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CLOSED FORMS FOR A MULTIGRAPH ENUMERATION

CHRISTIAN BROUDER, WILLIAM J. KEITH, AND ÂNGELA MESTRE

Abstract. We partially sum a recursion formula related to the Hopf alge-
braic generation of connected Feynman graphs in quantum field theory. One
of these sums is Sloane’s sequence A001865 in The On-Line Encyclopedia of
Integer Sequences. This formula is a particular case of a more general recur-
sion formula for a function counting inverses of automorphism group orders
for multigraphs.

1. Introduction

Denote by I(n, k) the sum of the inverses of the orders of the groups of auto-
morphisms of all the pairwise non-isomorphic connected multigraphs on n vertices
and cyclomatic number k. The third author, in joint work with Oeckl [3], used the
symmetric algebra on a vector space to derive a recursion formula for generating
certain linear combinations of tensors over the rational numbers. The tensors rep-
resent connected multigraphs (with loops and multiple edges allowed) on the same
number of vertices and on the same cyclomatic number. The formula produces
larger multigraphs from smaller ones by increasing by 1 the number of their ver-
tices or the number of their edges. The key feature is that the sum of the coefficients
of all the tensors representing isomorphic multigraphs is the inverse of the order of
their group of automorphisms. Note that, in this setting, the order of the group
of automorphisms of a multigraph consisting of an isolated vertex with s loops is
2ss!. Also, the order of the group of automorphisms of a multigraph consisting of
two vertices joined by r multiple edges is 2r!.

An interesting property of the formula of [3] is that of having an alternative
expression: see Proposition 15 of that paper. The latter consists of two terms. The
first one relates connected multigraphs on n vertices and cyclomatic number k with
all their connected subgraphs on n vertices and cyclomatic number k − 1. The
second term relates connected multigraphs on n vertices and cyclomatic number k
with all the pairs of their connected subgraphs with total number of vertices equal
to n and total cyclomatic number equal to k. This alternative formula then induces
a recurrence for I(n, k).

This note proves closed or at least simpler forms for the sequences of I(n, k) in
constant n or k when these are small. In constant k, these are

Theorem 1. For all n ≥ 1, I(n, 0) = nn−2

n! and I(n, 1) = 1
2

∑n
µ=1

nn−µ−1

(n−µ)! .
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The first formula is the sum of the inverses of the orders of the groups of auto-
morphisms of all the trees (up to isomorphism) on n vertices, which was pointed
out by Pólya [6].

In constant n, the answer is much more complete. We find several forms of the
generating function

Rn(x) =
∞
∑

k=0

I(n, k)xk,

including the two-variable generating function

Theorem 2.
∑∞

n=1 Rn(x)(sx)
n = x log

(

∑∞

n=0
sn

n! e
xn2/2

)

.

Define J(n, k) := 2k(n+k−1)!I(n, k) to normalize the sequences I(n, k). We find
that the sequences of J in constant n possess concise rational generating functions
whose coefficients are simple formulas. With the sum running over all compositions
of n, i.e. sequences of positive integers that sum to n, the general form is:

Theorem 3.

∑

k≥0

J(n, k)tk = −
1

(2t)n−1

n
∑

m=1

(−1)m

m

∑

(n1,...,nm)⊢n

1

n1! . . . nm!

1

1− (n2
1 + · · ·+ n2

m)t
.

There are 2n−1 compositions of n, but the number of distinct sums of squares
of parts among these compositions is much smaller, meaning that the number of
factors in each generating function is much smaller than might have been expected
from the above theorem. Hence a more efficient method of producing a generating
function and explicit formula for a given n might be desired. There is a fairly simple
routine for calculating explicit formulas and generating functions, which we give in
the last section. Values for n = 1 through 4 are given in the table in the theorem
below:

Theorem 4. For k ≥ 0, the formulas and generating functions for J(n, k), 1 ≤
n ≤ 4, are as given in the following table.

J(n, k) Formula Generating function

J(1, k) 1
∑∞

k=0 J(1, k)x
k = 1

1−x

J(2, k) 4k − 2k−1 1/2
(1−2x)(1−4x)

J(3, k)
(

−25
8

)

5k +
(

3
4

)

3k +
(

27
8

)

9k 1
(1−3x)(1−5x)(1−9x)

J(4, k)
(

64
3

)

16k +
(

27
2

)

6k −
(

250
12

)

10k − (2)4k − (8)8k 4−34x
(1−4x)(1−6x)(1−8x)(1−10x)(1−16x)

In the next section of this note, we prove Theorem 1. When k = 0, we use
Dziobek’s recurrence [1] for Cayley’s formula to show that J(n, 0) = nn−3. When
k = 1, we use an identity related to Abel’s theorem to prove that J(n, 1) =

n!
∑n

µ=1
nn−µ−1

(n−µ)! , which is Sloane’s sequence A001865 in [5]. In Section 3 we prove

Theorem 2 by solving the differential recursive equation. We also give a general ex-
pression for J(n, k). In Section 4 we consider Rn from another angle, and re-prove
some of the expansions with a more hands-on approach that displays different un-
derlying combinatorics.
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2. Formulas in constant k

We use the formula of Proposition 15 of [3] to give a recursive definition for our
sequences, which in Theorem 1 are respectively A007830 and A001865 in [5].

In the following, for all n ≥ 1 and k ≥ 0 by I(n, k) we denote the sum of
the inverses of the orders of the groups of automorphisms of all the pairwise non-
isomorphic connected multigraphs on n vertices and cyclomatic number k. By
the formula of Proposition 15 of [3] the numbers I(n, k) are defined recursively as
follows. With boundary condition

I(n, k) = 0 for k < 0 and/or n < 1 , and I(1, 0) = 1

then for all n ≥ 1 and k ≥ 0 we have

(1) I(n, k) =
1

2(n+ k − 1)
×



n2I(n, k − 1) +

n−1
∑

i=1

k
∑

j=0

i(n− i)I(i, j)I(n− i, k − j)



 .

For convenience of calculation, we define

(2) J(n, k) := 2k(n+ k − 1)!I(n, k) .

Then, for all n ≥ 1 and k ≥ 0 the recursion for J(n, k) is

(3) J(n, k) = n2J(n, k − 1)+

1

2

n−1
∑

i=1

k
∑

j=0

(

n+ k − 2

i+ j − 1

)

i(n− i)J(i, j)J(n− i, k − j) .

The same boundary conditions hold.

We now prove Theorem 1.

Theorem 1 (restated). For all n ≥ 1:

(a) J(n, 0) = nn−3 , or equivalently, I(n, 0) = nn−2

n! .

(b) J(n, 1) = n!
∑n

µ=1
nn−µ−1

(n−µ)! , or equivalently, I(n, 1) = 1
2

∑n
µ=1

nµ−2

(µ−1)! .

Proof. To prove formula (a) note that the recurrence for J(n, 0) reads as follows:

J(1, 0) = 1 ,

J(n, 0) =
1

2n(n− 1)

n−1
∑

i=1

(

n

i

)

i2(n− i)2J(i, 0)J(n− i, 0) .(4)

For T (n) := nJ(n, 0) we obtain Dziobek’s recurrence [1] for Cayley’s formula:

T (1) = 1 ,

T (n) =
1

2(n− 1)

n−1
∑

i=1

(

n

i

)

i(n− i)T (i)T (n− i) .(5)
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This is thus solved by T (n) = nn−2 which is the sequence A000272 in [5]. There-
fore, we have J(n, 0) = nn−3.

To prove (b) we first recall the following Abel-type identity [4, p. 93]:

n(n+ y)n−1 =

n
∑

i=1

(

n

i

)

i(−x+ 1)(−x+ i)i−2(x+ y + n− i)n−i.

For x = 0 and y = j the above formula specializes to

(6) n(n+ j)n−1 =

n
∑

i=1

(

n

i

)

ii−1(n+ j − i)n−i.

We now proceed by induction on n. The result clearly holds for n = 1. We
assume the result to hold for all t in 0 < t < n. Then

J(n, 1) = nn−1 +
1

2

n−1
∑

i=1

(

(

n− 1

i− 1

)

ii−2(n− i)!

n−i
∑

µ=1

(n− i)n−i−µ

(n− i− µ)!

+

(

n− 1

i

)

(n− i)n−i−2i!

i
∑

µ=1

ii−µ

(i − µ)!

)

= nn−1 +
1

2n

n−1
∑

i=1

(

n

i

)

(

ii−1(n− i)!
n−i
∑

µ=1

(n− i)n−i−µ

(n− i− µ)!

+ (n− i)n−i−1i!

i
∑

µ=1

ii−µ

(i − µ)!

)

= nn−1 +
1

n

n−1
∑

µ=1

n−µ
∑

i=1

(

n

i

)

ii−1(n− i)!
(n− i)n−i−µ

(n− i− µ)!

= nn−1 +
1

n
n!

n−1
∑

µ=1

n−µ
∑

i=1

ii−1

i!

(n− i)n−i−µ

(n− i− µ)!
.

Now, formula (6) yields for n = m+ µ:

m
∑

i=1

ii−1

i!

(m+ µ− i)m−i

(m− i)!
=

1

m!

m
∑

i=1

(

m

i

)

ii−1(m+ µ− i)m−i =
m(m+ µ)m−1

m!
.

Substituting this into the previous line we obtain

J(n, 1) = nn−1 +
1

n
n!

n−1
∑

µ=1

(n− µ)nn−µ−1

(n− µ)!
= nn−1 + n!

n−1
∑

µ=1

nn−µ−2

(n− µ− 1)!

= n!

n−1
∑

µ=0

nn−µ−2

(n− µ− 1)!
= n!

n
∑

µ=1

nn−µ−1

(n− µ)!

as desired.
�
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A natural question is whether the recurrence can be similarly simplified for k > 1.
Attempts with Abel-type identities of greater generality did not yield results that
we considered useful, but the quest does not seem theoretically implausible; the
authors would be interested in any observations that readers might be able to
provide.

3. Formulas in constant n

3.1. Generating functions. Define the generating function for the sequence of
I(n, k) with n constant:

Rn(x) =

∞
∑

k=0

I(n, k)xk.(7)

In particular,

R1(x) =

∞
∑

k=0

I(1, k)xk =

∞
∑

k=0

J(1, k)

2kk!
xk = ex/2,(8)

because J(1, k) = 1 for all k.
We now wish to prove

Theorem 2 (restated).

∞
∑

n=1

Rn(x)(sx)
n = x log

(

∞
∑

n=0

sn

n!
exn

2/2

)

.

Proof. If we multiply each I(n, k) by xk and sum, the recursive equation (1) for
I(n, k) becomes a differential recursive equation for Rn:

2(n− 1)Rn(x) + 2xR′
n(x) = n2xRn(x) +

n−1
∑

i=1

i(n− i)Ri(x)Rn−i(x),

with boundary conditions Rn(0) = I(n, 0) = nn−2/n!, Rn(x) = 0 for n < 1.
To simplify, apply the change of variable

Rn(x) = Pn(e
x)

enx/2

n!xn−1
.

The inverse relation

Pn(z) = n!(log z)n−1z−n/2Rn(log z)

gives the boundary condition Pn(1) = δn,1.
The differential recursive equation satisfied by Pn(z) is

2zP ′
n(z) = n(n− 1)Pn(z) +

n−1
∑

i=1

i(n− i)

(

n

i

)

Pi(z)Pn−i(z).
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Observe that P1(z) = 1, and if Pi(z) is polynomial for all 1 ≤ i < n, then Pn(z)
satisfying this recurrence is polynomial as well. The first polynomials are

P1(z) = 1,

P2(z) = −1 + z,

P3(z) = 2− 3z + z3,

P4(z) = −6 + 12z − 3z2 − 4z3 + z6,

P5(z) = 24− 60z + 30z2 + 20z3 − 10z4 − 5z6 + z10,

P6(z) = −120 + 360z − 270z2 − 90z3 + 120z4 + 20z6 − 15z7 − 6z10 + z15,

P7(z) = 720− 2520z + 2520z2 + 210z3 − 1260z4 + 210z5 − 70z6 + 210z7 − 35z9

+42z10 − 21z11 − 7z15 + z21.

The equation for the generating function

f(y, z) =

∞
∑

n=1

Pn(z)
yn

n!

is

2z
∂f

∂z
= y2

∂2f

∂y2
+
(

y
∂f

∂y

)2

,

with the boundary condition

f(y, 1) =

∞
∑

n=1

Pn(1)
yn

n!
= y.

The non-linear term is eliminated by the change of variable f = log g. The
equation for g is therefore linear:

2z
∂g

∂z
= y2

∂2g

∂y2
,

with the boundary condition g(y, 1) = ef(y,1) = ey. A family of solutions of this
equation is given by

∞
∑

n=0

gn
ynzn(n−1)/2

n!
.

Moreover, the boundary condition g(y, 1) = ey implies gn = 1 for all n:

g(y, z) =

∞
∑

n=0

ynzn(n−1)/2

n!
.

Finally,

f(y, z) =

∞
∑

n=1

Pn(z)
yn

n!
= log

(

∞
∑

n=0

ynzn(n−1)/2

n!

)

.

Note that if we set z = (1 + t), we obtain

f(y, t) = log
(

∞
∑

n=0

yn(1 + t)n(n−1)/2

n!

)

=

∞
∑

n=0

Cn(t)
yn

n!
,
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which is the well-known exponential generating function for Cn(t) =
∑

G te(G),
where the sum is over all connected graphs G on the set {1, 2, . . . , n} and e(G) is
the number of edges of G. (See [2] for this formula and related results.) Thus,
Pn(z) = Cn(z − 1).

Substituting ex for z, we obtain a generating function for Rn:

f(y, ex) =

∞
∑

n=1

Pn(e
x)

yn

n!
=

1

x

∞
∑

n=1

Rn(x)(xye
−x/2)n.

The generating function for Rn(x) becomes

∞
∑

n=1

Rn(x)s
n = xf(sex/2/x, ex) = x log

(

∞
∑

n=0

(s/x)n

n!
exn

2/2
)

.

However, this expression is highly singular in x and does not provide a generating
function for Rn. The alternative expression

xh(x, s) =

∞
∑

n=1

Rn(x)(sx)
n = xf(sex/2, ex) = x log

(

∞
∑

n=0

sn

n!
exn

2/2
)

,

is not singular and generates Rn, in the sense that Rn(x) is x
−n times the coefficient

of sn in the expansion of xh(x, s). �

The extraction described yields

Rn(x) = −x1−n
n
∑

m=1

(−1)m

m

∑

n1+···+nm=n

ex(n
2
1+···+n2

m)/2

n1! . . . nm!
,

where all ni ≥ 1.

3.2. Explicit forms for J(n, k). We now wish to show Theorem 3 by isolating
explicit generating functions for J(n, k) individually. We can proceed as follows:

xh(x, s) =

∞
∑

n=1

∞
∑

k=0

I(n, k)snxn+k.

Now replace x → 2x, s → s/2 to obtain

2xh(2x, s/2) =

∞
∑

n=1

∞
∑

k=0

2kI(n, k)snxn+k.

We define β(s, t) = 2
∫∞

0 dxe−xh(2xt, s/2) to get

β(s,−t) = 2

∫ ∞

0

dxe−xh(−2xt, s/2) =

∞
∑

n=1

∞
∑

k=0

∫ ∞

0

dxe−x2kI(n, k)sn(−xt)n+k−1

=

∞
∑

n=1

∞
∑

k=0

2k(n+ k − 1)!I(n, k)sn(−t)n+k−1,

where we used
∫∞

0 e−xxpdx = p!. Therefore,

β(s, t) =

∞
∑

n=1

∞
∑

k=0

J(n, k)sntn+k−1 =

∞
∑

n=1

Zn(t)s
ntn−1,
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is a generating function for J(n, k) and this equation defines Zn(t) =
∑∞

k=0 J(n, k)t
k.

We calculate

β(s,−t) = 2

∫ ∞

0

dxe−x log
(

∞
∑

n=0

(s/2)n

n!
e−n2xt

)

= 2

∫ 1

0

dλ log
(

∞
∑

n=0

(s/2)n

n!
λn2t

)

,

where we have put λ = e−x. This gives

β(s,−t) = −2
n
∑

m=1

(−1)m

m

∑

n1,...,nm

(s/2)n1+···+nm

n1! . . . nm!

∫ 1

0

dλλt(n2
1+···+n2

m).

Thus,

β(s, t) = −2

n
∑

m=1

(−1)m

m

∑

n1,...,nm

(s/2)n1+···+nm

n1! . . . nm!

1

1− (n2
1 + · · ·+ n2

m)t
.

The polynomials Zn(t) can be calculated by summing over the compositions of
n, proving Theorem 3:

Zn(t) = −
1

(2t)n−1

n
∑

m=1

(−1)m

m

∑

n1+···+nm=n

1

n1! . . . nm!

1

1− (n2
1 + · · ·+ n2

m)t
.

�

The number of distinct sums of squares of the parts of partitions or compositions
of n is the OEIS sequence A069999; it grows like n2/2 [7]. (We remark that the
first case where a sum appears twice is n = 6.) The first Zn(t) =

∑

k≥0 J(n, k)t
k

are:

Z1(t) =
1

1− t
,

Z2(t) =
1/2

(1− 2t)(1− 4t)
,

Z3(t) =
1

(1− 3t)(1− 5t)(1− 9t)
,

Z4(t) =
4− 34t

(1− 4t)(1− 6t)(1− 8t)(1− 10t)(1− 16t)
,

Z5(t) =
25− 606t+ 3557t2

(1− 5t)(1− 7t)(1− 9t)(1− 11t)(1− 13t)(1− 17t)(1− 25t)
,

Z6(t) =
24(9− 451t+ 7292t2 − 37860t3)

(1− 6t)(1− 8t)(1− 10t)(1− 12t)(1− 14t)(1− 18t)(1− 20t)(1− 26t)(1− 36t)
.

4. Formulas in constant n: the hands-on approach

In this section we are interested in re-deriving the Zn(t) more directly, and
finding the closed formulas to prove Theorem 4. Using strictly discrete mathematics
instead of the generating function, we seek additional insight into the combinatorial
structure of the sequences J(n, k).

The case J(1, k) = 1 for k > 0 is trivial from the recursion.
For n = 2, the recursion (3) becomes
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J(2, k) = 4J(2, k − 1) +
1

2

k
∑

j=0

(

k

j

)

J(1, j)J(1, k − j)

= 4J(2, k − 1) +
1

2

k
∑

j=0

(

k

j

)

= 4J(2, k − 1) + 2k−1.

We now note that 4(4k−1− 2k−2)+ 2k−1 = 4k − 2k+2k−1 = 4k − 2k−1 and since
the statement holds for k = 0, the claim on the values follows inductively.

That the value 4k−2k−1 is the coefficient of xk in 1
2(1−2x)(1−4x) can be seen from

expansion: the coefficient is

1

2

(

4k + 4k−12 + 4k−222 + · · ·+ 2k
)

=
1

2
4k
(

1 +
1

2
+

1

4
+ · · ·+

1

2k

)

=
1

2
4k
(

2−
1

2k

)

= 4k − 2k−1.

For n = 3, the recursion (3) gives

(9) J(3, k) = 9J(3, k − 1)+

1

2
· 2

k
∑

j=0

[(

k + 1

j

)

J(1, j)J(2, k − j) +

(

k + 1

j + 1

)

J(2, j)J(1, k − j)

]

= 9J(3, k − 1) +

k
∑

j=0

[(

k + 1

j

)

(

4k−j − 2k−j−1
)

+

(

k + 1

j + 1

)

(

4j − 2j−1
)

]

= 9J(3, k − 1) + 2

k
∑

j=0

(

k + 1

j + 1

)

(

4j − 2j−1
)

= 9J(3, k − 1) +
1

2

k+1
∑

i=0

(

k + 1

i

)

4i −
1

2

k+1
∑

i=0

(

k + 1

i

)

2i

= 9J(3, k − 1) +
1

2
(1 + 4)k+1 −

1

2
(1 + 2)k+1

= 9J(3, k − 1) +
1

2
5k+1 −

1

2
3k+1.

Let us pause to note the process here. We added a term to the sum, namely the
i = 0 term, which is the j = −1 case of 4j − 2j−1. However, this term is 0. We
then complete the binomial sum, changing the 4 to a 5, and the 2 to a 3.

Iterating the recursion with the form thus obtained, we obtain the closed formula
for J(3, k):
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J(3, k) = 9J(3, k − 1) +
1

2
5k+1 −

1

2
3k+1

= 92J(3, k − 2) + 9 ·
1

2

(

5k − 3k
)

+
1

2

(

5k+1 − 3k+1
)

= · · · = 9kJ(3, 0) +
1

2

(

9k−1
(

52 − 32
)

+ · · ·+
(

5k+1 − 3k+1
))

=
1

2
9k+1 ·

(

1

9

(

51 − 31
)

+ · · ·+ 9−(k+1)
(

5k+1 − 3k+1
)

)

=
1

2
9k+1

[

k+1
∑

i=1

(

5

9

)i

−

(

3

9

)i
]

=

(

81

24

)

9k +

(

−75

24

)

5k +

(

18

24

)

3k.

To show that the generating function claim is true, we factor the last term of
equation (9):

J(3, k) = 9J(3, k − 1) +
1

2
5k+1 −

1

2
3k+1

= 9J(3, k − 1) +
1

2
(5− 3)

k
∑

i=0

5k−i3i

= 9J(3, k − 1) +
k
∑

i=0

5k−i3i.

The same recurrence and initial condition is satisfied by the coefficient of xk

in 1
(1−3x)(1−5x)(1−9x) , as we can see by noting that this coefficient is the complete

homogeneous symmetric polynomial in 3, 5, and 9:

[

xk
] 1

(1− 3x)(1 − 5x)(1− 9x)
=

∑

a+b+c=k
a,b,c∈N

9a5b3c

= 9
∑

a+b+c=k−1

a,b,c∈N

9a5b3c +

k
∑

i=0

5k−i3i .

where
[

xk
]

f(x) denotes the coefficient of xk in f(x).
The n = 4 case is proved similarly. Begin by expanding the defining recursion for

J(n, k) using the formulas for J(1, k) through J(3, k). Gather symmetric expansions
with the same binomial coefficients.
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J(4, k) = 16J(4, k − 1)+

k+2
∑

j=2

(

k + 2

j

)((

81

8

)

9j−2 +

(

−75

8

)

5j−2 +

(

18

8

)

3j−2

)

+

2

k+1
∑

j=1

(

k + 2

j

)

(

4j−1 − 2j−2
) (

4k−j+1 − 2k−j
)

.

Now complete the sums so that the bounds are
∑k+2

j=0 . The crucial observations

at this point are again that 4i−2i−1 = 0 for i = −1, and likewise
(

81
8

)

9i+
(

−75
8

)

5i+
(

18
8

)

3i = 0 for i ∈ {−1,−2}, and so the terms to be added are all 0.
Using the binomial theorem to sum, we find

J(4, k) = 16J(4, k − 1) +

(

25

2

)

10k +

(

−45

2

)

6k + (6) 4k + (8) 8k.

At this point the desired generating function can be shown to have coefficients
given by the same recursion. By iterating the recursion and summing the truncated
geometric series, we obtain the formula given in Theorem 4.

�

As expected, the values for the formula for J(4, k) are indeed zero at k ∈
{−1,−2,−3}, and so a similar neat expansion holds for J(5, k). The process of
completing the binomial, summing with the binomial formula, and then iterating
the recursion and summing the geometric series will provide explicit formulas easily
as long as this property holds.

From the expansion of Zn(t) at the end of the previous section it is clear that the
sequences J(n, ·) will all be tidy exponential sums with at most Fibonacci-many
terms, possibly fewer as overlaps occur. If these sums are in fact zero in just exactly
the necessary domain outside of the original meaningful domain of the indices, we
think that this itself would be an interesting observation on the behavior of the
combinatorics of the problem.
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[6] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische
Verbindungen. Acta Math., 68:145–254, 1937.

[7] D. Savitt and R. Stanley. A note on the symmetric powers of the standard representation of
Sn. Elec. J. Comb. 7 (2000), #R6.

http://oeis.org/


12 BROUDER, KEITH, AND MESTRE
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