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Abstract

A formula for the number of toroidal m × n binary arrays, allowing
rotation of the rows and/or the columns but not reflection, is known. Here
we find a formula for the number of toroidal m×n binary arrays, allowing
rotation and/or reflection of the rows and/or the columns.
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1 Introduction

The number of necklaces with n beads of two colors when turning over is not
allowed is

1

n

∑

d |n

ϕ(d) 2n/d, (1)

where ϕ is Euler’s phi function. When turning over is allowed, the number
becomes

1

2n

∑

d |n

ϕ(d) 2n/d +

{

2(n−1)/2 if n is odd,

3 · 2n/2−2 if n is even.
(2)

These are the core sequences A000031 and A000029, respectively, in [2].
Our concern here is with two-dimensional versions of these formulas. We

consider an m×n binary array. When opposite edges are identified, it becomes
what we will call a toroidal binary array. Just as we can rotate a necklace
without effect, we can rotate the rows and/or the columns of such an array
without effect. The number of (distinct) toroidal m× n binary arrays is

1

mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/lcm(c,d), (3)

where lcm stands for least common multiple. This is A184271 in [2]. The
diagonal is A179043. Rows (or columns) 2–8 are A184264–A184270. Row (or
column) 1 is of course A000031.

Our aim here is to find the formula that is related to (3) in the same way that
(2) is related to (1). More precisely, we wish to count the number of toroidal
m× n binary arrays allowing rotation and/or reflection of the rows and/or the
columns. At present, the resulting sequence, the diagonal, and the rows (or
columns) other than the first one, are not found in [2]. Row (or column) 1 is of
course A000029.

For an alternative description, we could define a group action on the set of
m× n binary arrays, which has 2mn elements. If the group is Cm × Cn, where
Cm denotes the cyclic group of order m, then the number of orbits is given by
(3) (see Theorem 1 below). If the group is Dm × Dn, where Dm denotes the
dihedral group of order 2m, then the number of orbits is given by Theorem 2
below.

To help clarify the distinction between the two group actions, we provide an
example. There is no distinction in the 2× 2 case, so we consider the 3× 3 case.
When the group is C3 × C3 (allowing rotation of the rows and/or the columns
but not reflection), there are 64 orbits, as shown in Table 1.

When the group is D3 ×D3 (allowing rotation and/or reflection of the rows
and/or the columns), there are 36 orbits, as shown in Table 2.

Our interest in the number of toroidal m×n binary arrays allowing rotation
and/or reflection of the rows and/or the columns derives from the fact that this
is the size of the state space of the projection of the Markov chain in [1] under
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Table 1: A list of the 64 orbits of the group action given by the group C3 ×C3

acting on the set of 3× 3 binary arrays. (Rows and/or columns can be rotated
but not reflected.) Each orbit is represented by its minimal element in 9-bit
binary form. Bars separate different numbers of 1s.
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0 0 0
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0 0 0
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1 1 1
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0 1 0
1 1 1









0 0 1
0 1 1
0 1 1
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1 1 0









0 0 1
1 0 0
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0 0 1
1 0 1
0 1 1
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1 1 0
1 1 0





∣

∣

∣

∣





0 0 0
1 1 1
1 1 1
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0 1 1
1 1 1
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1 0 1
1 1 1
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1 1 0
1 1 1









0 0 1
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0 1 1
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1 1 1
1 1 1
1 1 1
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Table 2: A list of the 36 orbits of the group action given by the group D3 ×D3

acting on the set of 3× 3 binary arrays. (Rows and/or columns can be rotated
and/or reflected.) Each orbit is represented by its minimal element in 9-bit
binary form. Bars separate different numbers of 1s.
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0 0 0
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0 0 1
1 1 1
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0 0 0
0 1 1
1 1 1









0 0 1
0 0 1
1 1 1
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0 1 0
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1 1 1
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1 1 0
1 1 1
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1 1 1
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1 1 1
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the mapping that takes a state to the orbit containing it. This reduction of the
state space, from 512 states to 36 states in the 3 × 3 case for example, makes
computation easier.

2 Rotations of rows and columns

Let Xm,n := {0, 1}{0,1,...,m−1}×{0,1,...,n−1} be the set of m× n arrays of 0s and
1s, of which there are 2mn. Let a(m,n) denote the number of orbits of the group
action on Xm,n by the group Cm × Cn. In other words, a(m,n) is the number
of (distinct) toroidal m× n binary arrays, allowing rotation of the rows and/or
the columns but not reflection.

Theorem 1.

a(m,n) =
1

mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/lcm(c,d). (4)

Proof. By the Pólya enumeration theorem [3],

a(m,n) =
1

mn

m−1
∑

i=0

n−1
∑

j=0

2Aij , (5)

where Aij is the number of cycles in the permutation σiτ j ; here σ rotates the
rows (row 0 becomes row 1, row 1 becomes row 2, . . . , row m− 1 becomes row
0) and τ rotates the columns. For example, A00 = mn because the identity
permutation has mn fixed points, each of which is a cycle of length 1.

It is well known that, if d divides n, then the number of elements of Cn that
are of order d is ϕ(d). So if c divides m and d divides n, then the number of
pairs (i, j) such that σi is of order c and τ j is of order d is ϕ(c)ϕ(d). And if σi is
of order c and τ j is of order d, then σiτ j is of order lcm(c, d) because σi and τ j

commute. Consequently, lcm(c, d) is the length of each cycle of the permutation
σiτ j , so Aij = mn/lcm(c, d), and (4) follows from (5).

Clearly, a(1, n) reduces to (1). Table 3 provides numerical values of a(m,n)
for small m and n.

Table 3: The number a(m,n) of toroidal m×n binary arrays, allowing rotation
of the rows and/or the columns but not reflection, for m,n = 1, 2, . . . , 8.

2 3 4 6 8 14 20 36

3 7 14 40 108 362 1182 4150

4 14 64 352 2192 14624 99880 699252

6 40 352 4156 52488 699600 9587580 134223976

8 108 2192 52488 1342208 35792568 981706832 27487816992

14 362 14624 699600 35792568 1908897152 104715443852 5864063066500

20 1182 99880 9587580 981706832 104715443852 11488774559744 1286742755471400

36 4150 699252 134223976 27487816992 5864063066500 1286742755471400 288230376353050816
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3 Rotations and reflections of rows and columns

Let b(m,n) denote the number of orbits of the group action on Xm,n by the
group Dm × Dn. In other words, b(m,n) is the number of (distinct) toroidal
m× n binary arrays, allowing rotation and/or reflection of the rows and/or the
columns.

Theorem 2.

b(m,n) = b1(m,n) + b2(m,n) + b3(m,n) + b4(m,n), (6)

where

b1(m,n) =
1

4mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/lcm(c,d),

b2(m,n)

=

{

(4n)−12(m+1)n/2 if m is odd

(8n)−1[2mn/2 + 2(m+2)n/2] if m is even
+

1

4n

∑

d≥2: d |n

ϕ(d) 2mn/d

+

{

(4n)−1
∑′

[2(m+1) gcd(j,n)/2 − 2m gcd(j,n)] if m is odd

(8n)−1
∑′[2m gcd(j,n)/2 + 2(m+2) gcd(j,n)/2 − 2m gcd(j,n)+1] if m is even

with
∑′

=
∑

1≤j≤n−1:n/ gcd(j,n) is odd,

b3(m,n) = b2(n,m),

and

b4(m,n) =











2(mn−3)/2 if m and n are odd,

3 · 2mn/2−3 if m and n have opposite parity,

7 · 2mn/2−4 if m and n are even.

Proof. Again by the Pólya enumeration theorem [3],

b(m,n) =
1

4mn

m−1
∑

i=0

n−1
∑

j=0

[2Aij + 2Bij + 2Cij + 2Dij ], (7)

where Aij (resp., Bij , Cij , Dij) is the number of cycles in the permutation σiτ j

(resp., σiτ jρ, σiτ jθ, σiτ jρθ); here σ rotates the rows (row 0 becomes row 1,
row 1 becomes row 2, . . . , row m − 1 becomes row 0), τ rotates the columns,
ρ reflects the rows (rows 0 and m − 1 are interchanged, rows 1 and m − 2 are
interchanged, . . . , rows ⌊m/2⌋ − 1 and m − ⌊m/2⌋ are interchanged), and θ
reflects the columns.

By the proof of Theorem 1, we know the form of Aij , and this gives the
formula for b1(m,n).

Next we find (Bi0), the entries in the 0th column of matrix B. For i =
0, 1, . . . ,m − 1, the permutation σiρ can be described by its effect on the rows
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of {0, 1, . . . ,m − 1} × {0, 1, . . . , n − 1}. It reverses the first m − i rows and
reverses the last i rows. Since the reversal of k consecutive integers has k/2
transpositions if k is even and (k − 1)/2 transpositions and one fixed point if
k is odd, the permutation of {0, 1, . . . ,m − 1} induced by σiρ has (m − 1)/2
transpositions and one fixed point if m is odd, and m/2 transpositions if i is
even and m is even, and (m−2)/2 transpositions and two fixed points if i is odd
and m is even. These numbers must be multiplied by n for the permutation σiρ
of {0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1}. The results are that Bi0 = (m+ 1)n/2
if m is odd, Bi0 = mn/2 if i is even and m is even, and Bi0 = (m + 2)n/2 if i

is odd and m is even. Therefore, (4mn)−1
∑m−1

i=0 2Bi0 = (4n)−12(m+1)n/2 if m

is odd, whereas (4mn)−1
∑m−1

i=0 2Bi0 = (8n)−1[2mn/2 + 2(m+2)n/2] if m is even,
and this gives the first term in the formula for b2(m,n).

We turn to Bij for i = 0, 1, . . . ,m − 1 and j = 1, 2, . . . , n − 1. First, by
a property of cyclic groups, τ j has order d := n/ gcd(j, n). If d is even, then,
since σiρ has order 2 (see the preceding paragraph), σiτ jρ has order d and all
of its cycles have length d. In this case, Bij = mn/d = m gcd(j, n). Suppose
then that d is odd. There are three cases: (i) m odd, (ii) i even and m even,
and (iii) i odd and m even. Recall that σiρ reverses the first m − i rows
and reverses the last i rows. In case (i), one row is fixed by σiρ, so cycles of
σiτ jρ in this row have length d and all others have length 2d. We find that
Bij = n/d + (m − 1)n/(2d) = (m + 1)n/(2d) = (m + 1) gcd(j, n)/2. In case
(ii), no rows are fixed by σiρ, so all cycles of σiτ jρ have length 2d. It follows
that Bij = mn/(2d) = m gcd(j, n)/2. In case (iii), two rows are fixed by σiρ,
so cycles of σiτ jρ in these rows have length d and all others have length 2d. We
conclude that Bij = 2n/d+(m− 2)n/(2d) = (m+2) gcd(j, n)/2. If the formula
for Bij that holds when d is even were valid generally, we would have the second
term in the formula for b2(m,n). The third term in the formula for b2(m,n) is
a correction to the second term to treat the cases (i)–(iii) in which d is odd.

Next, the formula for b3(m,n) follows by symmetry. More explicitly,

b3(m,n) =
1

4mn

m−1
∑

i=0

n−1
∑

j=0

2Cij =
1

4nm

n−1
∑

j=0

m−1
∑

i=0

2Bji = b2(n,m)

because the number of cycles Cij of σiτ jθ for an m × n array is equal to the
number of cycles Bji of σ

jτ iρ for an n×m array.
Finally, we consider b4(m,n). For i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1,

σiτ jρθ has the effect of reversing the first m− i rows, reversing the last i rows,
reversing the first n− j columns, and reversing the last j columns. If m and n
are odd, then there is one fixed point and (mn− 1)/2 transpositions, so Dij =
(mn+1)/2 for all i and j, hence b4(m,n) = 2(mn−3)/2. Ifm is odd and n is even,
then Dij = mn/2 for all i and even j and Dij = mn/2 + 1 for all i and odd j.
This leads to b4(m,n) = (1/8)[2mn/2+2mn/2+1] = 3 ·2mn/2−3. If m is even and
n is odd, then Dij = mn/2 for even i and all j and Dij = mn/2+1 for odd i and
all j. This leads to the same formula for b4(m,n). Finally, if m and n are even,
then Dij = mn/2 unless i and j are both odd, in which case Dij = mn/2 + 2.
This implies that b4(m,n) = (1/4)[(3/4)2mn/2 + (1/4)2mn/2+2] = 7 · 2mn/2−4.

7



This completes the proof.

It is easy to check that b(1, n) reduces to (2). Table 4 provides numerical
values of b(m,n) for small m and n.

Table 4: The number b(m,n) of toroidal m×n binary arrays, allowing rotation
and/or reflection of the rows and/or the columns, for m,n = 1, 2, . . . , 8.

2 3 4 6 8 13 18 30

3 7 13 34 78 237 687 2299

4 13 36 158 708 4236 26412 180070

6 34 158 1459 14676 184854 2445918 33888844

8 78 708 14676 340880 8999762 245619576 6873769668

13 237 4236 184854 8999762 478070832 26185264801 1466114420489

18 687 26412 2445918 245619576 26185264801 2872221202512 321686550498774

30 2299 180070 33888844 6873769668 1466114420489 321686550498774 72057630729710704
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[3] Wikipedia contributors, Pólya enumeration theorem, Wikipedia.
http://en.wikipedia.org/wiki/Polya_enumeration_theorem.

8

http://oeis.org/
http://en.wikipedia.org/wiki/Polya_enumeration_theorem

	1 Introduction
	2 Rotations of rows and columns
	3 Rotations and reflections of rows and columns

