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Abstract. Gröbner’s Lie Series [G] and the Exponential Formula [W] provide differ-
ent explicit formulas for the flow generated by a finite-dimensional polynomial vector
field. The present paper gives (1) a generalization of the Lie series in case of non-
commuting variables called Exponential Substituition, (2) a structural understanding
of the three formulas and their mutual relationships in terms of rooted trees, and
(3) as a byproduct new results on the enumeration, coding, and statistics of different
kinds of rooted trees.

1. Introduction

Exponential formulas of the type

exp(�) =
∞∑

n=0

�n

n!
,

are of widespread use in mathematics. Familiar examples are the ordinary exponential

function (� = x a real or complex variable), a generating function (� = yf(t) with f(t)

a formal power series without constant term), the exponential map (� = tX with X a

tangent vector at the unit of a Lie group G), a unitary one-parameter group (� = tA

with A a selfadjoint linear operator), and the matrix exponentiation (� = tM with M

an N×N matrix over the reals R or complex numbers C). It is well known that exp(tM)

describes the global flow for the linear sytem of ODE ẋ = Mx, where x = (x1, . . . , xN )∗

(′∗′ for ‘transpose’), and the local power series solution when applied to any initial value

x̄ ∈ R
N .

In the present paper the connection between differential operators and rooted trees

— as observed already by Cayley [C1,C2] — is used to understand and compare three

generalizations of the matrix exponentiation: Gröbner’s Lie series [G], the Exponential

Formula for polynomial vector fields [W], and the exponential substituition (introduced

here for the first time). More specificaly, let R be any commutative ring with unit con-

taining the real numbers R, and for any natural number N ∈ N let f : RN −→ RN be the
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mapping, which has as components the formal power series f1, . . . , fN ∈ R[[x1, . . . , xN ]].

Let � be the “column vector”, which contains the formal partial derivatives ∂xi
≡ ∂/∂xi

for i = 1, . . . , N as entries, and set

(1.1) D ≡ D(f) = f · � = f1∂x1 + · · ·+ fN∂xN
.

Let Dn = D ◦ · · · ◦ D be the n-fold composition of D with itself, where of course

D0 is the identity operator. Since the application of D to any formal power series

g ∈ R[[x1, . . . , xN ]] is again an element of R[[x1, . . . , xN ]], the same is true for its

exponentiation:

(1.2) etDg(x) =
∞∑

n=0

tn

n!
Dng(x) ∈ R[[x1, . . . , xN , t]] .

If g = (g1, . . . , gN)∗ is a vector of formal power series gi ∈ R[[x1, . . . , xN ]], then the

operator exp(tD) is applied componentwise.— Gröbner has called expressions of the

form exp(tD)g(x) Lie series, because they first occured (rather marginally) in the work

of Lie [L, 1. Abschnitt, Kap.3, §12]. Gröbner was the first to observe that the Lie series

(1.3) etDx̄ := etDx|x=x̄

solves the initial value problem (IVP)

(1.4) ẋ = f(x), x(0) = x̄ ∈ RN

in case of convergent (= analytical) component functions f1, . . . , fN ∈ C{x1, . . . , xN}.
In Section 2 we will give a concise account of Gröbner’s basic results on Lie series and

discuss an application to the inversion of mappings f and the Jacobian Conjecture.

For the second generalization of matrix exponentiation assume that f : RN −→
RN is a polynomial mapping, where all components f1, . . . , fN ∈ R[x1, . . . , xN ] are

homogeneous of degree m. (This is no restricition of generality, because every non-

homogeneous polynomial f can be made homogeneous at the expense of one additional

dimension.) In [W] it has been shown that the polynomial IVP (1.4) is solved by the

Exponential Formula exp(tµ) applied to the initial vector x̄ ∈ RN : let e1, . . . , eN be the

canonical basis vectors of RN , then µ is defined as the R-linear mapping

(1.5) µ : TmRN ≡
m⊗

RN → RN , µ(eh1 ⊗ . . . ⊗ ehm) :=

n∑
i=1

ai
h1...hm

ei ,

which is associated to the m-homogeneous polynomial vector field f with components

(1.6) fi(x1, . . . , xN) :=
N∑

h1,...,hm=1

ai
h1...hm

xh1 · · · · · xhm (i = 1, . . . , N) .
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Using the abbreviation

(1.7) [k] := k(m − 1) + 1 for all k ∈ N0 and fixed m ∈ N

one defines for every µ ∈ L(TmRN , RN) the following mappings:

dµ,p : TpR
N → Tp−m+1R

N

dµ,p :=

⎧⎨⎩0 , if p < m,∑p−m+1
ν=1 ⊗ν−1id ⊗ µ ⊗⊗p−m−ν+1id , if p ≥ m

,
(1.8)

δp : RN −→ TpR
N , v �→ ⊗pv , if p > 0, and(1.9)

µn :=

⎧⎨⎩id , if n = 0

dµ,[1] ◦ · · · ◦ dµ,[n] ◦ δ[n] , if n > 0 .
(1.10)

Therefore the “powers” µn can be represented as the concatenation:

µn : RN δ[n]−→ T[n]R
N dµ,[n]−→ T[n−1]R

N dµ,[n−1]−→ · · · dµ,[2]−→ T[1]R
N = TmRN dµ,[1]=µ−→ RN ,

and the exponentiation of µ as

(1.11) exp(tµ) :=

∞∑
n=0

tn

n!
µn .

It is well known that for (real) analytic f the solution of the IVP (1.4) is (real) analytic,

hence it follows immediately from the uniqueness of the local power series solution that

for homogeneous polynomial mappings f one has

(1.12) Dn(x) = µn(x) for all n ≥ 0 .

But this identity is not at all obvious from the definitions: in the definition (1.1) of D

it is necessary to fix the dimension N , whereas the degree of m of f is secondary; for µ

the degree m is primary, whereas the dimension N is irrelevant for the construction of

exp(tµ). Therefore one of the main tasks of the present paper is to provide a constructive

understanding of the family of identities (1.12).

So far we have considered the case of commuting variables x1, . . . , xN . The third

generalization of the matrix exponentiation is concerened with the case of mappings

f in non-commuting variables x1, . . . , xN : it will be shown that the non-cummutative

analog to the linear partial differential operator D of (1.1) is the substitution operator

(1.13) D ≡ D(f) = (f1 ↓ x1) + · · · + (fN ↓ xN ) ,

on monomials defined as

(1.14) (fk ↓ xk)(xh1 · · · · · xhm) :=

m∑
k=1

(fk
k

↪→ xh) with
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(1.15) (fν
k

↪→ xh) :=

⎧⎨⎩0 , if k 
= hk,

xh1 . . . xhk−1
fν xhk+1

. . . xhm , if k = hk

and extended R-linearily to all power series of R[[x1, . . . , xN ]]nc (subscript ‘nc’ for ‘non-

commuting variables’). In other words: the operator (fν ↓ xk) replaces every occurence

of xk in a monomial by fν and sums up the resulting expressions. It is not hard to

see that for power series in commuting variables the substitution operator D coincides

with the differential operator D, where in particular: ∂xk
= (1 ↓ xk). Therefore we

conclude that in the context of formal power series substituition includes differentiation

as a special case. It will be shown in Section 4 that the non-commutative initial value

problem (1.4) is solved by the exponential substitution

(1.16) etDx̄ := etDx|x=x̄ .

On the other hand the Exponential Formula (1.10) also solves the IVP (1.4), if f is a

homogeneous polynomial mapping in non-commuting variables, whence the family of

equations (1.12) has the non-commutative analog

(1.17) Dn(x) = µn(x) for all n ≥ 0,

which we will prove constructively. The constructive proofs of (1.12) and (1.17) both

have an algebraic part (Sections 3 and 4) and a combinatorial part (Sections 6 and 7),

where the combinatorial part is based on a combinatorial description of the structure of

the Lie series (1.2), the exponential substitution (1.15), and the Exponential Formula

(1.11) in terms of certain rooted trees (Section 5 ff.). Different kinds of rooted trees

will be seen to provide different perspectives. We describe not only their respective

significance for the understanding of the powers Dn, Dn, and µn, but also address the

following questions:

Counting (the number of rooted trees on n vertices of a given kind), statistics (finer

counting properties related to levels, branching, leafs, etc.), enumeration (the concrete

description of all rooted trees of a given kind), and codes (linear strings or words of

integers). Codes have been systematicaly investigated for the first time by Read [R1,R3]

as a tool for the enumeration of trees. We use them mainly as a substitute for a space

consuming drawing of a tree and as a description revealing structural features.

Moreover, the relation between different kinds of rooted trees is investigated with

emphasis on the properties of projection classes: the ‘projection’ of rooted trees of

type A onto rooted trees of type B with less structure induces a partition of A into

equivalence classes, where two trees of type A are equivalent iff they have the same

image under projection. In Section 7 a new recursive algorithm for the enumeration

of rooted trees is described, which works without comparisons and normal forms and
4



which allows the simultaneous computation of certain projection numbers (=cardinality

of projection classes). In Section 8 we introduce several new statistics for monotonely

labeled rooted trees, which extend the well known permutation statistics.

2. Basic theory of Lie series

The R-lineararity of the operators Dn for all n ≥ 0 implies the R-linearity of the

exponential operator etD. From

(2.1) D(g1(x)g2(x)) = D(g1(x))g2(x) + g1(x)D(g2(x)) for all g1, g2 ∈ R[[x1, . . . , xN ]]

it follows by induction that

(2.2) Dn(g1(x)g2(x)) =

n∑
k=0

(
n

k

)
Dk(g1(x)) Dn−k(g2(x)) for all n ≥ 0.

An easy calculation [G, p.14] then establishes

(2.3) etD(g1(x)g2(x)) = (etDg1(x)) (etDg2(x)),

which implies [G, (2.11)]

etDP (g1(x), . . . , gp(x)) = P (etDg1(x), . . . , etDgp(x)) for all P ∈ R[y1, . . . , yp],

and in the (formal) limit

(2.4) etDF (g1(x), . . . , gp(x)) = F (etDg1(x), . . . , etDgp(x)) for all F ∈ R[[y1, . . . , yp]].

Of course the last equation is true also for F ∈ C{x1, . . . , xN} ([G, Satz 6]). Set

etDx̄ := etDx|x=x̄ for x̄ = (x̄1, . . . , x̄N )∗ ∈ RN ,

i.e., exp(tD) is applied componentwise to the variables xj , and then evaluated at x̄. A

usefull notation is

(2.5) Xj = ϕj(x; t) := etDxj ,

whence ϕj(x; 0) = xj and as a special case of (2.4) one gets

(2.6) etDF (x) = F (X) .

Example 2.1. For D = h1∂1 + · · · + hN∂N with constants h1, . . . , hN ∈ R one has:

D0xj = xj , Dxj = hj , and Dnxj = 0 for n ≥ 2, which yields etDx = x + th. Setting

t = 1 then gives for all F ∈ R[[y1, . . . , yN ]] the (formal) Taylor formula

F (x + h) = F (eDx)
(2.5)
= eDF (x)

(1.2)
=

∞∑
n=0

tn

n!
(h · �)nF (x) .
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Example 2.2. For f(x) = Ax with A = (aij) an N × N -matrix over R one computes

that

D ≡ D(A) =

N∑
i=1

(
N∑

j=0

aijxj

)
∂xj

= �∗Ax = (�∗Ax)∗ = x∗A∗� .

Since D(f) x = f(x) for all operators (1.1), one has

(2.7) D(A)x = Ax .

And since �x∗ is equal to the unit matrix EN one furthermore computes

D2(A) = x∗A∗�x∗A∗� = x∗(A∗)2� = x∗(A2)∗� = D(A2)

and in general

Dn(A) = D(An) for all n ≥ 1.

Therefore the Lie series for D ≡ D(A) has the usual form

etDx =
∞∑

n=0

tn

n!
D(An)x

(2.7)
=

( ∞∑
n=0

tn

n!
An

)
x

of a matrix exponentiation. (The Exponential Formula (1.11) for linear µ is immeadi-

ately seen to be the matrix exponentiation and is therefore the genuine generalization

of the matrix exponentiation for polynomial vector fields.)

Theorem 2.3. [G, Satz 7] The Lie series etDx̄ with D given by (1.1) solves the IVP

(1.4) for commuting variables x1, . . . , xN . If f is (real) analytic, then the Lie series

etDx is (real) analytic in x1, . . . , xN , t.

Proof. Gröbner’s proof in case of f1, . . . , fN ∈ C{x1, . . . , xN} generalizes immediately

to the formal case:

Ẋ
(2.5)
=

d

dt

(
etDx

)
(1.2)
=

d

dt

( ∞∑
n=0

tn

n!
Dnx

)
=

∞∑
n=1

tn−1

(n − 1)!
Dnx =

∞∑
n=0

tn

n!
Dn+1x

=

∞∑
n=0

tn

n!
Dn(Dx)

(1.2)
= etD(Dx) = etDf(x)

(2.6)
= f(X) .

For a proof of analyticity see [G, Satz 2]. �

In case of a polynomial vector field f the convergence of the component power series

of etDx can be derived from the Exponential Formula (1.11), too (cf. [W, Sec.1.5]).

6



Let

(2.8) Dj = f,j · � = f1j∂x1 + · · ·+ fNj∂xN
(j = 1, . . . , M)

be M operators of the form (1.1). If t1, . . . , tM are commuting variables, then replacing

tD by t1D1+· · ·+tMDM in the definition (1.2) of a Lie series leads to a multi-dimensional

Lie series, for which the analogs of formulas (2.1) – (2.5) remain true. If the operators

Dj commute pairwise, then the multi-dimensional Lie operator can be expressed as

(2.9) et1D1+···+tMDM =
∞∑

n=0

∑
ν∈A(M,n)

tν

ν!
Dν ,

where ν is a multi-index in

(2.10) A(M, n) = {ν = (ν1, . . . , νM) | ν1, . . . , νM ≥ 0, |ν| = ν1 + · · · + νM = n} ,

and ν! = ν1! . . . νM !, tν = tν1
1 . . . tνM

M , Dν = Dν1
1 . . .DνM

M in multi-index notation. An

elementary calculation shows [G, (3.6′)] that the operators Dj commute iff

(2.11) [Dj , Dk] = 0 ⇐⇒ ∀i = 1, . . . , N :
N∑

h=1

(
fjh

∂fki

∂xh

− fkh
∂fji

∂xh

)
= 0 .

For x ≡ x(t1, . . . , tM) consider an (multi-dimensional) IVP

∂xi

∂tk
=fki(x) (i = 1, . . . , N ; k = 1, . . . , M)

xi(0) :=xi(t)|t1=···=tM =0 = x̄i ∈ R ,

(2.12)

where the xi (or fki) satisfy the compatibility conditions

(2.13)
∂2xi

∂tk∂tj
=

∂2xi

∂tj∂tk
.

The computation

∂2xi

∂tk∂tj
=

∂fki(x)

∂tj
=

N∑
h=1

∂fki(x)

∂xh

∂xh

∂tj
=

N∑
h=1

fjh
∂fki

∂xh

then shows that (2.13) and (2.11) are equivalent.

Theorem 2.4. [G, Satz 20] The multi-dimensional Lie series with operators Dj (2.8)

et1D1+···+tM DM x̄ := et1D1+···+tM DM x|x=x̄

solves the IVP (2.12-13). If f is (real) analytic, then the Lie series exp(t1D1 + · · · +
tMDM) x is (real) analytic in x1, . . . , xN , t1, . . . , tM .
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Proof. Analogous to the proof of Thm.2.3, where (2.5) is replaced by

(2.14) Xj = ϕj(x; t) := et1D1+···+tM DM xj |.

�

Note that the multi-dimensional Lie series (2.9) is essentially a Lie series of the form

(1.2) with

tD =

N∑
i=1

(
N∑

j=1

tjfij

)
∂xi

,

i.e. with coefficients in R[t1, . . . , tM ] instead of just R.

We describe next Gröbner’s application of multi-dimensional Lie series to the inver-

sion of a mapping of power series.

Corollary 2.5. [G, Satz 23] Let F : RN −→ RN be a mapping with components

yi = Fi(x1, . . . , xN ) ∈ R[[x1, . . . , xN ]] (i = 1, . . . , N) ,

which is invertible in the neighborhood of some point

ȳ = F (x̄) ∈ RN ,

i.e., the Jacobian JF has non-vanishing determinant in x̄. Then

(2.15) J−1
F = (fij)

for certain polynomials fij ∈ R[[x1, . . . , xN ]] and for operators Dj as in (2.8) the inver-

sion of the mapping F is given locally by:

(2.16) xi = e(y1−ȳ1)D1+···+(yM−ȳM )DM x̄i =

∞∑
n=0

∑
ν∈A(M,n)

(y − ȳ)ν

ν!
Dν x̄i .

Proof. Observe first that (2.15) is equivalent to the system

∂xi

∂yj
= fij(x) (i, j = 1, . . . , N)

with x ≡ x(y1, . . . , yN) and x(0) = x̄. An elementary computation shows that the Dj ’s

commute (cf. [G, p.52]). The result follows immediately from Theorem 2.4 upon setting

ti = yi − ȳi. �

In the one-dimensional case N = 1 Corollary 2.5 spezializes to
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Corollary 2.6. [G, Zusatz zu Satz 23] Let y = F (x) ∈ R[[x]] be invertible in the

neighborhood of some point ȳ = F (x̄) ∈ R with f = (F ′)−1 ∈ R[[x]]. Then the inversion

of the mapping F is given locally by the Lie series

(2.17) x = e(y−ȳ)Dx̄ =

∞∑
n=0

∑
ν∈A(M,n)

(y − ȳ)ν

ν!
Dν x̄ ,

whith D = f(x) d/dx.

As a possible future application of multi-dimensional Lie series and in particular

Corollary 2.5 we mention here the Jacobian Conjecture of O.H. Keller (1939) (see [BCW]

for a historical survey):

Let F : C −→ C be a polynomial mapping with det JF ∈ C \ {0}, then

the inverse mapping F [−1] is polynomial, too.

In fact, by Lagrange’s inversion formula for matrices the assumption implies that J−1
F

has polynomial entries fij, whence the hard part of the Jacobian Conjecture is to show

that (2.16) has only finitely many nonvanishing summands. The approach to the Jaco-

bian Conjecture via labelled rooted trees of [BCW, Sec.III] is an easy consequence of

the combinatorial interpretation of Lie series in Section 6. (See also Zeilberger’s lovely

paper [Z] for another combinatorial approach to the Jacobian Conjecture.)

Gröbner [G] gives further applications of the Lie series to the solution of first or-

der partial differential equations, the parametrization of affine varieties, Abelian inte-

grals, and in particular the n-body problem of celestial mechanics. See also the papers

[Sb1,Sb2] (and the references therein) for a wealth of further applications in physics.

3. The algebraic connection between µ and the operators Dj

As stated in the Introduction the constructive proof of the equations (1.12) has a

combinatorial part (contained in Section 7 below) and an algebraic part, described in

the present section (Lemma 3.1).

Subsequently we use the notations

(a)b :=a(a − 1) . . . (a − b + 1) for a, b ∈ N0 = N ∪ {0}, [(a)0 := 1],

a :={1, . . . , a} for a ∈ N, and

ab :={ν = (ν1, . . . , νb) | ν1, . . . , νb ∈ a} for a, b ∈ N.

(3.1)

In order to connect the operators Dj (2.8) depending primarily on the dimension N ,

with the mapping µ depending primarily on the dedree m we first define a bijection
9



Φ : A(N, m) −→ K(m, N) between the sets

A(N, m) = {α = (α1, . . . , αN) | α1, . . . , αN ≥ 0, |α| = α1 + · · · + αN = m}
K(m, N) = {k ∈ Nm | 1 ≤ k1 ≤ · · · ≤ km ≤ N}

by

(3.2) Φ(α) := (1, . . . , 1︸ ︷︷ ︸
α1

, 2, . . . , 2︸ ︷︷ ︸
α2

, . . . , N, . . . , N︸ ︷︷ ︸
αN

) = (k1, . . . , km) = k .

We will use k(α) and α(k) as shorthands for Φ(α) and Φ−1(k), respectively. Set more-

over for any k ∈ K(m, N):

(3.3) Vm(k) := { different m-tuples formed from k1, . . . , km } .

Clearly,

|Vm(k)| =

(
m

α(k)

)
:=

m!

α(k)!
=

m!

α1(k)! . . . αN(k)!
,

whence with xα = xα1
1 . . . xαN

N :

(3.4)
∑

h∈Vm(k)

xh1 . . . xhm =

(
m

α(k)

)
xα(k) .

For commuting variables x1, . . . , xN one can rewrite any f as given by (1.6) in the

form

(3.5) f(x) =
∑

α∈A(N,m)

(
m

α

)
Aα xα (Aα ∈ RN) ,

since the rationals are contained in R. Using the notation

(3.6) α(h) = (α1(h), . . . , αN(h)) with αi(h) := |{j | hj = i; j = 1, . . . , M}|
for any h ∈ NM (M ≤ m) then gives

(3.7) f(x) =
∑

k∈K(m,N)

(
m

α(k)

)
Aα(k) xα(k)

=
∑

k∈K(m,N)

Aα(k)

∑
h∈Vm(k)

xh1 . . . xhm

(3.4)
=

∑
h∈Nm

Aα(h) xα(h) .

The mapping µ corresponding to this form of f by (1.5-6) is commutative in the following

sense:

(3.8) µ(eh1 ⊗ . . . ⊗ ehm) = µ(ehπ(1)
⊗ . . . ⊗ ehπ(m)

) for all π ∈ Sm,

i.e., for all permutations π of the numbers 1, . . . , m (cf. [W, Example 1.1], the definition

of commutativity there does not say what is meant).
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Notice that the presentation (3.5) of f , which makes the corresponding µ commuta-

tive, is unique.

Lemma 3.1. For 1 ≤ j ≤ M ≤ m let f,j = (f1,j , . . . , fN,j)
∗ : RN −→ RN be any

polynomial mappings; let µ and f be as in (1.5-6) and (3.5), respectively, with µ in its

unique commutative form. Then for

(3.9) D̃M :=
∑

ν∈NM

fν1,1(x) . . . fνM ,M(x) ∂ν1 . . . ∂νM
≡
∑

ν∈NM

f(ν) ∂ν

one has

(3.10) D̃Mf(x) = (m)M µ(f,1(x) ⊗ . . . ⊗ f,M(x) ⊗⊗m−Mx) .

Proof. The multivariate analog to (d/dx)k(xn) = (n)kx
n−k is (with multi-index nota-

tion, ν ∈ K(M, N), and ∂ν as in (3.8))

∂νx
α = (α)α(ν)x

α−α(ν) ,

Then one computes

D̃Mxα (3.8)
=

∑
ν∈NM

f(ν) ∂νx
α =

∑
ν∈NM

f(ν) (α)α(ν) xα−α(ν) .

Application of this last result to f(x) in the form (3.6) yields

(3.11) D̃Mf(x) =
∑

k∈K(m,N)

(
m

α(k)

)
Aα(k) D̃M (xα(k))

= (m)M

∑
k∈K(m,N)

Aα(k)

∑
ν∈NM

f(ν)

(
m − M

α(k) − α(ν)

)
xα(k)−α(ν) ,

because(
m

α

)
(α)α(ν) =

m!

α!

α!

(α − α(ν))!
= (m)M

(m − M)!

(α − α(ν))!
≡ (m)M

(
m − M

α − α(ν)

)
.

By the R-linearity of µ it follows from (1.5) that for any vectors v1, . . . , vm ∈ RN

with vj = (vh
j )h=1,...,N (j = 1, . . . , m):

(3.12) µ(v1 ⊗ . . . ⊗ vm) =
N∑

h1,...,hm=1

vh1
1 · · · · · vhm

m µ(eh1 ⊗ . . . ⊗ ehm)

(1.5)
=

(
N∑

h1,...,hm=1

ai
h1...hm

vh1
1 · · · · · vhm

m

)
i=1,...,N

=
∑

h∈Nm

ahv
h1
1 · · · · · vhm

m (ah ∈ RN).

11



This together with (3.7) implies for the corresponding commutative µ

µ(f,1(x) ⊗ . . . ⊗ f,M(x) ⊗⊗m−Mx)

=
∑

k∈K(m,N)

Aα(k)

∑
h∈Vm(k)

fh1,1(x) . . . fhM ,M(x) · xhM+1
. . . xhm .

Comparison of the last equation with (3.10) and (3.11) shows that the proof is complete,

if for fixed k ∈ K(m, N) the following is true:

(3.13)∑
ν∈NM

f(ν)

(
m − M

α(k) − α(ν)

)
xα(k)−α(ν) =

∑
h∈Vm(k)

fh1,1(x) . . . fhM ,M(x) · xhM+1
. . . xhm .

Take any h ∈ Vm(k), i.e. h = (h1, . . . , hm) is a permutation of the entries of k, and set

ν = (h1, . . . , hM) ∈ NM . For the remaining (m − M)-tuple (hM+1, . . . , hm) every one

of the
(

m−M
α(k)−α(ν)

)
different orderings of its entries yields the same factor xα(k)−α(ν). This

shows that for every sumand on the r.h.s. of (3.13) there is exactly one summand on the

l.h.s. of (3.13), if one takes into account the multiplicities concealed in the multinomial

expression.

Conversely, taking any ν ∈ NM , such that αi(ν) ≤ αi(k) for all i = 1, . . . , N ,

and fixing any order of the variables in xα(k)−α(ν), yields a unique h ∈ Vm(k) with

(h1, . . . , hM) = ν and xhM+1
. . . xhm = xα(k)−α(ν). This shows that for every sumand on

the l.h.s. of (3.13) there is exactly one summand on the r.h.s. of (3.13), which completes

the proofs of (3.13) and Lemma 3.1 . �

4. Substitution operators for non-commuting variables

The Exponential Formula exp(tµ) x̄ solves the initial value problem

(4.1) ẋ = f(x), x(0) = x̄ ∈ RN ,

where f = (f1, . . . , fN)∗ and f1, . . . , fN ∈ R[[x1, . . . , xN ]]nc are homogeneous of some

degree m in the non-commuting variables x1, . . . , xN . This is a consequence of the

non-commutativity of the tensor product: since the constuctions (1.5) - (1.10) and the

proof of the solution property (see [W, Sec.1.2]) rely only on the tensor product and

some elementary algebra, the Exponential Formula is well defined for non-commuting

variables and solves the IVP (4.1). There is however one subtle difference between the

commutative and the non-commutative formalism of the Exponential Formula: if the

arguments of some µ ∈ L(TmRN , RN) as in (1.6) involve the non-commuting variables
12



x1, . . . , xN instead of just the scalars from R, then one defines

(4.2) µ(v1 ⊗ . . . ⊗ vm) :=
∑

h∈Nm

ah vh1
1 · · · · · vhm

m

for vectors vj = (v1
j , . . . , v

N
j )∗ instead of deriving it from R-linearity as in (3.12).

In case of non-commuting variables (as in case of commuting variables) the homogen-

ity of the polynomial mapping f is no severe restriction of the applicability of the

Exponential Formula. Although homogenization of f through the introduction of an

additional variable, say z, is not unique in the case of non-commuting variables, we

are interested only in solutions obtained from the homogenized system (– an equation

ż = 0 is added to (4.1) –) upon setting z = 1. Hence all kinds of homogenizations lead

to the same non-homogeneous result.

That homogenity of the polynomial mapping f is not an essential requirement in

case of non-commuting variables can be seen also from the non-commutative version

of the convolution formula described in [W, Sec.2.2], whoose construction we briefly

discuss next: Let x = (x0, x1, x2, . . . ) and y = (y0, y1, y2, . . . ) be two sequences of

non-commuting variables. Then as usual the convolution of the two is defined by

x ∗ y = (x0y0 , x0y1 + x1y0 , . . . ,
∑
i,j

i+j=n

xiyj , . . . ) ≡ ( (x ∗ y):0, (x ∗ y):1, . . . ) .

This generalizes in the obvious way to the convolution of several sequences x(1), . . . , x(N)

of non-commuting variables, such that for every polynomial p ∈ R[x1, . . . , xN ]nc there

exists a corresponding polynomial p ∈ R[x(1), . . . , x(N)]nc different from p only by the

interpretation of multiplication as convolution and the interpretation of scalars r ∈ R

as sequences (r, 0, 0, . . . ) ∈ R. If now the polynomial mapping f is replaced by the

corresponding mapping f and f:n denotes the n-th component-vector, then the local

power series solution

(4.3)

∞∑
n=0

xntn with xn = (x(1)
n , . . . , x(N)

n )∗

of the non-commutative polynomial IVP (4.1) is given recursively by

(4.4) x0 = x̄ , xn+1 =
1

n + 1
f:n .

This convolution formula can be shown to be essentially equivalent to the Exponential

Formula and can also easily be derived directly with the help of the non-commutative

Cauchy product of power series. (The arguments given in [W] work equally well for

commuting and non-commuting variables).

13



It remains therefore to look for a non-commutative analog of the Lie series and as

stated already in Section 1 this analog is given by the exponentiation of the substitution

operator D. But first the question arises, why the linear partial differential operators D

do not work for non-commuting variables x1, . . . , xN . Re-examination of the arguments

leading to the solution property of the Lie series (Thorem 2.3) reveals that the crucial

fact is that D is a derivation, i.e., satisfies (2.1). All the formulas (2.2-6) and the proof of

Theorem 2.3 are based on this derivation property (and of course the peculiarities of the

exponentiation). Now for non-commuting variables x1, . . . , xN the partial derivatives

∂xj
are derivations, which commute with each other, but even an operator D = f(x)∂xj

is not a derivation: for N > 1 and f, g1, g2 ∈ R[[x1, . . . , x
N ]]nc one has in general

D(g1(x)g2(x)) = D(g1(x)) g2(x) + f(x) g1(x) ∂xj
(g2(x))


= D(g1(x)) g2(x) + g1(x) D(g2(x)) .

To the contrary the substitution operators D defined in (1.13-15) are derivations, and

with the same arguments as in Section 2 one derives the non-commutative analog of

Theorem 2.3:

Theorem 4.1. The substitutional series etDx̄ = etDx|x=x̄ with

D ≡ D(f) = (f1 ↓ x1) + · · · + (fN ↓ xN )

solves the non-commutative IVP (4.1).

For homogeneous polynomial mappings f the problem remains to prove/understand

the equality

etDx = exp(tµ) x ,

respectively, the equalities (1.17) between the powers of D and µ. This will be done by

proving an analog of Lemma 3.1 (Lemma 4.2 below) and by investigating and comparing

the tree structures underlying the respective powers (Section 6).

For 1 ≤ M ≤ m and ν ∈ NM let α(ν) ∈ A(N, M) be given by

αj(ν) := |{q | νq = j}| .

With

K(M, m) := {ρ ∈ NM | 1 ≤ ρ1 < · · · < ρM ≤ m}
we define for any h ∈ Nm the set

SM(h) := { subwords of h of lenght M } , i.e.

k ∈ SM(h) :⇐⇒ ∃ρ ∈ K(M, m) ∀j ∈ M : kj = hρj
.

14



For every h ∈ Nm set

S(k, h) := {ρ ∈ K(M, m) | k(h, ρ) := (hρ1 , . . . , hρM
) = k}

and let s(k, h) := |S(k, h)|. Clearly:

(4.5)
∑

k∈SM (h)

s(k, h) =

(
m

M

)
and

⊎
k∈SM (h)

S(k, h) = K(M, m) .

We are now prepared to define the higher order substitution operators:

(4.6) (fν ↓ xν)(xh) ≡ (fν1 , . . . , fνM
↓ xν1 , . . . , xνM

)(xh1 . . . xhm)

:= α(ν)!
∑

k∈VM (ν)

(fν
k

↪→ xh) ,

where α(ν)! and VM(ν) are given as in Section 3 and (fν
k

↪→ xh) means:

substitute M factors of xh by the M components of fν in accordence to k,

i.e., (fν
k

↪→ xh) := 0, if k /∈ SM(h), or otherwise replace for j = 1, . . . , M

and all ρ ∈ S(k, h) the variable xkj
at place ρj by fkj ,j.

Higher order substitution operators result from repeated first order substitutions, if

the latter operators are not applied to the already substituted expressions. For example:

(f1 ↓ x1)[(f1 ↓ x1)(x1x2x1)] = (f1 ↓ x1)(f1x2x1 + x1x2f1)

= [(f1 ↓ x1)(f1)]x2x1 + f1x2f1 + f1x2f1 + x1x2[(f1 ↓ x1)(f1)] ,

but

(f1, f1 ↓ x1, x1)(x1x2x1) = 2f1x2f1 .

It is not hard to see that for commuting variables

(fν ↓ xν)(xh) = fν(∂ν xh)

and for M > m one has in particular SM(h) = ∅ and therefore (fν ↓ xν)(xh) = 0. Note

moreover that (fν ↓ xν) = (fπ(ν) ↓ xπ(ν)) for all permutations π ∈ SM of the entries.

Lemma 4.2. Let Inj(M, m) be the set of injective mappings from M to m given as M-

tuples k ∈ mM . Let µ and f be as in (1.5) and (1.6), respectively, and 1 ≤ j ≤ M ≤ m.

For any collection of polynomial mappings f,j = (f1,j , . . . , fN,j)
∗ : RN −→ RN in non-

commuting variables x1, . . . , xN set

(4.7) D̃M :=
∑

ν∈NM

(fν1,1(x) . . . fνM ,M(x) ↓ xν1 , . . . , xνM
) ≡

∑
ν∈NM

(f(ν) ↓ xν) .
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Then

(4.8) D̃Mf(x) =
∑

k′∈Inj(M,m)

µ(f [M ] k′
↪→ ⊗mx) ,

where (f [M ] k′
↪→ ⊗mx) means:

for j = 1, . . . , M substitute the factor x at place k′
j in ⊗mx by f,j.

Proof. One computes

D̃M
(1.6)
=

∑
h∈Nm

ah D̃M(xh)

and

D̃M(xh) =
∑

ν∈NM

(f(ν) ↓ xν)(xh)

=
∑

ν∈NM

α(ν)!
∑

k∈VM (ν)

(f(ν)
k

↪→ xh)

= M !
∑

k∈SM (h)

(f(k)
k

↪→ xh) ,

because for every k ∈ VM(ν) one has: k ∈ VM(ν ′) for all ν ′ ∈ VM(ν) ⊂ NM and

|VM(ν)| =
(

M
α(ν)

)
= |VM(k)|.

On the other hand from the non-commutative analog (4.2) of (3.12) it follows that∑
k′∈Inj(M,m)

µ(f [M ] k′
↪→ ⊗mx) =

∑
h∈Nm

ah

∑
k′∈Inj(M,m)

µ(f [M ] k′
↪→ xh) ,

where (f [M ] k′
↪→ xh) means:

for j = 1, . . . , M substitute the variable at place k′
j in xh by the hk′

j
-th

component of f,j.

Since (f [M ] k′
↪→ xh) is invariant under all permutations of the components of k′, one

concludes that ∑
k′∈Inj(M,m)

µ(f [M ] k′
↪→ xh) = M !

∑
k′∈K(M,m)

µ(f [M ] k′
↪→ xh) .

Now the assertion of the lemma follows from the identity∑
k∈SM (h)

(f(k)
k

↪→ xh) =
∑

k′∈K(M,m)

µ(f [M ] k′
↪→ xh) ,

which is true by (4.5) and the definitions. �
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5. Rooted trees: generalities

A (finite simple) graph G is a tuple G = (V, E), where V = V (G) is a finite set,

whose members are called vertices, and E = E(G) is a set of two-element subsets of V ,

whose members are called egdes. Two vertices v1, v2 ∈ V are adjacent, if {v1, v2} ∈ E,

and a path from v1 to vr in G is a sequence (v1, . . . , vr) of vertices such that vj and

vj+1 are adjacent for j = 1, . . . , r − 1. A path is called a circuit, if in addition the

vertices v1, . . . , vr are all different, r is greater than 2, and vr and v1 are adjacent. The

distance d(v, v′) of two vertices v and v′ in G is the minimal number r of edges for a

path between v and v′, where one sets d(v, v′) := ∞, if there is no path in G between

v and v′. G is called connected, if d(v, v′) is finite for all v, v′ ∈ V (G).

A tree T can be defined as a connected, circuit-free graph and a rooted tree as a tuple

(T, v0) — or T for short —, where T is a tree and v0 a distinguished vertex of T called

the root. The trivial rooted tree T0 := ({v0}, ∅) has the root as its only vertex. A vertex

v of a rooted tree T has rank k or is on level k, if r(v) := d(v, v0) = k. Thus a rooted

tree T can be identified in a natural way with a ranked patially ordered set (poset) (see

e.g. [St1]), where v < v′ in T iff d(v, v′) = r(v′)− r(v) > 0. Similarly, a rooted tree can

be identified in a natural way with a directed graph or digraph, where the edges are not

just two-element subsets {v, v′} of the vertex set V , but ordered pairs or arrows (v, v′),
where v is called the out-vertex and v′ the in-vertex of the arrow. Namely, (v, v′) is an

arrow for a rooted tree T , if {v, v′} ∈ E(T ) and r(v′) = r(v) + 1. A(T ) is the set of

arrows of the rooted tree T . The out-degree of a vertex v ∈ V (T ) then is the number

of arrows departing from v:

out(v) := |{v′ ∈ T | (v, v′) ∈ A(T )}| .

(The analogously defined in-degree is not very interesting for rooted trees, because every

vertex except the root has in-degree 1.) Vertices v with out(v) = 0 are called leaves,

the set of leaves of some T is denoted by L(T ). A twig of a tree is a leaf together with

the edge leading to it. The hight of a leaf is its rank and the hight of a rooted tree T is

the maximal hight of a leaf:

h(v) := r(v) for all v ∈ L(T ), h(T ) := max
v∈V (T )

d(v, v0) = max
v∈L(T )

r(v) .

The number |T | := |V (T )| of vertices of T will be called the weight of T . For any vertex

v of a rooted tree T the subtree

↑ (v) ≡↑ (v, T )

induced by v is the rooted tree with v as root, vertex set {v′ ∈ V (T ) | v′ ≥ v} and the

edges inherited from T . The successor set of a vertex v of a rooted tree T (patriarchaly
17



called ‘sons’ of v) is the set

suc(v) ≡ suc(v, T ) := {v′ ∈ T | (v, v′) ∈ A(T )} .

Clearly, out(v) = |suc(v)|. The analogously defined notion is that of a precessor (or

‘father’) of a vertex. Every vertex except the root has exactly one precessor and every

vertex not a leaf has a successor. The principal subtrees T1, . . . , Ts of a rooted tree T are

the subtrees generated by the successors v1, . . . , vs of the root of T . The relationship

between T and its principal subtrees will be written symbolically as

T = �T1, . . . , Ts� .

As usual we draw the vertices of a graph as points and the edges as lines joining

adjacent edges. A rooted tree (T, v0) is drawn with v0 at the bottom and vertices of

rank i + 1 above the vertices of rank i.

The set of all trees on n vertices will be denoted by Tn, such that the set of all finite

trees T is

T =
⊎
n∈N

Tn .

Similarly, one has the sets rT and rTn of finite rooted trees and rooted trees on n

vertices. The notation rT�m will be used for rooted trees, where out(v) ≤ m for all

occuring vertices v.

In general we will discuss not just rooted trees, but rooted trees with additional

structure, e.g. ordered (= planar) trees. A rooted tree is ordered, if the successor sets

suc(v) are linearly ordered for every v ∈ V (T ). Ordered rooted trees will be denoted by

OrT. For non-ordered trees we will introduce normal forms, where all vertices on the

same level are ordered according to appropriate rules. Another way to enrich rooted

trees is to attach labels (from N0) to their vertices and/or edges. The most important

labelings of rooted trees used here are the linear extensions: for T ∈ rTn a linear

extension is is an injective mapping e : V (T ) −→ {0, . . . , n− 1}, such that the ordering

of the vertices in T is compatible with the linear order on the natural numbers:

∀v, v′ ∈ V (T ) : v < v′ =⇒ e(v) < e(v′) .

In particular: e(v0) = 0 for every linear extension of T . In drawings of linear extensions

we simply attach to every vertex v its label e(v). The set of all linear extensions of

rooted trees will be denoted by MrT, where M stands for ‘monotonely labeled’. Of

course the notions of successor, out-degree, (principal) subtree, etc. apply accordingly

for rooted trees with additional structure.

The following picture gives an overview about the most important kinds of trees

discussed in the subsequent sections. Double-arrows are bijections, single arrows pro-

jections.
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SmrT �� MmrT �� MEmrT
�����

�����

MrT

OrT �����

�����
rT � T

The two leftmost types of rooted trees (discussed in Section 6 below) are m-nary

trees, i.e. every non-leaf of such a tree has either out-degree 1 or m, where m is a fixed

natural number ≥ 2. In addition there may be labelings.

Subsequently we will discuss the significance of different types of rooted trees for

the structural understanding of the Lie series, the exponential substitution and the

Exponential Formula and complete the constructive proofs of the identities (1.12) and

(1.17). But as already explained in the Introduction we also discuss the counting,

enumeration and statistics of trees as well as their codes and their projection properties.

6. m-nary rooted trees, the Exponential Formula and the exponential

substitution

For m ≥ 2 the set SmrTn of sparse m-nary rooted trees of hight h(T ) = n contains all

ordered rooted trees T , for which all leafs have rank h(T ) = n. In addition all vertices

on levels j < n have out-degree 1 with the exception of exactly one vertex, which has

out-degree m. Alternatively, one can describe the sets SmrTn as follows: Let SmrT0

be the set containing only the trivial rooted tree and let SmrT1 be the set containing

only the m-bush, which is the unique rooted tree in rTm+1 of hight 1, i.e. for

�� ���� ��� �

� �� ��

m = 2: m = 3: etc.

Assume now that the set SmrTn is already constructed. Then one gets all the elements

of SmrTn+1 by taking any T ∈ SmrTn, selecting a leaf v ∈ L(T ), and attaching an

m-bush to v and a twig to every other leaf of T . From this construction it is immediate

that

(6.1) |SmrTn| = n!m−1 ,
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where for every n ∈ N0 and k ∈ N one defines ([W, Sec.1.5]) the generalized factorials

n!k recursively by

(6.2) (n + 1)!k := n!k · (1 + nk) , 0!k := 1 .

Of course: n!1 = n! and from (ν − 1) (m − 1) < (ν − 1) (m − 1) + 1 ≤ ν (m − 1) one

gets the estimate

(n − 1)! (m − 1)n−1 < n!m−1 ≤ n! (m − 1)n for n > 0 und m ≥ 2.

Example 6.1. For m = 2, n = 3 the 6 elements of S2rT3 are

�� �� �� ���� �� �� ��
�� �� �� ���� �� �� ��

� � � �

� � � �� � � �

� � � �� � � �� � � �

�� ���� ��
�� ���� ��

� �

� �� �

� �� �� �

�� �� �� �� �� ��
�� �� �� �� �� ���� �� �� �� �� ��

� � � � � � � � �� ��� � � � � � � � � � � �

The above recursive construction of the m-nary rooted trees in SmrTn leads not only

to formula (6.1), but also to a natural representation of the trees by L-codes: there is a

natural bijection between the sets SmrTn and

L(m, n) := {l = (ln−1, . . . , l0) | ν(m − 1) ≥ lν ≥ 0} ,

the latter having cardinality n!m−1: Since T ∈ SmrTn is ordered and has exactly

ν(m − 1) + 1
(1.7)
= [ν] vertices on each level ν, one counts from left to right beginning

with 0, where on level ν in T the m-bush is attached. This number gives entry lν of

the L-code l(T ) of T . Of course the trees in SmrTn are easily reconstructed from the

elements of L(m, n). The L-codes in L(2, 3) of the trees in Example 6.1 above are from

left to right:

(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0), (0, 1, 0), (2, 0, 0) .

The significance now of the sparse m-nary rooted trees for the understanding of the

Exponential Formula is that they reflect exactly the structure underlying the powers

of a µ ∈ L(TmRN , RN): the m-to-1 mapping µ can be represented pictorially by an

m-bush, where the m leafs stand for the m input vectors and the root for the image

of the input under µ. The identity mappings correspond to the arrows (v, v′) with

out(v) = 1, such that the recursive construction of the sets SmrTn corresponds exactly

to the building up of the powers µn, or, in terms of the sets L(m, n):
20



Proposition 6.2. For µ ∈ L(TmRN , RN) the powers µn for n > 0 can be represented

as sums over or the L-codes l ∈ L(m, n):

µn =
∑

l∈L(m,n)

l(µ) , where

l(µ) := d l0
µ,[1] ◦ · · · ◦ d

ln−1

µ,[n] ◦ δ[n] , and

d lν
µ,[ν+1] := ⊗lν id ⊗ µ ⊗⊗[ν]−lν−1id

Proof. Immediate from (1.7-10) and the linearity of the tensor product. �

The set mrTn of m-nary rooted trees on n m-bushes is the set of all ordered rooted

trees, such that every vertex has either out-degree m or 0 and that the number of vertices

v with out(v) = m is n. The set MmrTn of monotonely labeled m-nary (ordered) rooted

trees on n m-bushes is the set of all trees T ∈ mrTn, which in addition have a labeling

of the n m-bushes by the numbers {0, . . . , n−1}, such that the ordering of the m-bushes

in T is compatible with the natural linear order on the integers. The sets MmrTn are

in bijective correspondence to the sets SmrTn: for any T ∈ SmrTn label the root of an

m-bush by its rank and contract all arrows (v, v′) with out(v) = 1, such that v and v′

are identified. (Clearly, every T ∈ MmrTn contains all information necessary for the

construction of the corresponding tree in SmrTn.)

In terms of the powers µn the contraction of the arrows with out(v) = 1 to a point

makes sense, because exactly these arrows correspond to the identity mappings, which

do not alter the input. (But it would be very cumbersome to express algebraically the

powers µn right from the outset without the use of the identities.)

The set MEmrTn of monotonely labeled m-nary rooted trees on n vertices with edge-

labels in m is the set of all (non-ordered) rooted trees, where the vertices are monotonely

labeled with 0, . . . , n − 1 (as explained in Section 5) and the labels of the edges from

m are restricted only by the condition that the out-going edges of a fixed vertex have

different labels. Again the sets MEmrTn are in bijective correspondence to the sets

MmrTn: for any T ∈ MmrTn replace every m-bush by a vertex with the same label

and join the new vertices by edges according to the way the m-bushes are stacked upon

each other, i.e., if in MmrTn the m-bush b′ has as its root a leaf of the m-bush b, then

in MEmrTn the vertex for b′ is joined to the vertex for b by an upward leading edge.

In addition the number of the leaf of b in MmrTn where b′ has its root — the leafs of

every m-bush in T are numbered 1, . . . , m from left to right — is recorded by the edge

label in MEmrTn. (Clearly, every T ∈ MEmrTn contains all information necessary for

the construction of the corresponding tree in MmrTn.)
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Although one has a more compact pictorial representation of the sparse m-nary trees

now, the new representation does not add (so far) any new insight on the structure

of the powers µn. But it provides the information necessary for the proof (below in

this section) of the equalities (1.17), and it will be a useful step for the proof of the

equalities (1.12) between the powers of µ and D (in the next section). Notice, that for

non-commuting variables it is essential to record with the help of the edge labels, on

which place µ has a certain input.

Example 6.3. As an illustration for the bijective corresponences

SmrTn ←→ MmrTn ←→ MEmrTn

we give an example for m = 2 and n = 4:
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1 2

3

1 2
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We describe next the two-row code for the trees in MEmrTn. The first row contains

a permutation of the vertex labels 1, . . . , n − 1 and the second row contains the edge

labels from m, namely, the label of the arrow leading up to j, where we identify a

vertex v of T by its label j. The permutation of the first row is the walk-around code

(wa-code) — this idea goes back at least to [dBM], see also [R3] —, which specifies both

the information about the underlying rooted tree and the monotone vertex labeling. To

determine the wa-code of some tree T ′ ∈ MEmrTn we temporarily remove or ignore

the edge labels and investigate only the underlying monotonely labeled tree T ∈ MrTn.

This tree has to be put in a planar normal form first (— the original T ′ is not planar

—) by ordering every set suc(v) such that the vertex labels decrease from left to right.

For this planar normal form of T one writes down in a sequence every newly appearing

vertex label while “walking around” the tree in clockwise direction beginning with the

root (always having the lines of the tree right hand).

Example 6.4.

T = �� ���

�

� � �

� �

� � �

�� ��
�� ��

��

0

6 3 1

7 4 2

9 8 5

∈ MrT10

is in normal form and has the wa-code 6 3 7 9 4 1 2 8 5.

From the wa-code it is easy to reconstruct the monotonely labeled rooted tree T ∈
MrTn by subdividing the wa-code into sections as follows: the first section begins with
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the first number and ends before the next number smaller than the first. To find the

next section repeat the procedure for the remaining wa-code, etc. . In other words: the

beginnings of the sections are given by the unique maximal decreasing subsequence of

the wa-code, which begins with the first number. The sections of the wa-code 637941285,

e.g., are 6, 3794, and 1285. Clearly these sections correspond to the principal subtrees

generated by the successors of the root, and a repetition of the sectioning gives the

higher order sections (= subtrees with roots on higher levels). Notice, that with the

sectioning method one can determine recursively not only the sections (= subtrees) of

the wa-code, but also the levels of all vertices (= roots of the subtrees). For example,

sectioning and subsectioning of the wa-code 637941285 gives the levels (written below)

6 3 7 9 4 1 2 8 5

1 1 1
−→ 6 3 7 9 4 1 2 8 5

1 1 2 2 1 2

−→ 6 3 7 9 4 1 2 8 5

1 1 2 3 2 1 2 3 3
.

We briefly indicate how the two-row code of a T ′ ∈ MEmrTn can be computed from

the L-code of the corresponding tree T ∈ SmrTn (without sketching the trees):

From the L-code l = (ln−1, . . . , l0) ∈ L(m, n) one constructs first the parenthesis code

as follows: for l0 write 0(0, . . . , 0) with m zeros, then replace the l1-th zero (counted

0, 1, ... from left to right) by 1(0, . . . , 0) (again with m zeros), then replace the l2-

th zero by 2(0, . . . , 0), and so on. Clearly, for the parenthesis code the content of a

parenthesis j( . . . ) is a faithful image of the subtree ↑ (v, T ) of the vertex v with label

j. Hence all information necessary for the two-row code of T ′ can be extracted. For

example the tree T ∈ S2rT4 of Example 6.3 has L-code (1, 2, 0, 0) and parenthesis code

0(1(0, 3(0, 0)), 2(0, 0)).

We are now in a position to complete the constructive proof of the equalities

(6.3) Dn(x) = µn(x) (n ≥ 0)

for non-commuting variables x1, . . . , xN . In fact we will show an even stronger assertion:
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Definition 6.5. Let f : RN −→ RN be a polynomial mapping with f = (f1, . . . , fN)∗

and f1, . . . , fN ∈ R[[x1, . . . , x
N ]]nc. Then for T ∈ MrTn and D as in (1.13) the substi-

tution operator DT is defined recursively as

DT := DT
↑(0)

DT
↑(j) :=

∑
ν∈NM

(fT
ν1,k1

, . . . , fT
νM ,kM

↓ xν) , if suc(j) = {k1, . . . , kM} 
= ∅

fT
p,q(x) :=

⎧⎨⎩fp(x) , if q is a leaf of T

DT
↑(q)fp(x) , otherwise.

In other words, to every vertex of the tree T ∈ MrTn one associates an N -dimensional

vector of polynomials: to every leaf of T the original mapping f and then to every

other vertex v in a recursive fashion the result of the componentwise application of the

operator D̃M from Lemma 4.2 to f(x), where the arguments f,1, . . . , f,M of D̃M are the

M mappings already associated to the M successors of v.

Theorem 6.6. Let f , T , and DT be given as in the definition above, where in addition

f is homogeneous of degree m, and let µ be associated to f by (1.5-6). Let moreover

E(T ) denote the set of all trees in MEmrTn, which reduce to T upon forgetting the edge

labels. And finally let lT
′
be the L-code corresponding to a T ′ ∈ MEmrTn. Then with

the notation of Proposition 6.2:

(6.4) DT (x) =
∑

T ′∈E(T )

lT
′
(µ) (x) .

Proof. From the description of DT given after its definition it is clear that in every step

on can replace D̃Mf(x) by the right hand side∑
k∈Inj(M,m)

µ(f [M ] k
↪→ ⊗mx)

of formula (4.8) of Lemma 4.2. But by the definition of (f [M ] k
↪→ ⊗mx) this means to

replace the factor x at place kj in ⊗mx by f,j , which in terms of trees means to have

the edge label kj for an arrow leading to the input-vertex f,j. Since for every vertex v

of T with M successors the possible M-tuples k of edge labels vary over all elements of

Inj(M, m) the assertion (6.4) follows. �

Proof. of (6.3): From Proposition 6.2, the obvious set partition

MEmrTn =
⊎

T∈MrTn

E(T ) ,
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and the bijection between MEmrTn and L(m, n) one concludes that

µn(x) =
∑

l∈L(m,n)

l(µ)(x) =
∑

T∈MrTn

∑
T ′∈E(T )

lT
′
(µ) (x)

(6.4)
=

∑
T∈MrTn

DT (x) .

All that remains to be shown is therefore

(6.5) Dn(x) =
∑

T∈MrTn

DT (x) .

For n = 1 one readily sees

Dx = (Dx1, . . . ,DxN)∗ = f(x) = DT0(x) =
∑

T∈MrT1

DT (x) ,

since the trivial tree T0 on one vertex is the only tree in MrT1. Similarly one computes

for n = 2:

D2x = Df =
N∑

i1=1

(fi1 ↓ xi1)(f) =
∑

i1∈N1

(fi1 ↓ xi1)(f)DT (x) =
∑

T∈MrT2

DT (x) ,

since again MrT2 contains only one tree – the root with one successor 1. Now by the

definition of higher order substitution operators (4.6) and the derivation property for

the operators (fi ↓ xi) one computes for n = 3:

D3x = D2f =
N∑

i2=1

(fi2 ↓ xi2)

(
N∑

i1=1

(fi1 ↓ xi1)(f)

)

=

N∑
i2,i1=1

(fi2 , fi1 ↓ xi2 , xi1)(f) +

N∑
i2,i1=1

((fi2 ↓ xi2)(fi1) ↓ xi1)(f)

=
∑
i∈N2

(fi2 , fi1 ↓ xi2 , xi1)(f) +
∑

i1∈N1

(
∑

i2∈N1

(fi2 ↓ xi2)(fi1) ↓ xi1)(f)

= DT2(x) + DT1(x) =
∑

T∈MrT3

DT (x)

with

T1 = �

�

�

0

1

2

and T2 = �

� �

����
0

2 1

.

For n = 4 the application of (fi3 ↓ xi3) to the first sum yields three sums over

(fi3 , fi2, fi1 ↓ xi3 , xi2 , xi1)(f) , ((fi3 ↓ xi3)(fi2), fi1 ↓ xi2 , xi1)(f) ,

and (fi2 , (fi3 ↓ xi3)(fi1) ↓ xi2 , xi1)(f)
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and to the second sum it yields three sums over

(((fi3 ↓ xi3)(fi2) ↓ xi2)(fi1) ↓ xi1)(f) , ((fi3 , fi2 ↓ xi3 , xi2)(fi1) ↓ xi1)(f) ,

and ((fi2 ↓ xi2)(fi1), fi3 ↓ xi1 , xi3)(f) .

The general pattern is emergent now: by the derivation property the application of the

sum of operators (fin+1 ↓ xin+1) to the summands of Dnx corresponds on the level of

trees to adding a twig with vertex label n+1 to every vertex of every T ∈ MrTn, which

gives exactly the sum over the trees of MrTn+1. This completes the proof of (6.5) and

(6.3). �

Remark 6.7. Binary ordered rooted trees (in 2rT) with labeled leafs are natural repre-

sentatives for repeated brackets in free Lie algebras. Namely, the labeled leafs represent

the (numbered) generators, and the two successors of a non-leaf the two factors of a

bracket. For a comprehensive exposition of the algebra and combinatorics of the free

Lie algebras see the Reutenauer’s book [Re].

7. Monotonely labeled rooted trees, the Exponential Formula and

the Lie series

The sets MrTn of monotonely labeled rooted trees and their walk-around codes (wa-

codes), which are permutations in Sn−1, have been introduced already in Section 6.

The natural recursive construction of the sets MrTn proceeds as follows: the trees

in MrTn+1 can be derived by taking any tree T ∈ MrTn, selecting a vertex v, and

adjoining a twig with label n + 1 to it. This immediately shows

|MrTn+1| = n!

and simultaneously sugests how to build up an L-code for this trees. Namely, for every

l in

Ln := L(2, n) = {l = (ln−1, . . . , l0) | ν ≥ lν ≥ 0}
one constructs recursively a tree T ∈ MrTn+1 by attaching a twig with label ν+1 to the

vertex lν (= the vertex with label lν). In other words: the vertex ν > 0 of T covers the

vertex lν−1. The L-code, e.g., for the tree from Example 6.4 is (7, 2, 3, 0, 2, 3, 0, 1, 0) ∈ L9.

From the L-code of a T ∈ MrTn one immediately reads off the out-degree of a vertex

j: it is simply the number of occurences of j in L(T ).

We briefly discuss (a) how the L-code of some T ∈ MrTn can be computed from the

L-code of some T ′ ∈ SmrTn, if T is the projection of T ′, i.e. T originates from the
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bijective image of T ′ in MEmrTn by forgetting the edge labels; and (b) how the L-code

of some T ∈ MrTn can be computed from its wa-code.

For (a) compute the parenthesis code for T ′ as described in Section 6. Then the

vertex j of T covers i, if i( is the next unmatched parenthesis to the left of j(, where

‘unmatched’ means that the matching right parenthesis for i( is not between i( and j(.

For (b) compute the levels of the wa-code of T as described in Section 6. Then

all vertices j on level 1 cover the root 0, and every j on a level greater 1 covers the

next vertex i to the left, whoose level is smaller than the level of j. For example, let

T ∈ MrT10 have

wa-code: 6 3 7 9 4 1 2 8 5

vertex on level: 1 1 2 3 2 1 2 3 3

covers vertex: 0 0 3 7 3 0 1 2 2

whence the L-code of T is (7, 2, 3, 0, 2, 3, 0, 1, 0).

Proposition 7.1. For every natural number m ≥ 2 and every tree T ∈ MrTn let

pT (m) be the number of T ′ ∈ MEmrTn, which project onto T (upon forgetting the edge

labels). Then pT is a polynomial in Z[m] and (with notation (3.1))

(7.1) pT (m) =

n−1∏
j=0

(m)β(j) with β(j) := |{ν | lν = j}| ,

where of course l = (ln−1, . . . , l0) is the L-code of T .

Proof. Let j be a vertex of T with out-degree out(j). Then for the given m there are

exactly (m)out(j) possibilities to label the outgoing edges with different labels from m.

Since in terms of the L-code out(j) equals β(j) the wanted projection number for T is

the product over all factors (m)β(j). �

For the rest of this section assume that f is a polynomial mapping, which is homo-

geneous of degree m in the commuting variables x1, . . . , xN , and that the mapping µ

associated to f is in commutative form (see Section 3). We are now in a position to

complete the constructive proof of the equalities

(7.2) Dn(x) = µn(x) (n ≥ 0)

Despite the fact that (6.3) in case of commuting variables implies (7.2), because then

the substitution operator D specializes to the differential operator D, there are some

new phenomena in case of commuting variables, which make worthwile a fresh start.
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Proposition 7.2. For commutative µ ∈ L(TmRN , RN) the powers µn(x) for n > 0 can

be represented as

µn(x) =
∑

T∈MrTn

pT (m) µT (x) , where recursively

µT (x) := µT
↑(0)(x) and

µT
↑(j)(x) := µ(µT

↑(j1)(x) ⊗ . . . ⊗ µT
↑(jM )(x) ⊗⊗m−Mx) , if suc(j) = {j1, . . . , jM} .

In particular: µT
↑(j)(x) = µ1(x) = µ(⊗mx), if j is a leaf.

Proof. Recall from the proof of (6.3) that

µn(x) =
∑

T∈MrTn

∑
T ′∈E(T )

lT
′
(µ)(x) .

Since for commutative µ the ordering of the input vectors is not relevant, it follows

from Proposition 7.1 that for all T ∈ MrTn∑
T ′∈E(T )

lT
′
(µ)(x) = pT (m) lT

′′
(µ)(x) ,

where T ′′ is any fixed tree in E(T ). But commutativity of µ means for the parenthesis

code of the T ′′ ∈ MEmrTn that all entries of every parenthesis j(. . . ) commute. There-

fore all subparethesis of all j(. . . ) can be assumed to be in leftmost position, which

gives exactly µT (x) upon recursive evaluation. Hence

lT
′′
(µ)(x) = µT (x)

and the proof is complete. �

Definition 7.3. Let f : RN −→ RN be a polynomial mapping with f = (f1, . . . , fN)∗

and f1, . . . , fN ∈ R[[x1, . . . , x
N ]]. Then for T ∈ MrTn and D as in (1.1) the linear

partial differential operator DT is defined recursively as

DT := DT
↑(0)

DT
↑(j) :=

∑
ν∈NM

fT
ν1,j1

. . . fT
νM ,jM

∂ν , if suc(j) = {j1, . . . , jM} 
= ∅

fT
p,q(x) :=

⎧⎨⎩fp(x) , if q is a leaf of T

DT
↑(q)fp(x) , otherwise.

In other words, if the M polynomial mappings f,1, . . . , f,M for the M successors of a

non-leaf j have been computed already, then they build up DT
↑(j) the same way as the

operator D̃M of Lemma 3.1. We can now proof the following refinement of (7.2):
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Theorem 7.4. Let f , T , and DT be given as in Definition 7.3, where in addition f is ho-

mogeneous of degree m, and let µ be the unique commutative mapping in L(TmRN , RN)

associated to f . Then with the notations of Propositions 7.1 and 7.2:

(7.3) DT (x) = pT (m) µT (x) .

Proof. From the description of the operator DT given after its definition it is clear that

in every recursive step on can replace D̃Mf(x) by the right hand side of formula (3.9)

of Lemma 3.1:

(m)M µ(f,1(x) ⊗ . . . ⊗ f,M(x) ⊗⊗m−Mx)

Then the result follows from formula (7.1) of Proposition 7.1. �

Proof. of (7.2): Since by Proposition 7.2 and (7.3) one has

µn(x) =
∑

T∈MrTn

pT (m) µT (x) =
∑

T∈MrTn

DT (x) ,

it remains to be shown that

(7.4) Dn(x) =
∑

T∈MrTn

DT (x) .

From

Dx = f(x)

D2x =

N∑
i1=1

fi1(∂i1f)

D3x =
N∑

i2,i1=1

[ fi2(∂i2fi1)(∂i1f) + fi2fi1(∂i2∂i1f) ]

D4x =
N∑

i3,i2,i1=1

[ fi3(∂i3fi2)(∂i2fi1)(∂i1f) + fi3fi2(∂i3i2fi1)(∂i1f)

+ fi3fi2(∂i2fi1)(∂i3i1f) + fi3(∂i3fi2)fi1(∂i2i1f)

+ fi3fi2(∂i3fi1)(∂i2i1f) + fi3fi2fi1(∂i3i2i1f) ]

it is easy to verify (7.4) directly for n = 1 and n = 2. For n ≥ 3 the general pattern is

clear: for given T ∈ MrTn the application of the operator fin+1∂in+1 to the summand

DT (x) of Dnx corresponds to an addition of a twig with vertex label n + 1 to every

vertex of T . Summing up now proves (7.4) and (7.2). �

Notice, that the sums over the expressions

fi3fi2(∂i2fi1)(∂i3i1f), fi3(∂i3fi2)fi1(∂i2i1f), fi3fi2(∂i3fi1)(∂i2i1f)
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correspond respectively to the trees
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in MrT4, where

(∂iM ...j1fj) corresponds to suc(j) = {j1, . . . , jM}.
Notice further, that all three sums, which are the expressions DT (x) for the three

depicted trees, are equal. More generally one sees: if M(T ) ⊂ MrTn is the set of all

monotone labelings or all linear extensions of a rooted tree T ∈ rTn, then

(7.5) ∀ T1, T2 ∈ M(T ) : DT1(x) = DT2(x) .

This is true, because the result depends only on the kind of composition of the operators

D and not on their absolute order in the composition or, in terms of the parenthesis

code: the result depends on how the parenthesis are set and not on their subscript

numbers. Therefore the expression DT (x) is well defined for every T ∈ rTn: use any

linear extension T ′ ∈ M(T ) and compute DT ′
(x) according to Definition 7.3.

Similarly, on sees for every T ∈ rTn and every commutative µ that µT (x) is well

defined, because

(7.6) ∀ T1, T2 ∈ M(T ) : µT1(x) = µT2(x) .

This leads naturally to the study of rooted trees rT and the projection numbers

(7.7) eT := |M(T )| for all T ∈ rT,

because, e.g., in terms of µ one has:

Proposition 7.5. For commutative µ ∈ L(TmRN , RN) the powers µn(x) for n > 0 can

be represented as

µn(x) =
∑

T∈rTn

eT pT (m) µT (x)

where µT (x) := µT ′
(x) for some T ′ ∈ M(T ) according to Proposition 7.2.

Notice, that pT (m) = 0, if out(v) > m for some vertex v of T . Therefore:

µn(x) =
∑

T∈rT�m
n

eT pT (m) µT (x) for fixed m.

Proposition 7.6. For T ∈ rT let Aut(T ) denote the group of graph automorphisms of

T , i.e. ϕ ∈ Aut(T ) is a bijection on V (T ), which preserves adjacency. Let

(7.8) γ(T ) :=
∏

v∈V (T )

| ↑ (v)|
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the product of weights of T . Then

(7.9) eT =
|T |!

γ(T ) |Aut(T )| .

Proof. (7.9) is trivial for |T | = 1. Assume that T with |T | ≥ 2 has s non-isomorphic

types T1, . . . , Ts of principal subtrees with multiplicities m1, . . . , ms, respectively. Then

|Aut(T )| =

s∏
i=1

mi! |Aut(Ti)|mi ,

because Aut(T ) is the direct product of the groups Smi
� Aut(Ti). Since the principal

subtrees have all together |T | − 1 vertices, there are

(|T | − 1)!∏s
i=1 mi! (|Ti|!)mi

possibilities to distribute the labels 1, . . . , |T | − 1 to these vertices, where the factors

mi! are due to the fact that the mi principal subtrees of type Ti are indistinguishable.

One then computes inductively:

eT =
(|T | − 1)!∏s

i=1 mi! (|Ti|!)mi

s∏
i=1

(eTi
)mi

=
(|T | − 1)!∏s

i=1 mi! (|Ti|!)mi

s∏
i=1

( |Ti|!
γ(Ti) |Aut(Ti)|

)mi

=
(|T | − 1)!∏s

i=1 γ(Ti)mi mi! |Aut(Ti)|mi
=

(|T | − 1)!

|Aut(T )| ∏s
i=1 γ(Ti)mi

=
(|T | − 1)!

|Aut(T )| γ(T )/|T | =
|T |!

γ(T ) |Aut(T )| .

�

Directly from the proof of Proposition 7.6 and from (7.1) one infers the following

Corollary 7.7. Let T be a rooted tree, which has s non-isomorphic types T1, . . . , Ts

of principal subtrees with multiplicities m1, . . . , ms, respectively. Then the number of

linear extensions of T can be computed recursively by

(7.10) eT =
(|T | − 1)!∏s

i=1 mi!

s∏
i=1

(
eTi

|Ti|!
)mi

.

Moreover:

(7.11) pT (m) = (m)β(0)

s∏
i=1

(pTi
(m))mi with β(0) :=

s∑
i=1

mi .
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Since Corollary 7.7 allows the recursive calculation of the correct multiplicities for

the expressions µT (x) occuring in the sum µn(x) (cf. Proposition 7.5), the problem

arises how to compute recursively the sets rTn. Ideally such a recursion will generate

all representatives of all isomorphism classes of ordered trees in linear order without

the need of comparisons, normal forms, etc. (see [R1,R2] for general considerations on

the orderly generation of tables of graphs). Such a recursion will be described now.

The set rT1 contains only the trivial tree. Assume that the rooted trees of rTj for

j = 1, . . . , n are described as (finite) lists of the form

rTj = (T j
1 , T j

2 , T j
3 , . . . ) ,

i.e. the superscript j indicates the number of vertices and the subscript enumerates the

elements of rTj in a certain linear order. Let

Λn := {λ = (λ1, . . . , λs) | λ1 ≥ · · · ≥ λs ≥ 1 , |λ| := λ1 + · · ·+ λs = n}

be the set of all partitions of the number n and let Λ�
n be the set Λn ordered lexico-

graphically with respect to the linear order 0 � 1 � 2 � 3 . . . . Then the weights of the

principal subtrees of every T ∈ rTn+1 can be assumed to form an element of Λn. Since

for every T ∈ rTn+1 the weights of the principal subtrees can be assumed to form an

element of Λn and since every principal subtree of T is an element of some rTj with

1 ≤ j ≤ n, one concludes that

(7.12) T = T n+1
i = �T λ1

i1
, . . . , T λs

is
� with 1 ≤ iν ≤ |rTλν | ,

where the position i of T in the list of rTn+1 is not yet specified. To get this linear order

take first the upper indices in the linear order of Λ�
n and take second the admissable

s-tuples (i1, . . . , is) for every partition λ in the lexicographic order, which is induced

by the usual linear order on N. A last point to be observed is that for a mν-fold

occurence of a part λν all permutations of the entries of the corresponding mν-tuples

of admissable subindices describe the same rooted tree. Therefore one chooses only the

lexicographically smallest representative of all permutations of such a tuple. The result

up to n = 5 together with the multiplicities eT pT (m) is :

MrT1 : T 1
1 = trivial tree

MrT2 : T 2
1 = �T 1

1 � m

MrT3 : T 3
1 = �T 2

1 � m2

T 3
2 = �T 1

1 , T 1
1 � m(m − 1)
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MrT4 : T 4
1 = �T 3

1 � m3

T 4
2 = �T 3

2 � m2(m − 1)

T 4
3 = �T 2

1 , T 1
1 � 3m2(m − 1)

T 4
4 = �T 1

1 , T 1
1 , T 1

1 � m(m − 1)(m − 2)

MrT5 : T 5
1 = �T 4

1 � m4

T 5
2 = �T 4

2 � m3(m − 1)

T 5
3 = �T 4

3 � 3m3(m − 1)

T 5
4 = �T 4

4 � m2(m − 1)(m − 2)

T 5
5 = �T 3

1 , T 1
1 � 4m3(m − 1)

T 5
6 = �T 3

2 , T 1
1 � 4m2(m − 1)2

T 5
7 = �T 2

1 , T 2
1 � 3m3(m − 1)

T 5
8 = �T 2

1 , T 1
1 , T 1

1 � 6m2(m − 1)(m − 2)

T 5
9 = �T 1

1 , T 1
1 , T 1

1 , T 1
1 � m(m − 1)(m − 2)(m − 3)

With the help of these tables it is easy to draw a rooted tree T j
j and to compute its

multiplicities:

Example 7.8. Given T = T 9
... = �T 4

3 , T 2
1 , T 2

1 �. Then

T = �� �����
T 4

3

�

� � �
T 2

1 T 2
1

= �� ��
�� ��

���

�

�

� � �

� � � �

.

Since T 4
3 and T 2

1 have multiplicities 3m2(m−1) and m, respectively, one computes with

(7.10-11): pT (m) = (m)3 · m2(m − 1) · m · m = m5(m − 1)2(m − 2) and

eT =
8!

1! 2!
· 3

4!
·
(

1

2!

)2

= 7 · 6 · 5 · 3 = 630 .

If c∗(p, q) denotes the number of q-element multisets, which can be choosen from p

elements, and if

Im,n := {i = (i1, . . . , im) | i1 ≥ · · · ≥ im ≥ 0 , |i| := i1 + · · ·+ im = n} ,

and αi(k) := |{ν | iν = k}|, then with a little contemplation of the above recursive

procedure for the recursive generation of ordered rooted trees one sees that the numbers

Cm(n) := |rT�m
n |

satisfy the recursion

(7.13) Cm(n + 1) =
∑

i∈Im,n

n∏
k=0

c∗(Cm(k), αi(k)) with Cm(0) := 1 .
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Remark 7.9. Formula (7.13) has been observed first by Melzak [Mz], but his statement

and proof of the result are much more complicated. The asymptotic behaviour for n −→
∞ of the numbers Cn(n), Cm(n), and |Tn| has been determined by Polya [P,PR] and

Otter [Ot] with the help of functional equations for the respective generating functions

— in [HRS] these classical methods are crystallized into a twenty step algorithm. The

numbers C2(n) are known as “Wedderburn-Etherington numbers” [Sl, No.298], because

Wedderburn [W] found them while investigating the number of parenthesations of a non-

assoziative product of n factors — and in fact every commutative µ ∈ L(T2R
N , RN)

can be viewed as a commutative, but in general non-assoziative multiplication law on

RN .

More (asymptotic) counting results for other types of trees are described and reviewed

in the paper [HPr] and the book [HP]. Counting and coding of trees in connection with

the chemical theory of isomers is investigated further in [GK]. And Labelle [Lb] studies

in depth the counting problems for different kinds of asymmetric trees, i.e. trees with

trivial automorphism group.

Remark 7.10. If derivations and elementary algebraic operations on power series are

represented by certain combinatorial operations on a linear species M (i.e. M is a

functor from the category of finite linearly ordered sets with order preserving bijections

to the category of finite sets with functions), then a solution of the IVP

dY

dT
= M(T, Y ), Y (0) = Z

can be interpreted combinatorially in terms of “M-enriched arborescences” [LV]. A

similar combinatorial approach based on the interaction between ordinary differential

equations, substitutions (“grammars”), and trees in some special cases is the theme of

[DR].

Remark 7.11. Grossman and Larson [GL1-3] have introduced a Hopf-algebraic struc-

ture on rooted trees (with possible additional structure), which is compatible with the

evaluation of trees by differential operators as in Definition 7.3. Namely, the product

of two trees T · T ′ is defined as sum over all possible attachments of the principal sub-

trees of T to the vertices of T ′. This is the extension of the procedure of attaching

a twig in all possible ways to a tree as used in the proof of (7.2). The coproduct of

some T is the sum over all possible products of the two trees, which can be formed

from the set of principal subtrees of T . Clearly, the multiplication is non-commutative

and the comultiplication cocommutative. The obvious unit and counit then complete

the Hopf-algebraic structure, which Grossman and Larson subsequently apply to the

investigation and simplification of the computations with higher order derivations and

Lie brackets of differential operators.
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8. Combinatorial supplements

Tree statistics count finer structural properties of different kinds of trees. They

describe the distribution of levels, branching (= out-degrees), hights, leaves, (principal)

subtrees, distances, chains and antichains, etc. . The most important two-parameter

statistics are the following ones, where � stands for any one of

rT, OrT, MrT, MEmrT, . . . :

The principal tree statistics counts the out-degrees of the roots:

p�(n, k) := |{T ∈ �n | out(v0) = k}| .

The branching statistics counts the out-degrees of the vertices:

b�(n, k) :=
∑

T∈�n

|{v ∈ V (T ) | out(v) = k}| .

The level statistics counts the number of vertices on a fixed level:

l�(n, k) :=
∑

T∈�n

|{v ∈ V (T ) | r(v) = k}| .

The hight statistics counts the hight of trees:

h�(n, k) := |{T ∈ �n | h(T ) = k}| .

The leaf statistics counts the number of trees having a fixed number of leafs:

f�(n, k) := |{T ∈ �n | |L(T )| = k}| .

The leaf-level statistics counts the number of leafs on a fixed level:

ll�(n, k) :=
∑

T∈�n

|{v ∈ L(T ) | r(v) = k}| .

As a three-parameter statistic we mention the level-branching statistics, which counts

the out-degrees in relation to the levels:

lb�(n, k, l) :=
∑

T∈�n

|{v ∈ V (T ) | out(v) = k, r(v) = l }| .

In view of the results of Sections 6 and 7 the case � = MrT appears to be especially

interesting. Since the wa- and the L-code have been seen to induce bijections between

the symmetric groups Sn of permutations and the sets MrTn+1, one can use trees to

refine and extend the extensively investigated permutation statistics (cf. [St1,BW,Rw]).

It is well known [St1, Prop.1.3.16] that (suppressing subscripts MrT)

p(n + 1, k) = c(n, k) (signless Stirling numbers of the first kind),

f(n + 1, k) = A(n, k) (Eulerian numbers).
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Propositions 8.1 - 3 below characterize the other two-parameter statistics in case of

MrT, except for the hight statistics, which seems to be more complicated. First of all,

the principal tree statistics and the level statistics appear to be closely related:

Proposition 8.1. The level statistics for MrT is

(8.1) l(n, k) = c(n, k + 1) .

Proof. It is obvious that l(n + 1, 0) = n! and l(1, k) = δ0,k. Therefore it is enough to

prove

(8.2) l(n + 1, k) = n l(n, k) + l(n, k − 1) ,

which is the recursion relation for the signless Stirling numbers of the first kind. Recall

form the beginning of Section 7 the recursive generation of the set MrTn+1 through

the attachment of a twig with label n + 1 to every vertex v of every T ∈ MrTn. Since

T has n vertices this produces n copies of every T , where in addition for every vertex

v of rank r(v) there is a new vertex on level r(v) + 1. This proves (8.2) and therefore

(8.1). �

The statistics described in Propositions 8.2-3 below and the hight statistics seem to

be new (they are not contained in [Sl]).

Proposition 8.2. The branching statistics for MrT obeys the recursion

(8.3) b(n + 1, k) = (n − 1) b(n, k) + b(n, k − 1) ,

b(n, 0) = n!/2 (for n ≥ 2), b(1, k) = δ1,k .

Proof. For the proof of (8.3) we show first b(n, 0) = n!/2, which is the total number of

leafs in MrTn. As in the proof of Proposition 8.1 above an addition of twigs (in the

recursive generation of MrTn+1 from MrTn) generates n copies of every T ∈ MrTn,

whence the new number of leafs is n b(n, 0) plus the n(n− 1)! leafs from the new twigs

minus the b(n, 0) cases, where the twig is attached to a leaf. Since b(1, 0) = b(2, 0) = 1

the assertion b(n, 0) = n!/2 now follows. Similarly, for k ≥ 1 the number b(n + 1, k)

equals n b(n, k) minus the b(n, k) cases, where the out-degree is enlarged from k to

k + 1, and plus the b(n, k − 1) cases, where the out-degree is enlarged from k − 1 to k.

This proves the assertion. �

Proposition 8.3. The leaf-level statistics for the case MrT obeys the recursion

(8.4) ll(n + 1, k) = n ll(n, k) + ll(n, k − 1) (for n ≥ 2) ,

ll(n, 1) = (n − 1)! (for n ≥ 2), ll(2, k) = δ1,k .
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Moreover, the level statistics and the leaf-level statistics are connected by the surprising

formula

(8.5) l(n, k) = ll(n, k + 1) + ll(n, k) .

Proof. Again we use the recursion step leading from MrTn to MrTn+1 and we show

first (8.4) in case of k = 1: the number ll(n+1, 1) of leafs on level 1 generated from the

trees in MrTn is n ll(n, 1) minus the ll(n, 1) cases, where a twig is added to a leaf on

level 1, and plus the number of roots (= (n − 1)!), which yields the desired conclusion.

For k > 1 one concludes similarly that

(8.6) ll(n + 1, k) = (n − 1) ll(n, k) + l(n, k − 1) ,

where l(n, k − 1) is the number of (arbitrary) vertices on level k − 1 in MrTn. But

the recursion (8.6) implies (8.4), if (8.5) is correct. The latter can be seen as follows:

For k = 0 we know already that l(n, 0) = (n − 1)! = ll(n, 1) and for k ≥ 1 the number

l(n, k) − ll(n, k) is the cardinality of the set

R(n, k) := {v ∈
⊎

T∈MrTn

V (T ) | r(v) = k, | ↑ (v)| > 1} .

For a fixed vertex u ∈ R(n, k) of some tree T ′ let C(u) := T ′\ ↑ (u) be the subtree of

T ′, which is complementary to ↑ (u). Let C(u) be the class of all T ∈ MrTn, which

contain C(u) as a subtree. Then by the symmetry of monotone labelings the set of all

complements of C(u) for the trees in C(u) is a complete set of monotonely labeled trees

on | ↑ (v)| > 1 vertices, where the set of labels is given by the labels of ↑ (u). But

from the case k = 0 we know already that |MrTn| = ll(n, 1) for all n > 1, whence the

number of twigs attached to the vertices corresponding to the set C(u) is |C(u)|. Since

all the sets C(u) induce a partition of R(n, k) into equivalence classes, formula (8.5)

follows. �

Notice that the monotone labelings in case of MrT allow additional refinements of

statistics. For example Moon [Mo] computes the mean and variance of the distances

d(i, j) of the vertices 0 ≤ i < j ≤ n − 1 in MrTn.

We turn attention now to ordered rooted trees OrT. These trees are counted by the

celebrated Catalan numbers

|OrTn+1| = Cn =
1

n + 1

(
2n

n

)
,

which form the solution of the recurrence

Cn+1 =
n∑

i=0

CiCn−i , C0 = 1 .

37



The book [St2] describes 65 families of discrete structures, which are counted by the

Catalan numbers. That OrT belongs to the Catalanian structures is easily seen by

considering the operation � on OrT: T � T ′ is defined as the ordered rooted tree T ,

which has T ′ adjoined as its rightmost principal subtree. The assertion then follows

from

OrTn+1 =

n⊎
i=1

OrTi � OrTn+1−i .

About the statistics of OrT the following is known: [DZ] containes explicit formulas

for the statistics of leafs, principal trees, branching, and level-branching. [dBKR] gives

a recursion for the hight statistics and computes the asymtotic average hight.

Ordered rooted trees are coded much easier than rooted trees, where the idea of

‘walking around’ appears in many variations:

(1) Parenthesis code: While walking around one writes a left parenthesis for every

step up and a right parenthesis for every step down.

(2) Binary code: Same as the parenthesis code, but with 0 instead of a left paren-

thesis and 1 instead of a right parenthesis.

(3) Walk around valency code (WAV): Attach the out-degree to every vertex, and

then walk around.

(4) Walk around level code (WAL): Attach the level to every vertex.

(5) Walk around weight code (WAW): Attach the ‘weight’ | ↑ (v)| to every vertex.

WAW is closest in spirit to our recursive enumeration for rT.

The idea of the Bottom up valency code (BUV) is a bit different from the WAV: to

every vertex attach its out-degree, but record it from bottom to top and on each level

from left to right instead of walking around.

Example 8.4.

T = �� ��
�� ��

�

� � �

� � �

�

has

parenthesis code : (()(()))()(()), binary code : 00100111010011, WAV : 32010010,

WAL : 1223112, WAW : 84121121, BUV : 32010100 .

The idea of parenthesis code and binary code goes back in principle to the work of

Cayley [C1,C2] and reappears in [dBM]. BUV is introduced in [R3], wheras WAL and

WAW seem to be new.

For the sets rT and T coding ideas similar to WAV and WAL apply, where the WAV

for T is explained — together with the more sophisticated Smolenski code — in [R3,

Sec.12]. For the WAL of a tree T first label all leafs with 0, then remove or ignore them

and label the new leafs with 1, etc. . The ‘shelling’ of T thus recorded by the labels
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stops when the center of T consisting of one or two vertices is reached. Next to nothing

seems to be known about the statistics of rT and T and about the projection numbers

from OrT to T or rT to T.

39



References

[BCW] H. Bass, E.H. Connell, D. Wright, The Jacobian Conjecture: Reduction of degree and
formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287 - 330.

[BW] A. Björner, M.L. Wachs, Permutation Statistics and Linear Extensions of Posets, J. Comb.
Theory A 58 (1991), 85 - 114.

[C1] A. Cayley, On the theory of analytical forms called trees, in: “Collected Mathematical papers
of Arthur Cayley”, Vol.3, 242 - 246, Cambridge University Press, 1890.

[C2] A. Cayley, On the theory of analytical forms called trees, second part, in: “Collected Mathe-
matical papers of Arthur Cayley”, Vol.4, 112 - 115, Cambridge University Press, 1891.

[dBM] N.G. de Bruijn, B.J.M. Morselt, A note on plane trees, J. Comb. Theory 2 (1967), 27 -
34.

[dBKR] N.G. de Bruijn, D.E. Knuth, S.O. Rice, The average hight of planted plane trees, in:
R.C. Read (ed.), “Graph Theory and Computing”, Academic Press, New York, 1972.

[DR] D. Dumont, A. Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electronic
Journal of Combinatorics 3 (2) (1996) # R17, 18pp.

[DZ] N. Derschowitz, S. Zaks, Enumeration of ordered trees, Discrete Math. 31 (1980), 9 - 28.
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