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1 Introduction

An animal on a lattice is a finite and connected set of vertices. The enumeration
of animals (up to a translation) is a longstanding problem in statistical physics
and combinatorics. The problem, however, is extremely difficult, and little
progress has been made [13, 11]. A more realistic goal, therefore, is to enumerate
natural subclasses of animals.

The class of directed animals is one of the most classical of these subclasses.
Let L be a directed lattice and let s be a vertex of L. A finite set A of vertices
of L is a directed animal of source s if, for every vertex t in A, there exists a
directed path from s to t visiting only vertices in A. The vertices in A are called
the sites of A; the area of A is its number of sites. Directed animals have been
enumerated in a variety of lattices; let us cite, non-exhaustively, the square and
triangular lattices [8, 10, 2], the lattices Ln for n ≥ 1 [4, 7], and the “strange” or
n-decorated lattices [6, 3] (Figure 1). Unsolved lattices include, most notably,
the honeycomb lattice [12].

The class of multi-directed animals is a superclass of directed animals in-
troduced by Bousquet-Mélou and Rechnitzer [5] on the directed square and
triangular lattices; this was based on initial work by Klarner [14]. However,
their definition is not as nice as that of the directed animals.

The goal of this paper is to enumerate directed and multi-directed on a
new lattice. We denote by N the directed lattice with vertices Z

2 and arcs
{ , , , , } (Figure 1, below right). In physicists’ terms, this is the square
lattice with added next nearest neighbor bonds. It can be seen as a general-
ization of Bousquet-Mélou and Conway’s lattice L3 (which has arcs { , , })
[4].

Several techniques have been used to enumerate directed animals on the
various lattices. Among them are direct bijections with other combinatorial
objects [10], comparison with gas models [8, 3, 15, 1] and the use of Viennot’s
theory of heaps of pieces [17, 2, 7, 5, 18]. In this paper, we use the last method
and define heaps of polymers, which we show to be in bijection with directed
animals on the lattice N .

The paper is organised as follows. In Section 2, we define heaps of polymers
and show their links with directed and multi-directed animals on the lattice N .
In Section 3, we use these objects to enumerate directed animals and derive
asymptotic results. Finally, in Section 4, we enumerate multi-directed animals;
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Figure 1: Directed animals on a selection of lattices. Above left: the square
lattice. Above right: the triangular lattice. Below left: the lattice L3. Below
right: the lattice N .

we also give asymptotic enumeration and show that the generating function of
multi-directed animals is not D-finite.

2 Animals on the lattice N and heaps of poly-

mers

Remark. In the introduction, we defined directed animals as a set of sites of a
lattice. In this section, for legibility’s sake, we choose to represent directed ani-
mals as polyominoes, that is, as sets of cells of the dual square lattice (Figures 3
and 4).

2.1 Definitions

Let A be an animal on the lattice N defined in the introduction. We call
segment of A a maximal set of horizontally consecutive sites. The segments of
the animal A are the strongly connected components of A in the lattice N . As
such, they play a prominent role in our study.

We now define heaps of polymers, which play the same role in the lattice N
as heaps of dimers do in the square and triangular lattices [17, 2].

Definition 1. We call polymer a closed real interval of the form [i, j], where i
and j are integers such that j > i. The integer j − i is the length of the polymer.
Two polymers are called concurrent if they intersect, even by a point.

A heap of polymers is a finite sequence of polymers, considered up to com-
mutation of non-concurrent polymers. The total length of a heap is the sum of
the lengths of the polymers composing it.

More information on heaps of pieces in general can be found in [17]. We
recall below some elementary definitions that we use in this paper.
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Let H be a heap of polymers and α be a polymer of H . The polymer α is
minimal if H can be written αH ′; it is maximal if H can be written H ′α.

Graphically, a heap is built by dropping polymers in succession; a polymer
either falls on the ground or on another polymer concurrent to it (Figure 2).
The polymers that lie on the ground are exactly the minimal polymers of the
heap.

Finally, the set of heaps of polymers is equipped with a product. Let H1 and
H2 be two heaps. The product H1H2 is obtained by dropping H2 on top of H1.
Let H be a heap and α a polymer of H ; there exists a unique factorisation
H = H1H2, where H2 is a pyramid with minimal polymer α. We call it the
factorisation obtained by pushing α. Both operations are illustrated in Figure 2.

α

α

Figure 2: Left: a heap of polymers with a distinguished polymer α. Right: the
two heaps obtained by pushing the polymer α. The product of these two heaps
is equal to the heap on the left.

Definition 2. Let A be an animal on the lattice N . If B is a segment of A,
say B = {(i, k), . . . , (j − 1, k)}, we call projection of the segment B the polymer
[i, j] and height of B the integer k. We call projection of A, and we denote by
π(A), the heap built as the sequence of the projections of all segments of A in
increasing height order.

Examples are shown in Figures 3 and 4.
As the segments of A are the maximal sets of adjacent sites, the above

definition entails that the projections of two segments of A at the same height
cannot be concurrent. The projections of segments at the same height thus
commute, which ensures that the projection π(A) is well-defined. Moreover, the
projection of a segment composed of ℓ sites is a segment of length ℓ. This means
that the area of A is equal to the total length of the heap π(A).

2.2 Directed animals and pyramids of polymers

Let A be an animal; we say that a site t of A is connected to another site s if
there exists a directed path from s to t visiting only sites of A. In particular,
all the sites of a given segment are connected to each other.

We say that an animal A is directed if it is directed of source s, for some
site s of A. The source s is not unique; it may be any site of the bottommost
segment of A (see Figure 3, left). By convention, we call source of A the leftmost
site of the bottommost segment.

A heap of polymers is called a pyramid if it has a unique minimal polymer.
Definition 2 implies that two segments that are connected in the lattice N have
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concurrent projections; this entails that the restriction of the projection π is a
bijection between directed animals and pyramids of polymers (Figure 3). This
bijection works identically to the classical bijection between directed animals on
the square lattice and strict pyramids of dimers [17, 2]. We use this bijection to
enumerate directed animals in Section 3.

π

Figure 3: Left: a directed animal on the lattice N with its source circled.
Right: its projection, obtained by replacing each segment consisting of ℓ sites
by a polymer of length ℓ. The projection has has a unique minimal polymer,
i.e. is a pyramid; moreover, replacing back every polymer by a segment recovers
the animal.

2.3 Multi-directed animals and connected heaps of poly-

mers

We now define another class of animals, called multi-directed animals, which
generalize directed animals. This is inspired by the work of Bousquet-Mélou and
Rechnitzer [5] on the directed square and triangular lattices, but our definition
is slightly different. This is discussed further below.

Let A be an animal. For any abscissa i, we denote by b(i) the ordinate of
the bottommost site of A at abscissa i (or b(i) = +∞ if there is no site of A
at abscissa i). We call source of A a site that realizes a local minimum of b
and keystone of A a site that realizes a local maximum. By convention, in case
several consecutive sites realize a minimum or maximum, the source or keystone
is the leftmost one (Figure 4, left). Like the choice of the source of a directed
animal, this is a purely conventional choice that does not alter the definition
below.

Definition 3. Let A be an animal. The animal A is said multi-directed if it
satisfies the two conditions:

• for every site t of A, there exists a source s such that t is connected to s;

• for every keystone t of A, there exists two sources sℓ and sr, to the left and
to the right of t respectively, such that t is connected to both sℓ and sr.
Moreover, the directed paths connecting t to sℓ and sr do not go through
a keystone at the same height as t.

As a directed animal has only one source and no keystone, every directed
animal is multi-directed. A multi-directed animal is shown in Figure 4 (left).

We now desribe a bijection between multi-directed animals and certain heaps
of polymers. We say that a heap is connected if its projection to the x-axis is a
real interval, like the one in Figure 4 (right).
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sℓ

sr

t
π

Figure 4: Left: a multi-directed animal with four sources (circled) and three
keystones (boxed). The paths connecting one keystone, denoted by t, to the
sources sℓ and sr are shown. Right: the projection of the animal, which is a
connected heap of polymers with four minimal pieces.

Proposition 4. Let n ≥ 1. The projection π induces a bijection between multi-
directed animals of area n and connected heaps of polymers of total length n,
both taken up to a translation.

Proof. Let A be a multi-directed animal. Since A is an animal, the projec-
tion π(A) is a connected heap (Figure 4). We therefore need to prove that for
any connected heap H , there exists a unique multi-directed animal A such that
π(A) = H .

Let us call pre-animal a finite set of sites with a connected projection. We
define the sources and keystones of a pre-animal in the same manner as for
an animal. A pre-animal is called multi-directed if it satisfies the conditions of
Definition 3.

We prove by induction the following two statements: for every connected
heap H , there exists a unique (up to a vertical translation) multi-directed pre-
animal A such that π(A) = H ; moreover, the pre-animal A is an animal.

Let H be a connected heap. If H is reduced to a single polymer, the result
is obvious. Otherwise, let β be a maximal polymer of H . Write H = H ′β and
let H1, . . . , Hk be the connected components of the heap H ′, from left to right.
Assume that A is a multi-directed pre-animal such that π(A) = H . The pre-
animal A is thus composed of a segment B such that π(B) = β and pre-animals
A1, . . . , Ak, the respective projections of which are H1, . . . , Hk.

As the polymer β is maximal, no directed path visiting a site of B can
reach a site not in B. Moreover, all the sources and keystones of the pre-
animals A1, . . . , Ak are also sources and keystones of the pre-animal A. As A
is multi-directed, this forces all the Ai’s to be multi-directed. By the induction
hypothesis, all the Ai’s are thus uniquely determined up to a vertical translation
and are multi-directed animals. We now distinguish two cases.

• We have k = 1. By the first condition of Definition 3, the segment B
is connected to a source of A1. This forces A1 to touch B and uniquely
determines the pre-animal A; moreover, this means that A is an animal.

• We have k ≥ 2. In this case, the segment B contains k − 1 keystones,
located between the animals Ai and Ai+1 for i = 1, . . . , k − 1. By the
second condition of Definition 3, every animal Ai, for i = 1, . . . , k, contains
a source si such that B is connected to si. This forces the animals Ai to
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touch the segment B. The pre-animal A is thus uniquely determined and
is an animal.

The proof is illustrated in Figure 5.

β
B

A1

A2

A3

Figure 5: Left: a connected heap of polymers H with one distinguished maximal
polymer β. Right: the multi-directed animal A such that π(A) = H . It is built
by recursively building the animals A1, A2 and A3 and vertically translate them
so that they touch the segment B.

The definition of multi-directed animals can be used in the directed square
and triangular lattices; moreover, the proof of Proposition 4 also works on con-
nected heaps of dimers. Since Bousquet-Mélou and Rechnitzer’s multi-directed
animals are also in bijection with connected heaps [5], this means that they
have the same enumeration. Our definition of multi-directed animals has the
advantage of being more intrinsic; moreover, it has a vertical symmetry, which
was not the case with Bousquet-Mélou and Rechnitzer’s.

3 Enumeration of directed animals

3.1 Exact enumeration

Definition 5. Let A be a directed animal. We say that A has left half-width i,
and we write lw(A) = i, if the leftmost sites of A are at the abscissa −i.

A directed animal of left half-width 0 is called a half-animal. A pyramid of
polymers is called a half-pyramid if it has no polymers to the left of its minimal
polymer.

This definition is based on the convention that the leftmost site of the bottom
segment of A has abscissa 0 (see above).

Theorem 6. The generating function of half-animals satisfies the equation:

S(t) = t
(

1 + 2S(t)
)(

1 + S(t)
)

. (1)

The generating function of directed animals taking into account the left half-
width is:

D(t, u) = S(t) +
uS(t)2

1 − uR(t)
, (2)
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where the series R(t) is:

R(t) = S(t) + t
(

1 + S(t)
)

. (3)

In particular, the generating functions of half-animals and animals without re-
gard for the left half-width are:

S(t) =
1 − 3t −

√
1 − 6t + t2

4t
; (4)

D(t, 1) =
1

4

(

1 + t√
1 − 6t + t2

− 1

)

. (5)

Interestingly, the generating function S(t) is already known in combinatorics.
Its coefficients are the little Schröder numbers (A001003 in the OEIS [16]).
This phenomenon is remindful of the triangular lattice, where the half-animals
are enumerated by the Catalan numbers [2].

Proof. To prove the theorem, we use techniques similar to those of Bétréma and
Penaud [2] to decompose half-pyramids and pyramids of polymers.

We decompose half-pyramids as shown in Figure 6. Let P be a half-pyramid
and α its minimal polymer. Let β be the lowest polymer in the column [0, 1]
(i.e. such that [0, 1] ⊆ β), apart from α, if such a polymer exists. By pushing
the polymer β, we get the factorisation P = αP1P2, where P2 is a pyramid of
minimal polymer β (or the empty heap if β does not exist). By construction,
P2 is either empty or a half-pyramid; moreover, the heap P1 has no polymers in
the column [0, 1].

We distinguish two cases.

1. The polymer α has length 1. In this case, the heap P1 is a half-pyramid.

2. The polymer α has length greater than 1. Write:

α = [0, 1] ∪ α′

and let P ′
1 = α′P1. The heap P ′

1 is a half-pyramid.

This decomposition yields the equation:

S(t) = t
(

1 + S(t)
)2

+ tS(t)
(

1 + S(t)
)

,

which is equivalent to (1).

P =
P1

P2

α

β

+ P ′
1

P2

α

β

Figure 6: The two cases in the decomposition of half-pyramids. The generating
function of the possible heaps P1 and P2 is 1+S(t), while the generating function
of the possible heaps P ′

1 is S(t).

We decompose the general pyramids in a similar manner, shown in Figure 7.
Let P be a pyramid with left half-width i. Let α be the lowest polymer of P in
the column [−i, −i + 1].
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1. The polymer α is the minimal polymer of P , i.e., P is a half-pyramid.

2. The polymer α is not the lowest polymer in the column [−i + 1, −i + 2].
Let P = P1P2 be the factorisation obtained by pushing α; then P1 is a
pyramid of left half-width i − 1 and P2 is a half-pyramid.

3. The polymer α is not the minimal polymer of P but is the lowest polymer
in the column [−i + 1, −i + 2]. In this case, it is of the form:

α = [−i, −i + 1] ∪ α′.

Let P ′ be the pyramid P in which the polymer α is replaced by α′; let β
be the lowest polymer of P ′ in the column [−i, −i + 1], if such a polymer
exists, and let P ′ = P ′

1P ′
2 be the factorisation obtained by pushing the

polymer β (if β does not exist, P ′
2 is the empty heap).

By construction, the pyramid P ′
1 has left half-width i−1 and α′ is its lowest

polymer in the column [−i + 1, −i + 2]. Therefore, the pyramid P can be
recovered from the pyramid P ′

1 and the possibly empty half-pyramid P ′
2.

In Case 2 above, the heap P1 may be any pyramid. However, in Case 3, we
must ensure that the polymer α is not the minimal polymer of P , which means
that α′ is not the minimal polymer of P ′

1. In other terms, P ′
1 must not be a

half-pyramid. This decomposition thus yields the equation:

D(t, u) = S(t) + uD(t, u)S(t) + u
(

D(t, u) − S(t)
)(

1 + S(t)
)

,

which boils down to (2).

P = P + P1

P2

α
+ P ′

1

P ′
2

α

β

Figure 7: The three cases in the decomposition of pyramids. The generating
function of the possible heaps P1 is D(t), that of the possible heaps P2 is S(t),
that of the possible heaps P ′

1 is D(t) − S(t), and that of the possible heaps P ′
2

is 1 + S(t).

Finally, solving the equations (1) and (2) yields the values (4) and (5).

3.2 Asymptotics

Proposition 7. Let n ≥ 1. Let d(n) be the number of directed animals of area n
and let lw(n) be the average left half-width of the same animals. As n tends to
infinity, we have the following estimates:

d(n) ∼ 2−7/4

(

3 +
√

8
)n

√
πn

;

lw(n) ∼ 2−3/4
√

πn.
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In this result, we see that the numbers d(n) and lw(n) behave like their
counterparts in the square and triangular lattices (in those cases, the number
d(n) is asymptotically of the form µn/

√
n and the number lw(n) is of the order

of
√

n; see [10]).

Proof. The exact values d(n) and lw(n) are obtained from the generating func-
tion D(t, u) as follows:

d(n) = [tn]D(t, 1);

lw(n) =
1

d(n)
[tn]

∂D

∂u
(t, 1).

Both generating functions have radius of convergence ρ = 3 −
√

8. They have
two singularities, at t = 3 ±

√
8. They admit an analytic continuation in

C \
[

3 −
√

8, 3 +
√

8
]

. As t tends to ρ, we have the following estimates:

D(t, 1) =
2−7/4

√

1 − t/ρ
+ O(1);

∂D

∂u
(t, 1) =

2−5/2

1 − t/ρ
+ O

(

1
√

1 − t/ρ

)

.

The results are then a consequence of classical singularity analysis [9, Theo-
rem VI.4].

4 Enumeration of multi-directed animals

We now turn our attention to the enumeration of multi-directed animals. By
Proposition 4, this is equivalent to the enumeration of connected heaps of poly-
mers.

4.1 Nordic decomposition

The Nordic decomposition was invented by Viennot to enumerate connected
heaps of dimers, themselves linked to multi-directed animals in the triangular
and square lattices [18]. We adapt this technique to connected heaps of poly-
mers.

Let C be a connected heap of polymers that is not a pyramid. Let α be the
rightmost minimal polymer of C; let C = C′P be the factorization obtained
by pushing α. Since C′ might not be connected, let C′ = C1 · · · Cn be the
decomposition of C′ in connected components, from left to right; let H be the
heap C2 · · · Cn.

As the heap C is known up to a translation, we assume that the rightmost
column of the heap C1 is [−2, −1]. This assumption fixes the polymer α, say α =
[k, j]. We call Nordic decomposition of the heap C the quadruple (C1, k, H, P ).
This decomposition is illustrated in Figure 8.

Proposition 8. The Nordic decomposition is a bijection between non-pyramid
connected heaps and quadruples of the form (C1, k, H, P ) such that:

• C1 is a connected heap, taken up to a translation;

9



C = P + C1 H α

P

k + 1

Figure 8: The Nordic decomposition of a non-pyramid connected heap: pushing
the rightmost minimal polymer α yields the pyramid P . The heap C1 is the
leftmost connected component of the remaining heap. The other components
compose the heap H , which lives in the gap of width k + 1 between the heap C1

and the polymer α.

• k is a non-negative integer;

• H is a heap the segments of which are included in [0, k − 1];

• P is a pyramid with left half-width greater than k, taken up to a translation.

Proof. First, let C be a non-pyramid connected heap and let N = (C1, k, H, P )
be its Nordic decomposition. We first show that the quadruple N satisfies the
conditions of the lemma. The heap C1 is connected by definition. Moreover, as
the component C1 is not concurrent to α, we have k ≥ 0. Furthermore, as the
components C2, . . . , Cn are concurrent neither to C1 nor to α, all the segments
of the heap H are included in [0, k −1]. Finally, for the heap C to be connected,
one polymer of the pyramid P must be in the column [−1, 0]; this shows that
P has left half-width at least k + 1.

To conclude, we show that it is possible to recover the heap C from its
Nordic decomposition N . To do that, we first translate the heap C1 so that
its rightmost column is [−2, −1]. Then, we translate the pyramid P so that its
minimal polymer is of the form [k, j]. The heap C is then equal to the product
C1HP .

4.2 Enumeration

We are now ready to enumerate multi-directed animals.

Theorem 9. Let M = M(t) be the generating function of multi-directed an-
imals. Let S = S(t), D = D(t, 1) and R = R(t) be the power series defined
by (1), (2) and (3), respectively. Moreover, let Q = Q(t) be the power series
defined by:

Q(t) = (2 − 2t)S(t) − t. (6)

The generating function M is given by:

M =
D

1 −
∑

k≥0

S
(

1 + S
)k QRk

1 − QRk

. (7)

This theorem is proved further below. First, we need to establish the follow-
ing lemma, which enumerates the objects appearing in the Nordic decomposi-
tion.
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Lemma 10. Let k ≥ 0; let Hk(t) be the generating function of heaps of polymers
included in [0, k − 1] and let D>k(t) be the generating function of pyramids of
polymers of left half-width more than k. We have the following identity:

Hk(t)D>k(t) = S(1 + S)k QRk

1 − QRk
.

Proof. Our proof is inspired by a similar result by Viennot on heaps of dimers
[18]. Let Ak be the set of heaps of polymers A satisfying the conditions:

• every polymer of A is of the form [i, j] with i ≥ 0;

• the rightmost minimal polymer of A is of the form [k, j].

Let Ak(t) be the generating function of the set Ak. Let A be a heap of Ak. We
decompose the heap A in two ways.

First, let α be the lowest polymer in the column [0, 1], if such a polymer
exists. Pushing the polymer α yields a possibly empty half-pyramid. We repeat
the process in the colums [1, 2], . . . , [k − 1, k]; in total, we get k possibly empty
half-pyramids. Finally, since the existence of a minimal polymer of the form [k, j]
is guaranteed, what remains is a half-pyramid. This decomposition yields the
identity:

Ak(t) = S(t)
(

1 + S(t)
)k

.

Second, let α be the rightmost minimal polymer of A. Pushing α yields a
pyramid with left half-width at most k; moreover, what remains is a heap with
all its polymers included in [0, k − 1]. We deduce this second identity:

Ak(t) = Hk(t)
(

D(t) − D>k(t)
)

.

Equating the two above expressions for Ak(t), we find the identity:

Hk(t)D>k(t) = S(t)
(

1 + S(t)
)k D>k(t)

D(t) − D>k(t)
.

Finally, the identity (2) shows that the generating function of pyramids with
left half-width j is Dj(t) = S(t)2R(t)j−1 as soon as j ≥ 1. Therefore, we have:

D>k(t) = S(t)2 R(t)k

1 − R(t)
.

An elementary computation from the definitions of D, R, and Q (Equations (2),
(3) and (6)) lets us rewrite this into:

D>k(t) = D(t)Q(t)R(t)k.

Together with the above identity, this establishes the lemma.

This lemma is illustrated in Figure 9.

Proof of Theorem 9. With the notations of Lemma 10, we use Proposition 8 to
write the functional equation:

M(t) = D(t) +
∑

k≥0

M(t)Hk(t)D>k(t),

11



S

(1 + S)k

0 k

Hk

D − D>k

0 k

Figure 9: The two decompositions of the objects of Ak involved in the proof of
Lemma 12.

which is equivalent to

M(t) =
D(t)

1 −
∑

k≥0

Hk(t)D>k(t)
.

We conclude using Lemma 10.

4.3 Nature of the series and asymptotics

We now derive asymptotic results from the formula of Theorem 9; we also prove
that the generating function M of multi-directed animals is not D-finite. The
last property is shared by its counterparts on the square and triangular lattices
[5].

Let ρ = 3 −
√

8 be the radius of convergence of the generating functions S,
Q, R found in Section 3.2 and let ρ̄ = 3+

√
8. Let B be the curve in the complex

plane consisting of the unit circle and the segment [ρ, ρ̄]. Let D be the domain
interior to the curve B.

Theorem 11. The series M(t) admits a meromorphic continuation in the do-
main D, with a unique dominant simple pole at ρM = 0.154.... Moreover, the
series M(t) is not D-finite.

To prove the theorem, we need the following two lemmas that deal with
analytic properties of the generating functions occuring in M(t).

Lemma 12. For z in the domain D, the values Q(z) and R(z) have modulus
less than 1.

Proof. We start by computing the values z such that |Q(z)| = 1 or |R(z)| = 1.
From the definitions of Q(t) and R(t), we find the equations satisfied by the two
power series:

1 − (1 − t)2

2t
R(t) + R(t)2 = 0;

1 − 1 − 4t + t2

t
Q(t) + Q(t)2 = 0.

that we rewrite into:

R(t) + R(t)−1 =
t + t−1

2
− 1;

Q(t) + Q(t)−1 = t + t−1 − 4.

12



For the value R(z) (resp. Q(z)), to be equal to eiθ, the quantity (z + z−1)/2 − 1
(resp. z + z−1 − 4), which is 2 cos θ, must be a real in the segment [−2, 2]. The
fact that z + z−1 is real implies that z is either real or has modulus 1. Using
elementary real analysis, we find that |Q(z)| = 1 if and only if z is in [ρ, ρ̄] and
that |R(z)| = 1 if and only if z is in the curve B.

Since R(0) = Q(0) = 0, we show by continuity that Q(z) and R(z) have
modulus less than 1 for z in the domain D.

Lemma 13. Let B = B(t) be the power series:

B = B(t) =
∑

k≥0

S(1 + S)k QRk

1 − QRk
.

Let ρB be the radius of convergence of B. The point ρB is a simple pole of B
satisfying the equation:

1 − 5ρB − 7ρ2
B + ρ3

B = 0. (8)

Moreover, the series B admits a meromorphic continuation in the domain D.
It is not D-finite.

Proof. We start by rewriting the expression of B into:

B =
∑

k≥0

(

∑

j≥1

S(1 + S)kQjRjk

)

=
∑

j≥1

Bj ,

with

Bj =
SQj

1 − (1 + S)Rj
.

We use this form to locate the singularities of the power series B in the do-
main D. Let z be in D. By Lemma 12, we prove by continuity that both Q(z)
and R(z) have modulus less than 1. Thus, the term Bj(z) and all its derivatives
decrease exponentially. This shows that the infinite sum does not create any
singularities; therefore, the only singularities of B in the domain D are points
such that (1 + S)Rj = 1 for some j ≥ 1.

To find the radius of convergence of B, we use Pringsheim’s Theorem [9,
Theroem IV.6]. Since B has non-negative coefficients, its radius of convergence
is its lowest real, positive singularity. Let j ≥ 1. Consider the function fj

defined for x ∈ [0, ρ] by:

fj(x) =
(

1 + S(x)
)

R(x)j .

Since S(0) = R(0) = 0, R(ρ) = 1 and S(ρ) = 1/
√

2, this function reaches 1
at a unique point that we denote by ρj . Moreover, since R(x) < 1, we have
fi(x) > fj(x) for all 0 < x < ρ and i < j. Therefore, the sequence (ρj) is
strictly increasing. This proves that the radius of convergence of B is ρ1, which
is a simple pole. iWe thus have:

(

1 + S(ρB)
)

R(ρB) = 1.

The equation (8) is then obtained by performing elimination with the definitions
(1) and (3) of S and R. Moreover, this proves that B is not D-finite since it has
infinitely many singularities.
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To show that B admits a meromorphic continuation in the domain D, we
show that its set of singularities has no point of accumulation in D. Let z be
such a point of accumulation. Thus, there exist a sequence (zn) tending to z
and a sequence (jn) of integers such that:

(

1 + S(zn)
)

R(zn)jn = 1.

Since the function (1 + S)Rj − 1 is holomorphic and has isolated zeroes, we
may assume that jn tends to infinity. By continuity, the term R(zn)jn tends to
1/(1 + S(z)), which is finite and nonzero. This forces that R(z) = 1, which is
not possible by Lemma 12.

Proof of Theorem 11. To prove the theorem, we rewrite the equation (7) into:

M(t) =
D(t)

1 − B(t)
.

We then use Lemma 13; since ρB is a simple pole of B, we have B(t) → +∞
as t → ρB. Therefore, the value B(t) reaches 1 at a unique point in [0, ρB],
which is a simple pole. Again, Pringsheim’s Theorem shows that this point is
the radius of convergence of M . Numerical estimates yield the announced value
of ρM .

Since both D and B admit a meromorphic continuation in the domain D,
the series M also admits a meromorphic continuation. Moreover, since D is
D-finite (since it is algebraic) and B is not, M is not D-finite.

Corollary 14. Let Mn be the number of multi-directed animals of area n. As
n tends to infinity, this number satisfies:

Mn ∼ λµn,

with µ = 1/ρM = 6.475.... Moreover, the average number of sources and the
average width of the multi-directed animals of area n grow linearly with n.

Proof. The corollary stems from the fact that the class of multi-directed animals
follows a supercritical sequence schema. In particular, [9, Theorem V.1] gives
the estimate of Mn and shows that to decompose a connected heap of total
length n all the way to a pyramid, a linear number of Nordic decompositions
is needed on average. Since every decomposition adds at least one minimal
polymer and one to the width of the heap, the average number of sources and
the average width of the multi-animals are also linear.

References

[1] Marie Albenque. A note on the enumeration of directed animals via gas
considerations. Ann. Appl. Probab., 19(5):1860–1879, 2009.
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