial congruences recently obtained byZ.-W. Sun and
by Z.-H. Sun involve the Euler numbersEp−3. This gives a new significance to the
primesp for whichEp−3 ≡ 0 (mod p).

For the computation of residues of Euler numbersEp−3 modulo a primep, we use
the congruence which runs significantly faster than other known congruences involv-
ingEp−3. Applying this congruence, a computation viaMathematica 8 shows that
only three primes less than107 satisfy the conditionEp−3 ≡ 0 (mod p) (such primes
are 149, 241 and 2946901, and they are given as a Sloane’s sequence A198245). By
using related computational results and statistical considerations similar to those on
search for Wieferich and Fibonacci-Wieferich and Wolstenholme primes, we conjec-
ture that there are infinitely many primesp such thatEp−3 ≡ 0 (mod p). Moreover,
we propose a conjecture on the asymptotic estimate of numberof primesp in an inter-
val [x, y] such thatEp−3 ≡ A (mod p) for some integerA with |A| ∈ [K,L].

Keywords: Euler number,Ep−3, congruence modulo a prime, supercongruence,
Fermat quotient

1. Introduction

Euler numbersEn (n = 0, 1, 2, . . .) (e.g., see [13, pp. 202–203]) are integers
defined recursively by

E0 = 1, and
∑

0≤k≤n
k even

(

n

k

)

En−k for n = 1, 2, 3, . . .
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(it is well known thatE2n−1 = 0 for eachn = 1, 2, . . .). The first few Euler numbers
areE0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, E10 = −50521, E12 =
2702765, E14 = −199360981, E16 = 19391512145. It is well known that Euler num-
bers can also be defined by the generating function

2

ex + e−x
=

∞
∑

n=0

En
xn

n!
.

It is well known thatEn = En(0) (n = 0, 1, . . .), whereEn(x) is the classical Euler
polynomial (see e.g., [15, p. 61et seq.]).

Recall thatBernoulli numbersBn (n = 0, 1, 2, . . .) are rational numbers defined
by the formal identity

x

ex − 1
=

∞
∑

n=0

Bn
xn

n!
.

It is easy to see thatBn = 0 for oddn ≥ 3, and the first few nonzero terms of(Bn)
areB0 = 1, B1 = −1/2,B2 = 1/6,B4 = −1/30,B6 = 1/42 andB8 = −1/30. It is
well known thatBn = Bn(0), whereBn(x) is the classical Bernoulli polynomial (see
e.g., [15, p. 61et seq.]).

A significance of Euler numbers, and especially ofEp−3 with a primep, is closely
related to Fermat Last Theorem (see [13, Lecture X, Section 2]). In 1850 Kummer
(see e.g., [13, Theorem (3A), p. 86 and Theorems (2A)–(2F), pp. 99–103] proved that
Fermat Last Theorem holds for eachregular prime, that is, for each primep that does
not divide the numerator of any Bernoulli numberB2n with n = 1, 2, . . . , (p−3)/2. In
1940 H. S. Vandiver [24] likewise proved for Euler-regular primes. Paralleling the pre-
vious definition of a (irr)regular prime (with respect to theBernoulli numbers) follow-
ing Vandiver [24], a primep is said to beEuler-irregular primes(shortlyE-irregular)
if and only if it divides at least one of the Euler numbersE2n with 1 ≤ n ≤ (p− 3)/2.
Otherwise, that is ifp does not divideE2, E4, . . . , Ep−3, a primep is calledE-regular.
The smallestE-irregular prime isp = 19, which dividesE(10) = −50521. The first
fewE-irregular primes are19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241
(with p = 241 dividing bothE210 andE238, and hence having anE-irregularity index
of 2) (see [4]). In 1954 L. Carlitz [1] proved that there are infinitely manyE-irregular
primesp, i.e.,p | E2E4 · · ·Ep−3. Using modular arithmetic to determine divisibility
properties of the corresponding Euler numbers, theE-irregular primes less than 10000
were found in 1978 by R. Ernvall and T. Metsänkylä [4].

In his book [13, p. 203] P. Ribenboim noticed that “it is not all surprizing that
the connection, via Kummer’s theorem, between the primes dividing certain Bernoulli
numbers and the truth of Fermat’s theorem, would suggest a similar theorem using the
Euler numbers.” Vandiver [24] proved thatxp + yp = zp has no solution for integers
x, y, z with gcd(xyz, p) = 1 if Ep−3 ≡ 0 (mod p). The analogous result was proved
by Cauchy (1847) and Genocchi (1852) (see [13, p. 29, LectureII, Section 2]) with the
Bernoulli numberBp−3 instead ofEp−3. Further, in 1950 M. Gut [8] proved that the
conditionEp−3 ≡ Ep−5 ≡ Ep−7 ≡ Ep−9 ≡ Ep−11 ≡ 0 (mod p) is necessary for the
Diophantine equationx2p + y2p = z2p to be solvable.

Furthermore, numerous combinatorial congruences recently obtained by Z.-W. Sun
in [20]–[22] and by Z.-H. Sun in [17] involve Euler numbersEp−3 with a prime
p. Many of these congruences become “supercongruences” if and only if Ep−3 ≡
0 (modp) (A supercongruenceis a congruence whose modulus is a prime power.)
This gives a significance to primesp for which Ep−3 ≡ 0 (modp). The first two
primes 149 and 241 have also been discoverded by Z.-W. Sun [20].
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In this note, we focus our attention to the computational search for residues of Euler
numbersEp−3 modulo a primep. By the congruence obtained in 1938 by E. Lehmer
[9, p. 359], for each primep ≥ 5

[p/4]
∑

k=1

1

k2
≡ (−1)(p−1)/24Ep−3 (mod p), (1)

where[a] denotes the integer part of a real numbera. Usually (cf. [4]), if Ep−3 ≡
0 (mod p) then we say that(p, p− 3) is anE-irregular pair. It was founded in [4] that
in the rangep < 104 (p, p− 3) is anE-irregular pair forp = 149 andp = 241.

For our computations presented in Section 3 we do not use Lehmer’s congruence (1)
including harmonic number of the second order. Our computation viaMathematica
8 which uses the expression including the harmonic number (ofthe first order) is
very much faster than those related to the congruence (1). Here we report that only
three primes less than107 satisfy the conditionEp−3 ≡ 0 (mod p). Using our com-
putational results and statistical considerations similar to those in relation to a search
for Wieferich and Fibonacci-Wieferich and Wolstenholme primes (cf. [2, p. 447]
and [11]), we conjecture that there are infinitely many primes p such thatEp−3 ≡
0 (mod p).

2. A congruence used in our computation

Here, as usually in the sequel, for integersm,n, rs with n 6= 0 ands 6= 0, and a
prime powerpa we putm/n ≡ r/s (mod pe) if and only if ms ≡ nr (mod pe), and
the residue class ofm/n is the residue class ofmn′ wheren′ is the inverse ofn modulo
pe.

In what followsp always denotes a prime. The Fermat Little Theorem states that if
p is a prime anda is an integer not divisible byp, thenap−1 ≡ 1 (mod p). This gives
rise to the definition of theFermat quotient ofp to basea,

qp(a) :=
ap−1 − 1

p
,

which is an integer. It is well known that divisibility of Fermat quotientqp(a) by p
has numerous applications which include the Fermat Last Theorem and squarefreeness
testing (see [5], [7] and [13]). Ifqp(2) is divisible byp, p is said to beWieferich prime.
Despite several intensive searches, only two Wieferich primes are known:p = 1093
andp = 3511 (see [2] and [3]). Another class of primes initially defined because
of Fermat Last Theorem areFibonacci-Wieferich primes, sometimes calledWall-Sun-
Sun primes. A primep is said to beFibonacci-Wieferich primeif the Fibonacci number
Fp−( p

5 )
is divisible byp2, where

(

p
5

)

denotes the Legendre symbol (see [18]). A search

in [11] and [3] shows that there are no Fibonacci-Wieferich primes less than9.7×1014.
For the computation of residues of Euler numbersEp−3 modulo a primep, it is

suitable to use the following congruence which runs significantly faster than Lehmer’s
congruence (1).

Theorem ([17, Theorem 4.1(iii)]).Letp ≥ 5 be a prime. Then

[p/4]
∑

k=1

1

k
+ 3qp(2)−

3p

2
qp(2)

2 ≡ (−1)(p+1)/2pEp−3 (mod p2), (2)

where[a] denotes the integer part of a real numbera.
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Proof. Quite recently, Z.-W. Sun [20, Proof of Theorem 1.1, the congruence after (2.3)]
noticed that by a result of Z.-H. Sun [17, Corollary 3.3],

(p−1)/2
∑

k=1

(−1)k−1

k
≡ qp(2)−

p

2
qp(2)

2 − (−1)(p+1)/2pEp−3 (mod p2). (3)

On the other hand, we have

(p−1)/2
∑

k=1

(−1)k−1

k
=

(p−1)/2
∑

k=1

1

k
− 2

∑

1≤k≤(p−1)/2
2|k

1

k
=

(p−1)/2
∑

k=1

1

k
−

1

2

[p/4]
∑

j=1

1

j
. (4)

By the classical congruence proved in 1938 by E. Lehmer [9, the congruence (45), p.
358], for each primep ≥ 5

(p−1)/2
∑

k=1

1

k
≡ −2qp(2) + pqp(2)

2 (mod p2). (5)

Substituting the congruence (5) into (4), we obtain

(p−1)/2
∑

k=1

(−1)k−1

k
≡ −2qp(2) + pqp(2)

2 (mod p2)−
1

2

[p/4]
∑

j=1

1

j
(mod p2). (6)

Finally, substituting (6) into (3), we immediately obtain (2).

3. The computation

Using the congruence (2), a computation viaMathematica 8 shows that only
three primes less than107 satisfy the conditionEp−3 ≡ 0 (mod p) (such primes are
149, 241 and 2946901, and they are given as a sequence A198245in [14]). Notice
also that in 2011 [12, p. 3, Remarks], the author of this article reported that these three
primes are only primes less than3× 106.

Recall that investigations of such primes have been recently suggested by Z.-W. Sun
in [20]; namely, in [20, Remark 1.1] Sun found the first and thesecond such primes,
149 and 241, and used them to discover curious supercongruences (1.2)–(1.5) from
Theorem 1.1 in [20] involvingEp−3.

Motivated by search for Wieferich and Fibonacci-Wieferichprimes given in [2] and
[3] and search for Wolstenholme primes given in [11], here weuse similar computa-
tional considerations for Euler numbersEp−3 wherep is a prime. Our computational
results presented below suggest two conjectures on numbersEp−3 that are analogous to
those on Wieferich ([2], [3]) and Wolstenholme primes [11].Accordingly, we search
primesp in the range[105, 5 × 106] such thatEp−3 ≡ A (mod p) with |A| ≤ 100
and/or104 · |A/p| ≤ 1. Our search employed the congruence (2) which runs signifi-
cantly faster than Lehmer’s congruence (1) and than the code

Print[ {Prime[n] },Mod[EulerE[Prime[n]-3],Prime[n]]]

HereEulerE[k] givesEk andMod[a,m] givesa(modm).
in Mathematica 8 , as well as than some other known congruences involving Euler
numberEp−3.
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Namely, in order to obtain data of Table 1 below concerning primesp with 105 <
p < 5× 106 we used the code:

Do[If[Max[Min[Mod[(Mod[Numerator[HarmonicNumber[Flo or[Prime[n]/4]]],
Prime[n]ˆ2]PowerMod[Denominator[HarmonicNumber [Floo r[Prime[n]/4]]],
-1,Prime[n]ˆ2+3 * (2ˆ(Prime[n]-1)-1)/Prime[n]-PowerMod[2,-1,Prime[n]ˆ 2]

* (3 * Prime[n]) * ((2ˆ(Prime[n]-1)/Prime[n]ˆ2)/((-1)ˆ((Prime[n]+1)/2)

* Prime[n]),Prime[n]],Prime[n]-Mod[(Mod[Numerator[Har monicNumber
[Floor[Prime[n]/4]]],Prime[n]ˆ] * PowerMod[Denominator[HarmonicNumber
[Floor[Prime[n]/4]]],-1,Prime[n]ˆ2+3 * (2ˆ(Prime[n]-1)-1)/Prime[n]
-PowerMod[2,-1,Prime[n]ˆ2] * (3 * Prime[n]) * ((2ˆ(Prime[n]-1)-1) /Prime[n])ˆ2)
/((-1)ˆ((Prime[n]+1)/2) * Prime[n]),Prime[n]]]]==1000, Print[ {n},
{Prime[n] }, {Mod[(Mod[Numerator[HarmonicNumber[Floor[Prime[n]/4] ]],
Prime[n]ˆ2] * PowerMod[Denominator[HarmonicNumber[Floor[Prime[n]/ 4]]],-1,
Prime[n]ˆ2+3 * (2ˆ(Prime[n]-1)-1)/Prime[n]-PowerMod[2,-1,Prime[n]ˆ 2]

* (3 * Prime[n]) * ((2ˆ(Prime[n]-1)/Prime[n]ˆ2)/((-1)ˆ((Prime[n]+1)/2)

* Prime[n]),Prime[n]] }, {Prime[n]-Mod[(Mod[Numerator[HarmonicNumber
[Floor[Prime[n]/4]]],Prime[n]ˆ2] * PowerMod[Denominator[HarmonicNumber
[Floor[Prime[n]/4]]],-1,Prime[n]ˆ2+3 * (2ˆ(Prime[n]-1)-1)/Prime[n]
-PowerMod[2,-1,Prime[n]ˆ2] * (3 * Prime[n]) * ((2ˆ(Prime[n]-1)/Prime[n]ˆ2)

/((-1)ˆ((Prime[n]+1)/2) * Prime[n]),Prime[n]] }]], {n,i,j }]

HereMod[a,m] givesa(modm), PowerMod[a,b,m] givesab(modm) (and
is faster thanMod[aˆb,m] .

Further, in order to verify that there are no primesp between5× 106 and107 such
thatEp−3 ≡ 0 (modp), we used the following code which is very much faster the
previous code:

Do[Print[ {n}, {Prime[n] },Mod[Numerator[2 * HarmonicNumber[Floor[
Prime[n]/4]]+6 * (2ˆ(Prime[n]-1)-1)/Prime[n]-3 * (2ˆ(Prime[n]-1)-1)ˆ2

/Prime[n]],Prime[n]ˆ2]], {n,i,j }]

CertainlyA = A(p) can take any ofp values(modp). Assuming thatA takes
these values these values randomly, the “probability” thatA takes any particular value
(say 0) is1/p. From this, in accordance to the heuristic given in [2] related to the
Wieferich primes, we might argue that the number of primesp in an interval[x, y] such
thatEp−3 ≡ 0 (mod p) is expected to be

∑

x≤p≤y

1

p
≈ log

log y

log x
. (7)

If this is the case, we would be only expect to find about0.998529(≈ 1), such primes
in the interval[107, 1019]. On the other hand, since 9999991 is the greatest prime
less than107 and is is actually 664589th prime, by above estimate, we find that in
the interval[2, 107] we can expect about

∑

2≤p≤107 1/p =
∑664589

k=1 1/pk ≈ 3.04145
primesp such thatEp−3 ≡ 0 (mod p) (pk is akth prime); as noticed previously, our
computation shows that all these primes are 149, 241 and 2946901.
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Table 1. Primesp with 105 < p < 5× 106 for whichEp−3 ≡ A (mod p) with
|A| ≤ 100 and/or with related values|A/p| ≤ 10−4 (given in multiples of10−4)

p A |A/p|
105829 - 74 > 1
111733 45 > 1
127487 38 > 1
130489 -27 > 1
131617 9 0.683802
162847 -85 > 1
165157 -46 > 1
171091 - 17 0.993623
171449 7 0.408285
191237 37 > 1
192961 63 > 1
200461 7 0.349195
209393 27 > 1
245471 39 > 1
246899 -54 > 1
276371 -69 > 1
290347 10 0.344415
292183 53 > 1
306739 -42 > 1
317263 -35 > 1
321509 84 > 1
342569 25 0.729780
422789 -40 0.946098
429397 -62 > 1
440047 82 > 1
479561 31 0.646425
501317 60 > 1
546631 92 > 1
628301 73 > 1
636137 25 0.392997
656147 -68 > 1
659171 -22 0.333753
687403 -4 0.058190
717667 -42 0.585230
719947 53 0.736165
766261 -8 0.104403
801709 53 0.661088
920921 -82 0.890413
924727 -8 0.086512
1064477 106(> 100) 0.995794
1080091 42 0.388856
1159339 -38 0.327773
1202843 21 0.174586
1228691 15 0.122081
1285301 47 0.365673
1336469 -5 0.037412
1353281 78 0.576377

p A |A/p|
1355269 -60 0.442717
1392323 -29 0.208285
1462421 -78 0.533362
1546967 -43 0.277963
1743271 107(> 100) 0.613789
1794049 −131(< −100) 0.730192
1808497 −121(< −100) 0.669109
1952131 −153(< −100) 0.783759
1986539 −157(< −100) 0.790319
2053873 18 0.087639
2114251 211(> 100) 0.997989
2236349 4 0.017886
2342381 143(> 100) 0.610490
2410627 −219(< −100) 0.908477
2472731 230(> 100) 0.930146
2583011 159(> 100) 0.615561
2619847 224(> 100) 0.855011
2740421 225 0.821042
2890127 -34 0.117642
2946901 0 0
3279833 −111(< −100) 0.338432
3290689 200(> 100) 0.607775
3312653 228(> 100) 0.688270
3340277 226(> 100) 0.676591
3355813 116(> 100) 0.345669
3652613 −290(< −100) 0.793952
3818131 −318(< −100) 0.832868
3852677 75 0.194670
3960377 -48 0.121201
4007747 190(> 100) 0.474082
4121503 −270(< −100) 0.655101
4171229 153(> 100) 0.366798
4343659 −252(< −100) 0.580156
4392007 55 0.125227
4418497 70 0.158425
4475707 193(> 100) 0.431217
4541501 120(> 100) 0.264230
4551973 −362(−100) 0.795260
4564939 -63 0.138008
4631399 367(> 100) 0.792417
4674347 302(> 100) 0.646080
4706047 220(> 100) 0.467484
4751599 −279(< −100) 0.587171
4761677 200(> 100) 0.420020
4869517 -100 0.205359
4898099 −236(< −100) 0.481820
4928503 −173(< −100) 0.351019
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The second column of Table 1 shows that there are 61 primes between105 and
5 × 106 for which |A| ≤ 100. Since the “probability” that|A| ≤ 100 for a prime
p ≫ 200 is equal to201/p, it follows that expected number of such primes between
M th primepM andN th primepN with N > M ≫ 1000 (that is,pN > pM ≫ 1000)
is equal to

Q(N,M, 100) = 201
∑

pM<p<pN

1

p
, (8)

where the summation ranges over all primesp such thatpM < p < pN . In particular,
for the valuesM = 9593 andN = 348513 which correspond to the interval[105, 5×
106] containing all primes from Table 1, we have

Q(348513, 9593, 100) = 201
∑

105<p<5×106

1

p
≈ 201 · 0.292251 = 58.742451. (9)

On the other hand, Table 1 shows that there are 61 primes between105 and5× 106

for which |A| ≤ 100, which is≈ 3.8431% greater than related “expected number”
58.742451.

Because our program recorder allp with “small |A|”, that is, with |A| ≤ 100, we
compiled a large data set which can be used to give more rigorous (experimental) con-
firmation of both our Conjectures 1 and 2. Indeed, our programrecorded 568 primesp
in the interval[105, 5 × 106] for which |A| ≤ 1000. On the other hand, according to
the formula (9), it follows that expected number of such primes is equal to

Q(348513, 9593, 1000) = 2001
∑

105<p<5×106

1

p
≈ 2001 · 0.292251 = 584.794251

(10)
which is≈ 2.956% greater than related “expected number” 568.

Instead, of selecting values based on|A| ≤ 100, we suggest to select them based
onA/p < q × 10−4 (e.g.,q = 1) that would be consistent with the original selection
criterion. In particular, in the third column of Table 1 there are 72 primesp contained
in the interval[105, 5× 106 with related values104 ×A/p < 1.

Furthermore, since the “probability” that|A/p| ≤ 10−4 for a primep ≫ 10000 is
equal to

2
[

p
10000

]

+ 1

p
≈

2

10000
,

it follows that expected number of such primes betweenM th primepM andN th prime
pN with N > M ≫ 1000 (that is,pN > pM ≫ 10000) is equal to

P (N,M) =
2(N −M)

10000
.

In particular, for the valuesM = 9593 andN = 348513 which correspond to the
range(105, 5× 106) of all primes from Table 1, we have

P (348513, 9593) =
677840

10000
= 67.7840

which is≈ 5.855% less than 72.
All the previous considerations and the well known fact thatthe series

∑

p prime

1

p
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diverges suggest the following conjecture.

Conjecture 1. There are infinitely many primesp such thatEp−3 ≡ 0 (mod p).

Since
∑

x≤p≤y

1

p
≈ log log x− log log y,

in view of the previous comparison of our computational results with expected number
of primesp ∈ [105, 5 × 106] for which |A(p)| ≤ 100 given by (9) (or primesp ∈
[105, 5 × 106] for which |A(p)| ≤ 1000 given by (10)), we can assume that expected
number of primesp in an interval[x, y] such thatK ≤ |A(p)| ≤ L is asymptotically
equal to (cf. (7))

2(L−K) · (log log b− log log a). (11)

Using a larger data set which our program recorded, consisting of total 568 pairs
(p,A(p)) such thatp ∈ [105, 5 × 106] and |A(p)| ≤ 1000, we obtain experimental
results presented in Table 2. In Table 2 the values in “columnk” and in first and second
row reflect the number ofp ∈ [105, 106] andp ∈ [106, 5× 106], respectively, such that
A = A(p) ∈ [k× 100, (k+1)× 100] (k = 0, 1, . . .9). Expected numbers given in the
last column of Table 2 are calculated by the formula (11).

Table 2.

k
Interval 0 1 2 3 4 5 6 7 8 9 Expected
[105, 106] 42 51 37 30 29 24 31 34 42 44 36.464

[106, 5× 106] 22 23 26 20 22 22 21 24 21 20 22.039

Table 2 presents a small snapshot of our experimental results. Notice that by the
data of the last row, the relative error between the conjectured and experimental values
for k = 0, 1, . . . , 9 are respectively equal to0.18%, 4.18%, 15.23%, 10.20%, 0.18%,
0.18%, 4.95%, 8.17%, 4.95%, 10.20%. Accordingly, we propose the following con-
jecture (cf. the same conjecture in [3, Conjecture 6.1] concerning the Wieferich primes;
see also [2, Section 3]).

Conjecture 2. The number of primesp ∈ [a, b] such that|A| = |A(p)| ∈ [K,L] is
asymptotically

2(L−K) · (log log b− log log a).

Remarks. Recall that a primep is said to be aWolstenholme primeif it satisfies the
congruence

(

2p− 1

p− 1

)

≡ 1 (mod p4),

or equivalently (cf. [10, Corollary on page 386]; also see [6]) thatp divides the numera-
tor ofBp−3. The only two known such primes are 16843 and 2124679, and by aresult
of R.J. McIntosh and E.L. Roettger from [11, pp. 2092–2093],these primes are the
only two Wolstenholme primes less than109. Nevertheless, using similar arguments to
those given in Section 3 of this paper, McIntosh [10, page 387] conjectured that there
are infinitely many Wolstenholme primes.
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