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Abstract

Carlsson’s construction is a simplicial group whose geometric real-

ization is the loop space of the 1-stunted reduced Borel construction.

Our main results are: i) Given a pointed simplicial set acted upon by

the discrete cyclic group C2 of order 2, if the orbit projection has a

section, then this loop space has a mod 2 homology decomposition;

ii) If the reduced diagonal map of the C2-invariant set is homologous

to zero, then the pinched sets in the above homology decomposition

themselves have homology decompositions in terms of the C2-invariant

set and the orbit space. Result i) generalizes a previous homology de-

composition of the second author for trivial actions. To illustrate these

two results, we completely compute the mod 2 Betti numbers for an

example.

1 Introduction

It is a general problem in algebraic topology to compute the homology of a

loop space, failing which, to give a homology decomposition of a loop space.

∗The authors gratefully acknowledge the assistance of Singapore Ministry of Education

research grants AcRF Tier 1(WBS No. R-146-000-137-112) and AcRF Tier 2 (WBS No.
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In this paper, we show in Theorem 1.1 that, if the orbit projection has a

section, then there is a mod 2 homology decomposition of a certain loop

space Ω(XoC2W
1
∞C2). This generalizes a previous homology decomposition

of the second author for trivial actions (see the original paper [18] and Section

4 below.)

The following notational conventions that will be used throughout this

paper. We reserve G to denote the discrete cyclic group C2 of order 2,

written multiplicatively with generator t. In particular t2 = 1. Let X denote

a pointed simplicial G-set. Denote by A the simplicial subset of X fixed

under the G-action. Let F2 denote the finite field with two elements.

The 1-stunted reduced Borel construction X oC2 W
1
∞C2 is the homotopy

cofiber of the inclusion from X into its reduced Borel construction. Carlsson

constructed a simplicial group JG[X] is the loop space Ω(XoC2 W
1
∞C2). See

Section 2 for details.

The orbit projection is the simplicial epimorphism X → X/G onto the

orbit space. A section of the orbit projection is a simplicial map j : X/G→ X

such that the composite X/G
j−→ X → X/G is the identity map on X/G.

Simplicial G-sets whose orbit projection has a section is characterized in

Proposition 4.1.

Theorem 1.1. If the orbit projection has a section, then there an isomor-

phism of F2-algebras:

H̃∗(Ω(X oGW
1
∞G);F2) ∼=

∞⊕
s=1

H̃∗

(
(X/G)∧s/∆̃s;F2

)
(1)

Here ∆̃0 = ∆̃1 := ∗ and:

∆̃s := {x1G∧· · ·∧xsG ∈ (X/G)∧s| ∃i = 1, . . . , s−1 (xi = xi+1 ∈ A)} (s ≥ 2.)

To compute the direct summands in (1), we can consider the long exact

sequence associated to cofiber sequence ∆̃s → (X/G)∧s → (X/G)∧s/∆̃s:

· · · → H̃∗(∆̃s)→ H̃∗((X/G)∧s)→ H̃∗((X/G)∧s/∆̃s)→ H̃∗−1(∆̃s)→ · · ·
(2)
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Here we suppress the coefficients F2. Our next result is a sufficient condition

for there to be a homology decomposition of the pinched set ∆̃s.

The reduced diagonal map of A is the simplicial map A→ A∧A is given

by a 7→ a ∧ a for all a ∈ An. A pointed simplicial map f : Y → Z is mod 2

homologous to zero if the induced map f∗ : H̃∗(Y ;F2)→ H̃∗(Z;F2) is the zero

map. We show that if the reduced diagonal map of A is mod 2 homologous

to zero, then the mod 2 homology of ∆̃s is completely determined by the

mod 2 homology of the fixed set A and the orbit space X/G.

The following multi-index notation is used. Let b̃t(Y ;F2) := dim H̃t(Y ;F2)

denote the t-th reduced mod 2 Betti number of Y , that is, the dimension of

mod 2 reduced homology of a pointed simplicial set Y in dimension t. A

multi-index α = (α1, . . . , αd) is a (possibly empty) sequence of positive inte-

gers. The length of this multi-index is |α| = α1 + · · ·+ αd and its dimension

is dimα = d. Given a multi-index α = (α1, . . . , αd), write for short the

following product:

b̃α(Y ;F2) := b̃α1(Y ;F2)̃bα2(Y ;F2) · · · b̃αd
(Y ;F2)

Theorem 1.2. If the reduced diagonal map of A is mod 2 homologous to

zero, then the mod 2 Betti number of ∆̃s is given by:

b̃t(∆̃s;F2) ∼=
∑

|λ|+|µ|=t−s+dimλ+dimµ+1
2≤dimλ+dimµ+1≤s

cλ,µb̃λ(X/G;F2)̃bµ(A;F2),

where cλ,µ =
(

dimλ+dimµ
dimµ

)(
s−dimλ−dimµ−1

dimµ−1

)
.

The condition that the reduced diagonal map of A is mod 2 homologous

to zero is quite general. For example, this condition is satisfied if A is the

reduced suspension on some space (see Example 5.5.)

The homology decompositions of Theorems 1.1 and 1.2 can be applied to

compute the mod 2 Betti numbers of Ω(XoGW
1
∞G) for certain pointed sim-

plicial G-sets X. These homology decompositions are particularly effective

when the orbit space X/G has many trivial homology groups. This leads to

many zero terms appearing in the long-exact sequence 2. We illustrate with
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the computation of the mod 2 Betti numbers with the following example.

Note that the antipodal action on the 2-sphere S2 has the equatorial circle

S1 as the fixed set.

Proposition 1.3. Consider the G-space S2∪S1S2 formed by two 2-spheres S2

with the antipodal action, with their equatorial circles identified. The reduced

mod 2 Betti numbers of the loop space of its 1-truncated Borel construction

is given as follows:

b̃n(Ω([S2 ∪S1 S2] oG E
1
∞G))

=

1 +
∑2k

r=k+1

∑2r−3
J=1

(
2k−r+J

J

)(
2r−2k−J−1

J−1

)
, n = 2k, k ≥ 1,∑2k+1

r=k+2

∑r−k−1
J=1

(
2k−r+J+1

J

)(
2r−2k−J−2

J−1

)
, n = 2k + 1, k ≥ 0

The outline of this paper is as follows. Carlsson’s simplicial group con-

struction JG[X] and the reduced 1-stunted Borel construction are introduced

in Section 2. In Section 3, the augmentation ideal filtration of the group ring

F2(JG[X]) is considered. We construct simplicial algebras which are isomor-

phic to the graded algebra associated to this filtration. Theorem 1.1 is proved

in Section 4. Theorem 1.2 is proved in Section 5 using the Mayer-Vietoris

spectral sequence. Section 6 is devoted to the example X = S2 ∪S1 S2t and

the proof of Proposition 1.3.

This paper is a revision of part of the first author’s PhD thesis [8].

2 Preliminaries

To begin, we explain the concepts of the reduced Borel construction and its

1-stuntation.

Denote by WG any contractible simplicial set with a free G-action. Any

two such simplicial sets are equivariantly homotopy equivalent. In our case

where G = C2, it is standard to give WG concretely as the ∞-sphere S∞

with the antipodal action. Let EG := |WG| denote the geometric realization

of WG.
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The simplicial set WG is filtered by simplicial G-subsets:

G ' W0G ⊂ W1G ⊂ · · · ⊂ WpG ⊂ · · · ⊂ W∞G =: WG (3)

Here WpG is the p-th skeleton of WG. In fact WpG is the (p+ 1)-th fold join

of G. In our case where G = C2, it is standard to give WpG concretely as

the p-sphere Sp with the antipodal action.

The bar construction of G is the orbit space WG := EG/G. In fact WG

is homotopy equivalent to the infinite-dimensional real projective space:

WG ' RP∞

The classifying space of G is the geometric realization BG := |WG|. Since G

is discrete, its classifying space BG is the Eilenberg-Mac Lane space K(G, 1).

Consider the action of G on a simplicial set X. The free simplicial G-set

associated to X is X×WG with the diagonal action. The Borel construction

of X is the orbit space X ×GWG := (X ×WG)/G. For example, the Borel

construction of the G-action on the standard 0-simplex ∆[0] = ∗ is bar

construction of G:

∗ ×GWG ' WG

Suppose the G-action is pointed, that is to say, the simplicial set X

has a basepoint and the G-action fixes the basepoint. The reduced Borel

construction of this pointed action, written X oG WG, is the homotopy

cofiber of ∗ ×GWG→ X ×GWG.

More generally, let X ×G WpG denote the orbit space (X ×WpG)/G of

the diagonal action. For pointed actions, let XoGWpG denote the homotopy

cofiber of ∗×GWpG→ X×GWpG. For q ≥ p, define the (p, q)-stunted reduced

Borel construction X oG W
q
pG as the homotopy cofiber of X oG Wq−1G →

X oG WpG. In particular, when p = ∞, we call X oG W
q
∞G simply as the

q-stunted reduced Borel construction of the G-action on X.

In this paper, we are interested in the 1-stunted Borel construction XoG

W 1
∞G. Since X oG W0G ' X oG G ' (X ×G G)/(∗ ×G G) ' X, the

1-stunted Borel construction is just the homotopy cofiber of the inclusion
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X ↪→ X oG WG. Denote by |X| oG E1
∞G the geometric realization of

X oGW
1
∞G.

Carlsson [4] constructed a simplicial group JG[X] whose geometric real-

ization is the loop space of the 1-stunted reduced Borel construction:

|JG[X]| ' Ω(|X|oG E
1
∞G) (4)

Carlsson’s construction is given in the nth dimension by:

JG[X]n :=
F [Xn ∧Gn]

〈∀x ∈ Xn∀g, h ∈ Gn (x ∧ g) · (xg ∧ h) ∼ (x ∧ gh)〉
. (5)

Here F [S] = coker(F (∗)→ F (S)) is the reduced free group on a pointed set

S, where F (•) denotes the (unreduced) free group. The functor F [•] : Set∗ →
Grp is the left adjoint to the inclusion functor Grp ↪→ Set∗ that sends a group

to its underlying set with the identity element as basepoint.

Carlsson’s construction is the reduced universal simplicial group on the

pointed simplicial action groupoid X//G:

JG[X] ∼= U [X//G]

For a pointed small groupoid H, its reduced universal monoid U [H] is defined

the following cokernel:

U [H] := coker(U(AutH(∗))→ U(H))

Here AutH(∗) denotes the full subcategory of H whose only object is the

basepoint and H : Grpd → Grp is the left adjoint of the inclusion functor

Grp ↪→ Grpd that sends a group to the corresponding small groupoid with

one object. The reduced universal simplicial group U [G] of a small simplicial

groupoid G is defined dimensionwise. Further details can be found in the first

author’s thesis [8]. This categorial viewpoint led to a unification of Carlsson’s

construction and a simplicial monoid construction of the second author [18],

which contains the classical constructions of Milnor [13] and James [11] as

special cases. An upcoming paper will further elaborate on this viewpoint.
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3 Augmentation Quotients as Free Simplicial

Modules

In this Section, we construct two simplicial algebras each of which is isomor-

phic to the associated graded algebra of the augmentation ideal filtration

of the group ring F2(JG[X]) (see Proposition 3.5.) In each dimension, each

of these simplicial algebras is a quotient of a tensor algebra by a homoge-

neous ideal. Therefore each augmentation quotient is the reduced simplicial

F2-module of a pointed simplicial set (see Corollary 3.6.)

In our case where G = C2, there is a natural isomorphism in pointed

simplicial G-sets X:

JG[X] ∼=
F [X]

〈∀x ∈ X (x · xt ∼ 1)〉
(6)

Recall from the introduction that F [X] is the reduced free group on X. Via

this natural isomorphism, we will identify JG[X] with the RHS of (6).

Let K be a field and H be a group. The elements of the group ring

K(H) are finite sums of the form
∑

λ∈K,h∈H λhh. The augmentation map

K(H) → K is generated by h 7→ 1 for h ∈ H. The kernel of this map is

the augmentation ideal. Reserve I to denote the augmentation ideal of the

group ring F2(JG[X]). The augmentation ideal I is generated by h := h− 1

where h ∈ JG[X]. The powers of I filter the group ring (Quillen [16] calls

this the I-filtration:)

· · · ⊆ Is+1 ⊆ Is ⊆ · · · ⊆ I1 ⊆ I0 = F2(JG[X]). (7)

We denote the spectral sequence by {Er} associated to this filtration. The

E0 term is just the graded algebra
⊕∞

s=0 I
s/Is+1 associated to the above

filtration.

One of the simplicial algebras we construct is AG[X], defined below. For

an F2-module M , let T (M) =
⊕∞

s=0M ⊗F2 · · · ⊗F2 M︸ ︷︷ ︸
s

denote the tensor F2-

algebra on M .
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Definition 3.1. Let X be a pointed simplicial G-set. The simplicial graded

F2-algebra AG[X] is defined dimensionwise by

(AG[X])n :=
T (F2[Xn]⊗F2(G) F2)

〈∀a ∈ An (a⊗F2(G) 1)2〉
.

Here the G-action on Xn allows us to view F2[Xn] as a right F2(G)-module,

while F2 is viewed as an F2(G)-module where G acts trivially on the left.

The tensor product F2[Xn]⊗F2(G) F2 is viewed as an F2-module.

Proposition 3.2. The augmentation quotient I/I2 is generated by {x +

I2|x 6= ∗}.

Proof. The identity x y = xy − x− y and the fact that x y ∈ I2 implies that

(x+ I2) + (y + I2) = xy + I2.

The set S := {x+ I2|x 6= ∗} thus generates

{x1x2 · · ·xn + I2|x1 6= ∗, . . . xn 6= ∗} (8)

By (6), each nonidentity element of JG[X] is (the equivalence class of) a word

of the form x1 · · ·xn where all x1, . . . , xn are different from the basepoint ∗,
hence I/I2 is generated by (8) and thus also by S. This completes the

proof.

Proposition 3.3. Let B be a graded algebra. Let B̂ be the completion of B

with respect to the filtration by degree:

· · · ⊂ B≥r ⊂ · · · ⊂ B≥1 ⊂ B≥0 = B,

where B≥r :=
⊕∞

i=r Bi. The above filtration induces a filtration on B̂

· · · ⊂ B̂≥r ⊂ · · · ⊂ B̂≥1 ⊂ B̂≥0 = B̂.

Then the map Θ: E0(B̂)→ B whose rth grade is given by Θr(f + B̂≥r+1) =

fr, where fr is the rth degree component of f , is an isomorphism of graded

algebras.
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Proof. An element of B̂ is a formal power series of the form f = f0 + f1 +

· · · fi + · · · where fi is of degree i in B. An element of B̂≥r is a formal power

series of the form f = fr + fr+1 + · · · whose lowest degree is at least r. The

map Θr is well-defined since if f ∈ B̂≥r+1, then fr = 0.

Let Λ: B → E0(B̂) be the map whose rth grade is Λr(f) = f + B̂≥r+1.

It is easy to check that Θ and Λ are inverses.

Lemma 3.4. There is an isomorphism of graded algebras natural in X:

Φ: AG[X]→ E0

x⊗F2(G) 1 7→ x+ I2

Proof. Write ⊗ := ⊗F2(G)for short.

We first verify that Φ is well-defined, that is to say, that the map (x, 1) 7→
x + I2 is indeed F2(G)-linear. On the one hand, (x · t, 1) 7→ xt + I2, and on

the other hand (x, t · 1) = (x, 1) 7→ x+ I2. Since x · xt = 1,

xxt+ x+ xt = (x− 1)(xt− 1) + (x− 1) + (xt− 1) = x · xt− 1 = 0.

This implies x+ xt = −xxt ∈ I2 so that x+ I2 = −xt+ I2 = xt+ I2 as the

ground field is F2. Therefore both (x · t, 1) and (x, t · 1) are sent to the same

thing which verifies the F2(G)-linearity of the map (x, 1) 7→ x+ I2.

Our definition Φ(x ⊗ 1) = x + I2 is given for x ∈ X, then it can be

extended to a map T (F2[Xn] ⊗F2(G) F2) → E0. This is because Φ(∗ ⊗ 1) =

∗ + I2 = 1 − 1 + I2 = 0 and the tensor algebra T (F2[Xn] ⊗F2(G) F2) is

generated by elements of the form x ⊗ 1. We check that this map factors

through the defining equivalence relation of AG[X]. Given a ∈ A, we have

Φ((a ⊗ 1)2) = (a + I2)2 = a2 + I3. And a2 = (a − 1)2 = a2 − 1 = 0 since

a ∈ A implies a2 = a · at = 1. Thus Φ((a⊗ 1)2) = a2 + I3 = 0, so we have a

well-defined map Φ: AG[X]→ E0.

Next we show that Φ is an epimorphism. It suffices to show that, when

Φ is restricted to the first grade, the map Φ1 : AG1 [X] → I/I2 is an epimor-

phism, since I/I2 generates E0. Using the isomorphism in (6), Proposition

3.2 implies that the augmentation ideal is generated by x where ∗ 6= x ∈ X.
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Since, for each x ∈ X, the element x+I2 is the image of Φ(x⊗1), this Propo-

sition implies that each element in I/I2 has a preimage under Φ. Therefore

Φ is an epimorphism.

To show that Φ is a monomorphism, choose a subset B ⊂ X of elements

not fixed by the G-action that decomposes X into the disjoint union A t
B t Bt. Then the map f : JG[X] → JG[A] ∗ F (B) that sends a 7→ a for

a ∈ A and b 7→ b, bt 7→ b−1 for b ∈ B is a group isomorphism. The map

e1 : JG[A]→ ÂG[X] generated by a 7→ a⊗ 1 + 1⊗ 1 is well-defined. This is

because e1(a·a) = (a⊗1+1⊗1)(a⊗1+1⊗1) = (a⊗1)(a⊗1)+(1⊗1)(1⊗1) =

(1 ⊗ 1) agrees with e1(1) = 1 ⊗ 1. Define e2 : F (B) → ÂG[X] by sending

b 7→ b ⊗ 1 + 1 ⊗ 1. In particular, e2(b−1) = 1
b⊗1+1⊗1

=
∑∞

i=0(−1)i(b ⊗ 1)i =∑∞
i=0(b ⊗ 1)i as the ground field is F2. The universal property of the free

product gives a map e1 ∗e2 : JG[A]∗F (B)→ ÂG[X]. The universal property

of the group ring then induces a map ẽ1 ∗ e2 : F2(JG[X]) → ÂG[X]. This

induces a map E0(ẽ1 ∗ e2) : E0(F2(JG[A] ∗ F (B))) → E0(ÂG[X]) between

the associated graded algebras. Consider the composite

AG[X]
Φ−→ E0(F2(JG[X]))

E0(F2(f))−−−−−→ E0(F2(JG[A] ∗ F (B)))

E0(ẽ1∗e2)−−−−−→ E0(ÂG[X])
Θ−→ AG[X].

Here Θ is the map given in Proposition 3.3. It is easy to check that this

composite is the identity map on AG[X] and hence the first map Φ is a

monomorphism, as required.

Finally, it is straightforward to the check the naturality. This completes

the proof.

Proposition 3.5. There are isomorphisms of simplicial graded F2-algebras:

∞⊕
s=0

Is/Is+1 ∼= AG[X] ∼= T (F2[X/G])/〈∀a ∈ A (aG)2〉

Here T (F2[X/G])/〈∀a ∈ A (aG)2〉 is the simplicial graded F2-algebra whose

nth dimension is T (F2[Xn/G])/〈∀a ∈ An (aG)2〉.
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Proof. Define the map Φ: AG[X]→ E0(F2(JG[X])) dimensionwise using the

previous Lemma 3.4. In each dimension n, the map Φn is an isomorphism

of graded algebras. But the naturality part of the same Lemma implies that

the map Φ commutes with faces and degeneracies and hence it is a simplicial

map. Therefore Φ is an isomorphism of simplicial algebras:

Φ: AG[X]→ E0(F2(JG[X])). (9)

Denote the algebra T (F2[X/G])/〈∀a ∈ A (aG)2〉 by T . Let ϕ : F2[X] ×
F2 → T send (x, 1) 7→ xG. Since ϕ(x · t, 1) = xtG = xG agrees with

ϕ(x, t · 1) = ϕ(x, 1) = xG, this map factors to a map F2[X] ⊗F2(G) F2 → T

from the tensor product. The universal property of the tensor algebra defines

a map T (F2[X]⊗F2(G) F2)→ T . We check that this map factors through the

defining equivalence relations of AG[X]. Given a ∈ A, indeed (a ⊗ 1)2 is

sent to (aG)2, which is in the quotient ideal of T . Thus we have a map

ϕ̃ : AG[X]→ T .

Let ψ : X/G→ AG[X] send xG 7→ x⊗F2(G) 1. This map ψ is well-defined

since xt⊗F2(G) 1 = x⊗F2(G) t · 1 = x⊗F2(G) 1. The universal property of the

tensor algebra defines a map ψ : T (F2[X/G]) 7→ AG[X]. We check that this

map factors through the defining equivalence relations of T . Given a ∈ A,

indeed (aG)2 is sent to (a⊗F2(G) 1)2, which is in the quotient ideal of AG[X].

Thus we have a map ψ̃ : T → AG[X].

It is easy to check that ϕ̃ and ψ̃ are inverses. This gives an isomorphism

AG[X] ∼= T = T (F2[X/G])/〈∀a ∈ A (aG)2〉. (10)

Combine the isomorphisms (9) and (10) to complete the proof.

Recall from the introduction that the pointed simplicial subset ∆̃s of

(X/G)∧s is defined as follows. Set ∆̃0 = ∆̃1 := ∗ and:

∆̃s := {x1G∧· · ·∧xsG ∈ (X/G)∧s| ∃i = 1, . . . , s−1 (xi = xi+1 ∈ A)} (s ≥ 2.)

11



Corollary 3.6. For s ≥ 1, there is an isomorphism of simplicial F2-modules:

Is/Is+1 ∼=−→ F2

[
(X/G)∧s/∆̃s

]
x1 · · ·xs + Is+1 7→ x1G ∧ · · · ∧ xsG

Proof. The proof of Proposition 3.5 gives an isomorphism of simplicial graded

algebras:

ϕ̃ ◦ Φ−1 :
∞⊕
s=0

Is/Is+1 ∼=−→ T (F2[X/G])/〈∀a ∈ A (aG)2〉

x+ I 7→ xG

The s-th grade of this isomorphism is

Is/Is+1 ∼=−→
(
T (F2[X/G])/〈∀a ∈ A (aG)2〉

)
s

x1 · · ·xs + Is+1 7→ x1G · · ·xsG

The s-th grade of the tensor algebra is Ts(F2[X/G]) can be identified

with F2[(X/G)∧s]. Via this identification, the terms of degree s in the ideal

〈∀a ∈ A (aG)2〉 are linear combinations of smash products x1G ∧ · · · ∧ xsG
such that, for some i = 1, . . . , s− 1, the elements xi and xi+1 are equal and

belong to A. The result follows by the definition of ∆̃s.

4 Proof of Theorem 1.1

In this Section, we show that the existence of a section of the orbit pro-

jection leads to a mod 2 homology decomposition of JG[X]. There are

two proof ingredients. First, we show that the powers of the augmenta-

tion ideal of F2(JG[X]) have trivial intersection. Second, we show that

the exact sequences Is+1 → Is → Is/Is+1 are split. These imply the

F2(JG[X]) is isomorphic to E0 and that the long exact sequence associated

to Is+1 → Is → Is/Is+1 splits into short exact sequences. Therefore the

spectral sequence associated to the augmentation ideal filtration collapses at

the E1 term and converges to H∗(J
G[X];F2).
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We begin with a characterization of the G-sets whose orbit projection has

a section.

Proposition 4.1. The orbit projection has a section if and only if, there

exist simplicial sets A and Y with A as a simplicial subset of Y , such that

X is a pushout Y ∪A Y t with the action of flipping Y with Y t.

Proof. If j is a section of the orbit projection, then X = im j∪A (im j)t where

A ⊂ X is the set fixed under the action.

Conversely, the orbit space of a pushout Y ∪A Y t is isomorphic to Y .

Thus the map Y ↪→ Y ∪A Y t that is the inclusion to the left copy of Y gives

the required section.

For the G-set Y ∪AY t, its orbit space is isomorphic to Y and the set fixed

under the action is just A. There are two sections of the orbit projection.

One section maps the orbits space to Y , the other section maps the orbit

space to Y t.

In the case where the coefficient ring is a field, there is a characterization

of group rings for which the powers of the augmentation ideal to have trivial

intersection. We recall below the characterization if the coefficient ring is a

field of prime characteristic (see Theorem 2.26 of [15].)

We use the following terminology from group theory. A group has bounded

exponent if there exists an integer n ≥ 0 such that every element of the group

has order at most n. We say P is a property of groups if (i) the trivial group

has the property P and (ii) given isomorphic groups G and H, the group

G has property P if and only if the group H has property P . A group G

is residually P if, for each nonidentity element x ∈ G, there exists a group

epimorphism ϕ : G→ H where H is a P-group such that ϕ(x) 6= 1.

Proposition 4.2. Let J be the augmentation ideal of a group ring K(H)

where K is a field of characteristic prime p. Then
⋂
n J

n = 0 if and only if

H is residually nilpotent p-group of bounded exponent.

We will need the following result of Gruenberg [9].
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Lemma 4.3. The free product of finitely many residually finite p-groups is

a residually finite p-group.

Let C∞ denote the infinite cyclic group and Cp denote the cyclic group

of order p.

Proposition 4.4. A free product of arbitrarily many copies of C∞’s and Cp’s

is a residually finite p-group.

Proof. Let a group G which is a free product of C∞’s and Cp’s be given. We

write G = ∗i∈I Hi where I is an index set and Hi is an isomorphic copy of

either C∞ or Cp. For each i ∈ I, fix a generator ti of Hi.

Let a word w = t
ni1
i1
· · · tnik

ik
be given. Let H = Hi1 ∗ · · · ∗ Hik . Let

ψ : G→ H be the group homomorphism given by

ψ(tj) =

tj, if j = i1, . . . , ik

1H , otherwise.

This ψ(w) is a nonidentity element of H.

It is easy to show that Cp and C∞ are both residually finite p-groups.

Thus Lemma 4.3 implies that the group H is a residually finite p-group.

Since ψ(w) is a nonidentity element of H, there exists a group epimorphism

ϕ : H → K where K is a finite p-group such that ϕ(ψ(w)) 6= 1. Since the

composite G
ψ−→ H

ϕ−→ K, this proves that G a residually finite p-group.

The following proposition is straightforward and its proof is omitted.

Proposition 4.5. Let X be a pointed G-set. If X is written as a disjoint

union A tB tBt, then there is a group isomorphism

JG[X]→ JG[A] ∗ F (B)

a 7→ a

b 7→ b

In particular ϕ(bt) = ϕ(b)−1 = b−1.
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Corollary 4.6. Let X be a pointed G-set. The augmentation ideal I of

F2(JG[X]) satisfies
⋂
n I

n = 0.

Proof. Write X as a disjoint union A t B t Bt, then Proposition 4.5 gives

an isomorphism JG[X] ∼= JG[A] ∗ F (B). The group JG[A] is a free product

of C2’s while the free group F (B) is a free product of C∞’s. Proposition

4.4 applies to show that JG[X] is a residually finite 2-group. Since a finite

2-group is a nilpotent 2-group of bounded exponent, the group JG[X] is a

residually nilpotent 2-group of bounded exponent. Then the result follows

from Proposition 4.2.

This corollary implies that the spectral sequence {Er} is weakly conver-

gent.

Proposition 4.7. Let J be the augmentation ideal of its group ring K(H)

with coefficients in a field K. If
⋂
n J

n = 0 and the short exact sequence

Js+1 → Js → Js/Js+1 is split for all s, then there is an isomorphism of

K-modules:

K(H) ∼=
∞⊕
s=0

Js/Js+1.

Proof. Since the coefficients are taken in a field, the split short exact se-

quences imply that Js ∼= Js+1 ⊕ Js/Js+1 for all s. An easy induction shows

that K(H) ∼= Jn⊕
⊕n−1

s=0 J
s/Js+1 for all n. Thus there is an isomorphism of

K-modules for each n:

n−1⊕
s=0

Js/Js+1 ∼= K(H)/Jn.

This allows us to identify the filtered system

K(H)/J1 →
1⊕
s=0

Js/Js+1 → · · · →
n−1⊕
s=0

Js/Js+1 → · · ·

with the filtered system

K(H)/J1 → K(H)/J2 → · · · → K(H)/Jn → · · ·
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Therefore the colimits are isomorphic as K-modules:

∞⊕
s=0

Js/Js+1 ∼= lim−→
n

n−1⊕
s=0

Js/Js+1

∼= lim−→
n

K(H)/Jn

∼= K(H)/
⋂
n

Jn

= K(H),

where we used the assumption that
⋂
n J

n is trivial is the last step.

Proof of Theorem 1.1. First we show that the following short exact sequence

is split for each s:

Is+1 → Is → Is/Is+1 (11)

For s = 0, the short exact sequence (11) always splits for any group ring.

For s ≥ 1, Corollary 3.6 gives an isomorphism Is/Is+1 → F2

[
(X/G)∧s/∆̃s

]
defined by x1 · · ·xs+Is+1 7→ x1G∧· · ·∧xsG. Via this isomorphism, it suffices

to show that the following map has a section:

α : Is → F2

[
(X/G)∧s/∆̃s

]
x1 · · · xs 7→ x1G ∧ · · · ∧ xsG.

By Proposition 4.1, the assumption that the orbit projection has a section

allows us to write X = Y ∪A Y t. Then every orbit is of the form yG for some

y ∈ Y . Define β : F2

[
(X/G)∧s/∆̃s

]
→ Is by β(y1G ∧ · · · ysG) = y1 · · · ys

for y1, . . . , ys ∈ Y . The map β is well-defined since if there exists some

i = 1, . . . , s − 1 such that both yi and yi+1 are equal to some a ∈ A, then

yi yi+1 = (a − 1)(a − 1) = a2 − 1 = 1 − 1 = 0 as a2 = 1 in JG[X] so that

β(y1G ∧ · · · ∧ ysG) = 0. Then β is a section of α:

α(β(y1G ∧ · · · ∧ ysG)) = α(y1 · · · ys) = y1G ∧ · · · ∧ ysG.

Thus we have shown that the exact sequences (11) are split for each s.
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We have shown that
⋂
n I

n = 0 in Corollary 4.6. Thus Proposition 4.7

implies

F2(JG[X]) ∼=
∞⊕
s=0

Is/Is+1 ∼= F2 ⊕
∞⊕
s=1

Is/Is+1 (12)

Using Corollary 3.6 and taking homotopy gives

π∗(F2(JG[X])) ∼= π∗(F2)⊕
∞⊕
s=1

π∗

(
F2

[
(X/G)∧s/∆̃s

])
Using the Dold-Thom theorem, this becomes

Ht(J
G[X];F2) ∼=

F2 ⊕
⊕∞

s=1 H̃0

(
(X/G)∧s/∆̃s;F2

)
, if t = 0⊕∞

s=1 H̃t

(
(X/G)∧s/∆̃s;F2

)
, otherwise

Thus the reduced homology of JG[X] is

H̃∗(J
G[X];F2) ∼=

∞⊕
s=1

H̃∗

(
(X/G)∧s/∆̃s;F2

)
The homotopy equivalence (4) completes the proof.

Note that the splitting of the short exact sequence (11) implies that the

associated long exact sequence in homology splits into short exact sequences.

Thus the spectral sequence {Er} collapses at the E1 term. The isomorphism

(12) between F2(JG[X]) and E0 implies that this spectral sequence converges

to H∗(J
G[X];F2).

Theorem 1.1 should be compared with the following result of the second

author.

Proposition 4.8 (Theorem 1.1 in [18]). Let F = R,C or H and let X be

a pointed space. Suppose that H∗ is a multiplicative homology theory such

that (1) both H∗(FP
∞) and H∗(FP

∞
2 ) are free H∗(pt)-modules; and (2) the

inclusion of the bottom cell Sd → FP∞ induces a monomorphism in the

homology. Then there is a multiplicative filtration {FrH∗Ω(FP∞∧X)| r ≥ 0}
of H∗Ω(FP∞ ∧X) such that F0 = H∗(pt) and

Fs/Fs−1
∼= Σ(d−1)sH∗(X

∧s/∆̂s)
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where d = dimR F , Σ is the suspension, ∆̂1 = ∗ and ∆̂s = {x1 ∧ · · · ∧ xs ∈
X∧s| xi = xi+1 for some i} for s > 1. Furthermore, this filtration is natural

with respect to X.

Take F = R. In this case, the above result holds for the reduced mod 2

homology. Since F2 is a field, the multiplicative filtration yields the homology

decomposition:

H̃∗(Ω(RP∞ ∧X);F2) =
∞⊕
s=0

H̃∗(X
∧s/∆̂s;F2) (13)

If G = C2 acts on X trivially, then X coincides with its orbit space X/G.

This induces an isomorphism of simplicial sets for each r:

(X/G)∧s/∆̃s
∼= X∧s/∆̂s

The 1-stunted reduced Borel construction has the following geometric real-

ization for the trivial action:

|X oGW
1
∞G| ' RP∞ ∧X

Therefore our homology decomposition in Theorem 1.1 generalizes (13).

5 Proof of Theorem 1.2

We have shown in the previous section that, if the orbit projection has a

section, then H̃∗(J
G[X];F2) ∼=

⊕
H̃∗

(
(X/G)∧s/∆̃s;F2

)
. The pinched set

∆̃s can be written as the following union (see Corollary 5.2):(
∆(A) ∧ (X/G)∧s−2

)
∪
(
(X/G) ∧∆(A) ∧ (X/G)∧s−3

)
∪· · ·∪

(
(X/G)∧s−2 ∧∆(A)

)
.

(14)

Here ∆(A) := {aG ∧ aG| a ∈ A} ⊂ (X/G)∧2.

Given a pointed simplicial set Y written as a union Y1 ∪ · · · ∪ YN of

pointed simplicial subsets, the Mayer-Vietoris spectral sequence allows one

to approximate the homology of Y in terms of the homology of the intersec-

tions of the Yi’s. Expression (14) suggests using the Mayer-Vietoris spectral
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sequence to study the homology of ∆̃s. This can be combined with Theorem

1.1 to obtain further information about the mod 2 homology of JG[X]. We

illustrate this in Proposition 1.3.

We briefly review the Mayer-Vietoris spectral sequence. References for

this spectral sequence are [3,5,10]. Suppose that Y = Y1∪· · ·∪YN is a pointed

simplicial set with each Yi a pointed simplicial subset of Y . Associated

with Y is an abstract simplicial complex K with vertices 1, 2, . . . , N and

{i1, . . . , ip} ∈ K for Yi1 ∩ · · · ∩ Yip . For each I = {i1, . . . , ip} ∈ K, define

YI = Yi1 ∩ · · · ∩ Yip . In particular Y∅ = Y .

For any simplicial set W , let ZW denote the free simplicial abelian group

on W . One has a chain complex (ZW,∂):

ZW0
∂←− ZW1

∂←− ZW2
∂←− · · · ,

where ∂ =
∑n

i=0(−1)idi and di is the ith face of the simplicial abelian group

ZW . The homology of this chain complex is the integral homology of W (see

Page 5 in [7]):

H∗(W ;Z) ∼= H∗(ZW,∂).

If W is pointed, its mod 2 reduced homology of W is given by:

H̃∗(W ;F2) = coker (H∗(Z∗ ⊗F2, ∂)→ H∗(ZW ⊗ F2, ∂)) .

Let Ep,q =
⊕

#I=p(ZYI ⊗F2)q where #I denotes the number of elements

in the set I. Then E =
⊕

p,q Epq is a double complex. For αIq ∈ (ZYI ⊗F2)q,

the vertical differential is ∂v(αIq ) := ∂αIq , which is the above differential of

the chain complex ZYI ⊗ F2. For αIq ∈ (ZYI ⊗ F2)q where I = {i1, . . . , ip},
the horizontal differential is ∂h(αIq ) := α∂Iq :=

∑p
j=1(−1)jα

∂jI
q where ∂jI :=

(i1, . . . , îj, . . . , ip) has p− 1 elements by omitting the jth term. Here α
∂jI
q is

an element of (ZY∂jI ⊗ F2)q via the inclusion YI ↪→ Y∂jI .

Write Ep =
⊕

q Ep,q. The homology of E0 is the mod 2 homology of Y

(see [10]):

H̃∗(Y ;F2) ∼= H∗(E0).
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There is an exact sequence (see Page 94 in [2]):

0→ EN
∂hN−→ · · ·

∂h1−→ E0 → 0.

Denote F0 = im ∂h1 , . . . , FN−2 = im ∂hN−1, FN−1 = im ∂hN . Then we have

the short exact sequences

0→ EN → FN−1 → 0

0→ FN−1 → EN−1 → FN−2 → 0

0→ FN−2 → EN−2 → FN−3 → 0

...

0→ F1 → E1 → F0 → 0.

With respect to the differential ∂v : Ep,q → Ep,q−1, we obtain long exact

sequences

· · · → Hq(FN−2)
i−→ Hq(EN−2)

j−→ Hq(FN−3)
ζ−→ Hq−1(FN−2)→ · · ·

...

· · · → Hq(F1)
i−→ Hq(E1)

j−→ Hq(F0)
ζ−→ Hq−1(F1)→ · · ·

This long exact sequence can be written as an exact couple where i has

bidegree (0, 0), j has bidegree (0,−1) and ζ has bidegree (−1, 1):

H∗(F∗)
(0, 0)

i
> H∗(E∗)

H∗(F∗).

j
(0,−1)

<

ζ
(−1, 1)

<

The resulting spectral sequence is the Mayer-Vietoris spectral sequence

{Er
p,q(X1 ∪ · · · ∪XN), dr} ⇒ Hp+q−1(E0) = H̃p+q−1(X;F2),

where the rth differential dr : Er
p,q → Er

p−r,q+r−1 is induced by i◦ ζ−r+1 ◦ j for

r ≥ 1. Note Ht(E0) =
⊕

p+q−1=tE
∞
p,q. The E1 term of this spectral sequence

is

E1 =
⊕

p+q−1=t

⊕
XI 6=∅

#I=p≥1

H̃q(XI ;F2). (15)
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For the rest of this paper, we write H̃(•) as H̃(•;F2) for short. Recall

from the introduction that the pointed simplicial subset ∆̃s of (X/G)∧s is

defined as follows. Set ∆̃0 = ∆̃1 := ∗ and:

∆̃s := {x1G∧· · ·∧xsG ∈ (X/G)∧s| ∃i = 1, . . . , s−1 (xi = xi+1 ∈ A)} (s ≥ 2.)

These simplicial sets ∆̃s have the following alternative inductive definition.

Proposition 5.1. The simplicial sets ∆̃s can be defined inductively by:

∆̃0 = ∆̃1 = ∗,

∆̃2 = ∆(A),

∆̃s =
(

∆̃s−1 ∧ (X/G)
)
∪
(
(X/G)∧s−2 ∧∆(A)

)
, s ≥ 3.

Proof. We have ∆̃0 = ∆̃1 = ∗ by definition. It is easy to check that ∆̃2 =

∆(A). We will show that

∆̃s =
(

∆̃s−1 ∧ (X/G)
)
∪
(
(X/G)∧s−1 ∧∆(A)

)
.

Let an element x1G ∧ · · · ∧ xsG of ∆̃s be given. There are two cases: either

xs−1 = xs ∈ A or xi = xi+1 ∈ A for some 1 ≤ i < s − 1. In the former case

x1G∧· · ·∧xsG belongs to (X/G)∧s−1∧∆(A). In the latter case x1G∧· · ·∧xsG
belongs to ∆̃s−1 ∧ (X/G). Hence in either case x1G ∧ · · · ∧ xsG belongs to

the union ∆̃s−1 ∧ (X/G) ∪ (X/G)∧s−1 ∧∆(A). This proves one inclusion.

The proof of the reverse inclusion is similar.

Corollary 5.2. For s ≥ 2, the simplicial set ∆̃s decomposes into the follow-

ing union:(
∆(A) ∧ (X/G)∧s−2

)
∪
(
(X/G) ∧∆(A) ∧ (X/G)∧s−3

)
∪· · ·∪

(
(X/G)∧s−2 ∧∆(A)

)
.

Before we prove this corollary, we introduce multi-index notation to ab-

breviate the expressions. Recall from the introduction that a multi-index

α = (α1, . . . , αd) is a (possibly empty) sequence of positive integers.
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Definition 5.3. For k ≥ 2, let ∆
k
(A) denote the pointed simplicial subset

of (X/G)∧k whose elements are aG ∧ · · · ∧ aG︸ ︷︷ ︸
k

for some a ∈ A. We set

∆
1
(A) := X/G. For a multi-index α = (α1, . . . , αd), denote by ∆

α
the

pointed simplicial set ∆
α1

(A) ∧ · · · ∧∆
αd

(A).

The pointed simplicial set ∆
α

is a subset of

(X/G)∧α1 ∧ · · · ∧ (X/G)∧αd = (X/G)∧α1+···+αd = (X/G)∧|α|.

Proof of Corollary 5.2. We proceed by induction. For s = 2, the RHS re-

duces to ∆(A). Indeed Proposition 5.1 says that ∆̃2 = ∆(A).

Suppose the above decomposition holds for some s ≥ 2. In the shorthand

notation, the induction hypothesis becomes

∆̃s = ∆
(2,1,...,1) ∪∆

(1,2,...,1) ∪ · · · ∪∆
(1,1...,2)

,

where all the multi-indices are of length s. Thus

∆̃s+1 =
(

∆̃s ∧ (X/G)
)
∪
(
(X/G)∧s ∧∆(A)

)
=
[(

∆
(2,1,...,1) ∪∆

(1,2,...,1) ∪ · · · ∪∆
(1,1...,2)

)
∧ (X/G)

]
∪∆

(1,1,...,1,2)

= ∆
(2,1,...,1,1) ∪∆

(1,2,...,1,1) ∪ · · · ∪∆
(1,1,...,2,1) ∪∆

(1,1,...,1,2)
.

Then we can use ∆
β ∧ (X/G) = ∆

(β,1)
in the last line. This proves the

induction step.

Recall from the introduction that a pointed simplicial map f : Y → Z

is mod 2 homologous to zero if the induced map on homology H̃∗(Y ;F2) →
H̃∗(Z;F2) is the zero map. Since we are using homology with coefficients

in F2 throughout, we throw out the reference to “mod 2”. Let f1, . . . , fk be

pointed simplicial maps. If fi is homologous to zero for some i = 1, . . . , k,

then the smash product f1 ∧ · · · ∧ fk is homologous to zero. This is because

the induced map (f1 ∧ · · · ∧ fk)∗ on homology is just the tensor product

(f1)∗ ⊗ · · · ⊗ (fk)∗.
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Proposition 5.4. Let α and β be multi-indices of length s. Suppose that the

reduced diagonal map of A is homologous to zero. If ∆
α

is a proper subset

of ∆
β
, then the inclusion ∆

α
↪→ ∆

β
is homologous to zero.

Proof. The higher reduced diagonal map dk : A → A∧k is given by a 7→
a ∧ · · · ∧ a︸ ︷︷ ︸

k

for a ∈ An. We first show that for k ≥ 2, the higher reduced diag-

onal map dk : A→ A∧k is homologous to zero. This map is a monomorphism

with image ∆
k
(A) ∼= A. We can write dk as a composite:

dk : : A→ A ∧ A 1A∧dk−1−−−−−→ A ∧∆
k−1

(A) ↪→ A∧k.

Since the first map is homologous to zero by assumption, dk is homologous

to zero.

Now we return to the proposition. First consider the case where ∆
α

is

just ∆
s
(A), that is the case where dimα = 1. Since ∆

α
is a proper subset of

∆
β

by assumption, e := dim β ≥ 2. There is a commutative diagram

∆
s
(A) ⊂ > ∆

β

A

ds ∼=
∧

de
> A ∧ · · · ∧ A︸ ︷︷ ︸

e

.

dβ1 ∧ · · · ∧ dβe
∧

Since e ≥ 2, the reduced diagonal map de is homologous to zero from what

we have shown above. Since A
ds−→ ∆

s
(A) is an isomorphism, the inclusion

∆
s
(A) ↪→ ∆

β
is homologous to zero.

Finally we prove the general case where dimα = d > 1. Since ∆
α

is

a proper subset of ∆
β

by assumption, we can decompose the multi-index

β into β = (γ(1), . . . , γ(d)) such that α1 = |γ(1)|, . . . , αd = |γ(d)|. Thus the

inclusion map ∆
α
↪→ ∆

β
decomposes into a smash product of the inclusions

∆
αj

(A) ↪→ ∆
γ(j)

:

∆
α
⊂ > ∆

β

∆
α1

(A) ∧ · · · ∧∆
αd

(A)

wwwww
> ∆

γ(1) ∧ · · · ∧∆
γ(d)

.

wwww
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Each inclusion ∆
αj

(A) ↪→ ∆
γ(j)

reduces to the case above. Hence it is homol-

ogous to zero. Thus after taking the smash product, the inclusion ∆
α
↪→ ∆

β

is homologous to zero. (Actually one j is enough.)

Example 5.5. If A = ΣY , then the reduced diagonal map of A is null-

homotopic and thus homologous to zero. The weak category of a space A

is the least k such that the higher reduced diagonal A → A ∧ · · · ∧ A︸ ︷︷ ︸
k

is

null-homotopic (see Definition 2.2 of [1]). For example, a non-contractible

suspension space has weak category 2. Berstein and Hilton [1] introduced

the notion of weak category to study the Lusternik-Schnirelmann category.

The Lusternik-Schnirelmann category of a topological space X is the smallest

integer number k such that there is an open covering {Ui}1≤i≤k of X with

the property that each inclusion map Ui ↪→ X is null-homotopic (see [6] and

the references therein.)

Proposition 5.6. The collections

{∆I | I ⊂ {(2, 1, . . . , 1), . . . , (1, 1 . . . , 2)},#I = p}

and {∆α| dimα = s − p} are equal for p = 1, . . . , s − 1. Here all the multi-

indices are of length s.

Proof. Recall that ∆I =
⋂
α∈I ∆

α
. We proceed by induction on p. The base

step p = 1 is obvious.

Let I = {γ(j1), . . . , γ(jp)} where j1 < · · · < jp and γ(j) is the multi-index

(1, . . . , 2, . . . , 1) with 2 as the jth entry. By the inductive hypothesis, there

exists some β of dimension s− (p− 1) = s− p+ 1 such that ∆J = ∆
β

where

J = {γ(j1), . . . , γ(jp−1)}. Recall that ∆J = ∆
γ(j1)∩· · ·∩∆

γ(jp−1)

. Since jp−1 is

the largest term in this intersection, we can decompose β into (β′, 1, . . . , 1︸ ︷︷ ︸
s−jp−1−1

).

Since β has dimension s− p+ 1, β′ has dimension

(s− p+ 1)− (s− jp−1 − 1) = jp−1 − p+ 2.

There are two cases: either jp = jp−1 + 1 or jp > jp−1 + 1.
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Consider the case where jp = jp−1 + 1. Then ∆I = ∆
δ

where, writing

e := dim β′,

δ = (β′1, . . . , β
′
e−1, β

′
e + 1, 1, . . . , 1︸ ︷︷ ︸

s−jp−1−2

).

Then

dim δ = e+ (s− jp−1 − 2) = (jp−1 − p+ 2) + (s− jp−1 − 2) = s− p,

which proves the induction step for this case.

Next consider the case where jp > jp−1 + 1. Recall β = (β′, 1, . . . , 1︸ ︷︷ ︸
s−jp−1−1

).

Then ∆I = ∆
ε
. Here ε is modified from β by contracting an adjacent pair of

1’s at the jp-th and (jp+1)-th places into a 2. In any case dim ε = dim β−1 =

s− p. This proves the induction step for this cases and completes the whole

proof.

Corollary 5.7. Let I ⊂ {(2, 1, . . . , 1), . . . , (1, 1 . . . , 2)} where the multi-

indices are of length s. For each j = 1, . . . ,#I, the inclusion map ∆I ↪→
∆∂jI is homologous to zero.

Recall that if I = {γ(1), . . . , γ(k)}, then ∆∂jI =
⋂
i 6=j ∆

γ(i)

is the intersec-

tion omitting the jth term.

Proof. Proposition 5.6 shows that there exists the multi-indices α and β

of length s such that ∆I = ∆
α

and ∆∂jI = ∆
β
. Since ∆I is a proper

subset of ∆∂jI , then Proposition 5.4 shows that the inclusion ∆I ↪→ ∆∂jI is

homologous to zero, as required.

Lemma 5.8. If the reduced diagonal map of A is homologous to zero, then the

Mayer-Vietoris spectral sequence of ∆̃s = ∆
(2,1,...,1) ∪ · · · ∪∆

(1,1...,2)
collapses

at the E1 term so that

H̃t(∆̃s) ∼=
⊕

#I+q−1=t
#I≥1

H̃q(∆I).

Here I ranges over the nonempty subsets of {(2, 1, . . . , 1), . . . , (1, 1 . . . , 2)}.
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Proof. The differential of the E1-term is given as the following composition:

d1
p,q : : E1

p,q

j−→ Hq(Fp−1)
i−→ E1

p−1,q.

The homology class of αIq in H̃q(∆I) is mapped to the homology class of

#I∑
j=1

(−1)jα∂jIq

in
⊕#I

j=1 H̃q(∆∂jI). Since the reduced diagonal is homologous to zero, Corol-

lary 5.7 tells us that each map H̃q(∆I) → H̃q(∆∂jI) is zero. Therefore

α
∂jI
q = 0 and

∑#I
j=1(−1)jα

∂jI
q = 0 so that the differential d1 is the zero map.

Therefore the Mayer-Vietoris spectral sequence collapses at the E1 term.

Using the expression (15) for the E1 term,

H̃t(∆̃s) ∼=
⊕

p+q−1=t

⊕
∆I 6=∅

#I=p≥1

H̃q(∆I) ∼=
⊕

#I+q−1=t
#I≥1

H̃q(∆I),

since no ∆I is empty.

Proof of Theorem 1.2. By the above Lemma implies the following expression

for the mod 2 Betti numbers:

b̃t(∆̃s) =
∑

#I+q−1=t
#I≥1

b̃q(∆I).

To simplify this expression, recall Proposition 5.6 which states that for p =

1, . . . , s − 1, the collections {∆I |#I = p} and {∆α| dimα = s − p} are

identical. Thus the above expression becomes:

b̃t(∆̃s) =
∑
|α|=s

(s−dimα)+q−1=t
dimα≤s−1

b̃q(∆
α
) =

∑
|α|=s

q−dimα=t−s+1
dimα≤s−1

b̃q(∆
α
). (16)

Notice if dimα = d, then

b̃q(∆
α
) =

∑
|ν|=q

b̃ν1(∆
α1

(A)) · · · b̃νd(∆
αd

(A)).
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Since ∆
1
(A) = X/G by convention and ∆

k
(A) is isomorphic to A for k =

2, 3, . . ., the homology of ∆̃s depends only on the homology of A and X/G.

There must exists constants cλ,µ depending on the multi-indices λ and µ such

that

b̃t(∆̃s) =
∑
λ,µ

cλ,µb̃λ(X/G)̃bµ(A).

Let I denote dimλ and J denote dimµ. Thus cλ,µ is the number of multi-

indices α which are permutations of (1, . . . , 1︸ ︷︷ ︸
I

, a1, . . . , aJ) for some integers

a1, . . . , aJ ≥ 2 that satisfy I+a1+· · ·+aJ = s. After making the substitution

bi = ai−2, this condition is equivalent to b1+· · ·+bJ = s−I−2J where each bi

is a nonnegative integer. There are
(

(s−I−2J)+(J−1)
J−1

)
=
(
s−I−J−1
J−1

)
nonnegative

integer solutions (b1, . . . , bJ) to this equation. Thus cλ,µ =
(
I+J
J

)(
s−I−J−1
J−1

)
.

Since q = |ν| = |λ| + |µ| and dim ν = dimλ + dimµ, so the condition

q − dimα = t − s + 1 in (16) is equivalent to |λ| + |µ| = t − s + dimλ +

dimµ + 1. Similarly, since dimα = dim ν, the condition dimα ≤ s − 1 in

(16) is equivalent to s ≥ dimλ+ dimµ+ 1. Thus we obtain the required

b̃t(∆̃s;F2) ∼=
∑

|λ|+|µ|=t−s+dimλ+dimµ+1
2≤dimλ+dimµ+1≤s

cλ,µb̃λ(X/G;F2)̃bµ(A;F2), (17)

Note that (17) is in fact a finite sum, since the condition dimλ+ dimµ+

1 ≤ s implies that |λ|+ |µ| = t− s+ (dimλ+ dimµ+ 1) ≤ t− s+ s = t. As

the length is bounded above, there can only be finitely many λ and µ that

satisfy dimλ+ dimµ+ 1 ≤ s.

6 Proof of Proposition 1.3

We illustrate the efficacy of the homology decompositions in Theorems 1.1

and 1.2 by computing all the mod 2 Betti numbers of Ω(X oG E
1
∞G) for an

example X = S2 ∪S1 S2. The discrete group G = C2 acts on the 2-sphere S2

antipodally with the equatorial circle S1 as the fixed set. The G-space X is

27



formed by taking two 2-spheres S2 with the antipodal action and identifying

their equatorial circles.

This pointed G-space is equivariantly homotopy equivalent to the follow-

ing. Take two pairs of discs (that is, four discs in total), and identify all the

boundary circles. Let G act on this union D2 ∪D2 ∪D2 ∪D2 by switching

the discs in each pair.

Proof of Proposition 1.3. Put a simplicial G-structure on the G-space. Write

the simplicial G-set as X = S2
1 ∪S1 S2

2 . The subscripts serve to distinguish

each of the two S2’s. For i = 1, 2, let D+
i denote the upper hemisphere of

S2
i and D−i the lower hemisphere. The antipodal G-action sends each upper

hemisphere to the lower hemisphere, so D−i = D+
i t. Then

X = (D+
1 ∪D+

2 ) ∪S1 (D−1 ∪D−2 )

= (D+
1 ∪D+

2 ) ∪S1 (D+
1 t ∪D+

2 t)

= (D+
1 ∪D+

2 ) ∪S1 (D+
1 ∪D+

2 )t

By Proposition 4.1, the orbit projection of X has a section. Thus Theorem

1.1 applies (here and below we suppress the coefficient F2 in the notation):

H̃n(Ω(X oGW
1
∞G)) =

∞⊕
s=1

H̃n

(
(S2)∧s/∆̃s

)
, (18)

Since S1 → S1 ∧ S1 ∼= S2 is mod 2 homologous to zero, Theorem 1.2 also

applies:

b̃n(∆̃s) =
∑
J≥1

∑
I=n−s+1

(
I + J

J

)(
t− 2I − J
J − 1

)
b̃2(S2) · · · b̃2(S2)︸ ︷︷ ︸

I

⊗ b̃1(S1) · · · b̃1(S1)︸ ︷︷ ︸
J

.
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Since b̃2(S2) = b̃1(S1) = 1, so the Betti number is

b̃n(∆̃s) =
∑
J≥1

∑
I=n−s+1

(
I + J

J

)(
n− 2I − J
J − 1

)
=
∑
J≥1

(
n− s+ 1 + J

J

)(
n− 2(n− s+ 1) + J

J − 1

)
=
∑
J≥1

(
n− s+ 1 + J

J

)(
2s− n− J − 2

J − 1

)

=
2s−3∑
J=1

(
n− s+ 1 + J

J

)(
2s− n− J − 2

J − 1

)
. (19)

Note that if the binomial coefficient
(

2s−n−J−2
J−1

)
is nonzero, then 2s − n −

J − 2 ≥ J − 1. That is, n ≤ 2s − 2J − 1 ≤ 2s − 3 since J ≥ 1. Thus

H̃n(∆̃s) = 0 if n > 2s− 3. Combining this observation with the fact that the

only nontrivial homology group of ((S2 ∪S1 S2t)/G)∧s = (S2)∧s = S2s is in

the 2s-th dimension, the short exact sequence ∆̃s → S2s → S2s/∆̃s induces

the following long exact sequence in homology:

· · · → 0 → H̃2s+2

(
S2s/∆̃s

)
→ 0 → 0 → H̃2s+1

(
S2s/∆̃s

)
→ 0 → H̃2s(S

2s) = F2 → H̃2s

(
S2s/∆̃s

)
→ 0 → 0 → H̃2s−1

(
S2s/∆̃s

)
→ 0 → 0 → H̃2s−2

(
S2s/∆̃s

)
→ H̃2s−3(∆̃s) → 0 → H̃2s−3

(
S2s/∆̃s

)
· · ·

→ H̃1(∆̃s) → 0 → H̃1

(
S2s/∆̃s

)
→ 0

Thus

H̃n

(
S2s/∆̃s

)
=



0, n ≥ 2s+ 1,

F2 n = 2s,

0, n = 2s− 1,

H̃n−1(∆̃s) n ≤ 2s− 2.
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For k ≥ 1, applying this formula to (18) gives

H̃2k(Ω(X oGW
1
∞G)) ∼= H̃2k

(
S2k/∆̃k

)
⊕

∞⊕
r=k+1

H̃2k

(
S2r/∆̃r

)
∼= F2 ⊕

∞⊕
r=k+1

H̃2k−1(∆̃r).

By (19), the even Betti number is:

b̃2k(Ω(X oGW
1
∞G)) = 1 +

∞∑
r=k+1

2r−3∑
J=1

(
2k − r + J

J

)(
2r − 2k − J − 1

J − 1

)

= 1 +
2k∑

r=k+1

2r−3∑
J=1

(
2k − r + J

J

)(
2r − 2k − J − 1

J − 1

)
.

Here the upper bound r ≤ 2k is obtained by observing that
(

2k−r+J
J

)
is

nonzero only if 2k − r + J ≥ J or r ≤ 2k.

Similarly we can compute the odd Betti number:

b̃2k+1(Ω(X oGW
1
∞G)) =

2k+1∑
r=k+2

r−k−1∑
J=1

(
2k − r + J + 1

J

)(
2r − 2k − J − 2

J − 1

)
for k ≥ 0.

Take geometric realization to obtain the required result.

Using these formulas, we compute by hand the Betti numbers in the

dimension 1 to 12 to be

{b̃n(Ω(X oG E
1
∞G);F2)}n=1,...,12 = {0, 2, 1, 5, 5, 14, 19, 42, 66, 131, 221, 417}.

A search with the Online Encyclopedia of Integer sequences [14] gives the

sequence A052547. For n ≥ 0, set an to be the coefficient of xn in the power

series expansion of (1− x)/(x3 − 2x2 − x+ 1). The Encyclopedia informs us

that, for 1 ≤ n ≤ 12:

an = b̃n(Ω(X oG E
1
∞G);F2)
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Note that for n = 0, the initial term a0 = 1 of sequence A052547 differs

from b̃0(Ω(X oG E
1
∞G);F2) = 0; this is because we are using the reduced

homology. This leads us to conjecture the following:

Conjecture 6.1. The reduced mod 2 Poincaré series of Ω(X oG E
1
∞G) is

∞∑
n=0

b̃n(Ω(X oG E
1
∞G);F2)xn =

1− x
x3 − 2x2 − x+ 1

− 1.

The sequence an has a geometric interpretation in terms diagonals lengths

in the regular heptagon with unit side length (see [12, 17].) These diagonal

lengths are related to the Chebyshev polynomials, which are important in

approximation theory.
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