A COUNTING FUNCTION

MILAN JANJIĆ AND BORIS PETKOVIĆ

Abstract

We define a counting function that is related to the binomial coefficients. An explicit formula for this function is proved. In some particular cases, simpler explicit formulae are derived. We also derive a formula for the number of $(0,1)$-matrices, having a fixed number of $1^{\prime} s$, and having no zero rows and zero columns. Further, we show that our function satisfies several recurrence relations.

The relationship of our counting function with different classes of integers is then examined. These classes include: different kind of figurate numbers, the number of points on the surface of a square pyramid, the magic constants, the truncated square numbers, the coefficients of the Chebyshev polynomials, the Catalan numbers, the Dellanoy numbers, the Sulanke numbers, the numbers of the coordination sequences, and the number of the crystal ball sequences of a cubic lattice.

In the last part of the paper, we prove that several configurations are counted by our function. Some of these are: the number of spanning subgraphs of the complete bipartite graph, the number of square containing in a square, the number of colorings of points on a line, the number of divisors of some particular numbers, the number of all parts in the compositions of an integer, the numbers of the weak compositions of integers, and the number of particular lattice paths. We conclude by counting the number of possible moves of the rook, bishop, and queen on a chessboard.

The most statements in the paper are provided by bijective proofs in terms of insets, which are defined in the paper. With this we want to show that different configurations may be counted by the same method.

2000 Mathematics Subject Classification: Primary 05A10; Secondary 05A19.
Keywords: binomial coefficients, counting functions, Dalannoy numbers, figurate numbers, coordination sequences, lattice paths.

1. Introduction

For a set $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ of positive integers and a nonnegative integer m, we consider the set X consisting of n blocks $X_{i},(i=1,2, \ldots, n), X_{i}$ having q_{i} elements, and a block Y with m elements. We call X_{i} the main blocks, and Y the additional block of X.
Definition 1. By an $(n+k)$-inset of X, we shall mean an $(n+k)$-subset of X, intersecting each main block. We let $\binom{m, n}{k, Q}$ denote the number of $(n+k)$-insets of X.

In all what follows m, n, k, Q will have the meaning as in the preceding definition. Also, elements of insets, lying either in the same main block or in the additional block, will always be written by increasing indices.

Remark 2. Note that this function is first defined in Janjić paper 1].

The case $n=0$ also may be considered. Then, there are no main blocks, so that $\binom{m, 0}{k, \emptyset}=\binom{m}{k}$. Also, when each main block has only one element, we have

$$
\binom{m, n}{k, Q}=\binom{m}{k} .
$$

Hence, the function $\binom{m, n}{k, Q}$ is a generalization of the binomial coefficients.
In the case $k=0$, we obviously have

$$
\binom{m, n}{0, Q}=q_{1} \cdot q_{2} \cdots q_{n}
$$

Thus, the product function is a particular case of our function.
Note that, when $q_{1}=q_{2}=\ldots=q_{n}=q$, we write $\binom{m, n}{k, q}$ instead of $\binom{m, n}{k, Q}$. In this case, we have

$$
\binom{m, n}{0, q}=q^{n}
$$

Some powers may be obtained in a less obvious way.
Proposition 3. The following formula holds

$$
\binom{m, 1}{2,2}=m^{2}
$$

Proof. Let $\left\{x_{1}, x_{2}\right\}$ be the main and $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the additional block of X. It is enough to define a bijection between 3 -insets of X and the set of 2 -tuples (s, t), where $s, t \in[m]$. A bijection goes as follows:

1. $\left\{x_{1}, y_{i}, y_{j}\right\} \leftrightarrow(i, j)$,
2. $\left\{x_{2}, y_{i}, y_{j}\right\} \leftrightarrow(j, i)$,
3. $\left\{x_{1}, x_{2}, y_{i}\right\} \leftrightarrow(i, i)$.

Proposition 4. The following formula is true

$$
\binom{1,2}{1, q}=q^{3}
$$

Proof. Let $X_{i}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i q}\right\},(i=1,2)$ be the main blocks, and $Y=\{y\}$ the additional block of X. We need a bijection between 3 -insets of X and 3 -tuples (s, r, t), where $r, s, t \in[q]$. A bijection is defined in the following way:

$$
\begin{array}{ll}
\text { 1. } \quad\left\{x_{1 s}, x_{1 t}, x_{2 r}\right\} \leftrightarrow(s, t, r), \\
\text { 2. } \quad\left\{x_{1 s}, x_{2 t}, x_{2 r}\right\} \leftrightarrow(r, t, s), \\
\text { 3. } \quad\left\{x_{1 s}, x_{2 t}, y\right\} \leftrightarrow(s, s, t) .
\end{array}
$$

Proposition 5. The following formula is true:

$$
\begin{equation*}
\binom{0, n}{k, 2}=2^{n-k}\binom{n}{k} \tag{1}
\end{equation*}
$$

Proof. We obtain $\binom{0, n}{k, 2}$ by choosing both elements from arbitrary k main blocks, which may be done in $\binom{n}{k}$ ways, and one element from each of the remaining $n-k$ main blocks, which may be done in 2^{n-k} ways.

The particular case $m=0$ may be interpreted as numbers of 1 's in a $(0,1)$-matrix. The following proposition is obvious:
Proposition 6. The number $\binom{0, n}{k, q}$ equals the number of $(0,1)$-matrices of order $q \times n$ containing $n+k 1$'s, and which have no zero columns.

Now, we count the number of $(0,1)$-matrices with a fixed number of 1 's which have no zero rows and zero columns. Let $M(n, k, q)$ denote the number of such matrices of order $q \times n$, which have $n+k$'s.

Proposition 7. The following formula is true:

$$
\begin{equation*}
M(n, k, q)=\sum_{i=0}^{q}(-1)^{q+i}\binom{q}{i}\binom{0, n}{k, i},(q>1) \tag{2}
\end{equation*}
$$

Proof. According to (11), we have $\binom{0, n}{k, q}(0,1)$-matrices, which have $n+k$'s and no zero columns. Among them, there are $\binom{q}{i} M(n, k, q-i),(i=0,1,2, \ldots, q)$ matrices having exactly i zero rows. It follows that

$$
\binom{0, n}{k, q}=\sum_{i=0}^{q}\binom{q}{i} M(n, k, q-i)
$$

and the proof follows from the inversion formula.

Obviously, the function $M(n, k, q)$ has the property:

$$
M(n, k, q)=M(q, n+k-q, n)
$$

Using (11) and (2), we obtain the binomial identity:

$$
\binom{n}{k}=\frac{1}{2^{n-k}} \sum_{i=0}^{n}(-1)^{n+i}\binom{n}{i}\binom{0,2}{n+k-2, i},(k>0) .
$$

2. Explicit Formulae and Recurrences

We first consider the particular case $m=k=1$, when the explicit formula for our function is easy to derive.

Proposition 8. The following equation holds:

$$
\begin{equation*}
\binom{1, n}{1, Q}=q_{1} q_{2} \cdots q_{n}\left(\frac{\sum_{i=1}^{n} q_{i}-n+2}{2}\right) . \tag{3}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
\binom{1,2}{1, Q}=\frac{q_{1} q_{2}\left(q_{1}+q_{2}\right)}{2} \tag{4}
\end{equation*}
$$

Proof. If the element of the additional block is inserted into an $(n+1)$-inset, then each of the remaining elements must be chosen from different main blocks. For this, we have $q_{1} \cdot q_{2} \cdots q_{n}$ possibilities. If it is not inserted, we take two elements from one of the main blocks and one element from each of the remaining main blocks. For this, we have $\sum_{i=1}^{n}\binom{q_{i}}{2} q_{1} \cdots q_{i-1} q_{i+1} \cdots q_{n}$ possibilities. All in all, we have $q_{1} q_{2} \cdots q_{n}\left(\frac{\sum_{i=1}^{n} q_{i}-n+2}{2}\right)$ possibilities.

Using the inclusion-exclusion principle, we derive an explicit formula for $\binom{m, n}{k, Q}$.
Proposition 9. The following formula is true:

$$
\begin{equation*}
\binom{m, n}{k, Q}=\sum_{I \subseteq[n]}(-1)^{|I|}\binom{|X|-\sum_{i \in I} q_{i}}{n+k}, \tag{5}
\end{equation*}
$$

where the sum is taken over all subsets of $[n]$.
Proof. For $i=1,2, \ldots, n$ and an $n+k$-subset Z of X, we define the following property:

$$
\text { The block } X_{i} \text { does not intersect } Z \text {. }
$$

Using the PIE method, we obtain

$$
\binom{m, n}{k, Q}=\sum_{I \subseteq[n]}(-1)^{|I|} N(I)
$$

where $N(I)$ is the number of $(n+k)$-subsets of X, which do not intersect main blocks $X_{i},(i \in I)$. It is clear that there are

$$
\binom{|X|-\sum_{i \in I} q_{i}}{n+k}
$$

such subsets, and the formula is proved.
In the particular cases $n=1$ and $n=2$, we obtain the following formulae:

$$
\begin{gather*}
\binom{m, 1}{k, q}=\binom{q+m}{k+1}-\binom{m}{k+1} \tag{6}\\
\binom{m, 2}{k, Q}=\binom{q_{1}+q_{2}+m}{k+2}-\left(\begin{array}{c}
q_{1}+m \\
k+2 \\
3
\end{array}\right)-\binom{q_{2}+m}{k+2}+\binom{m}{k+2} \tag{7}
\end{gather*}
$$

In the case $q_{1}=q_{2}=\cdots=q_{n}=q$, formula (5) takes a simpler form:

$$
\begin{equation*}
\binom{m, n}{k, q}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n q+m-i q}{n+k} . \tag{8}
\end{equation*}
$$

If $q=1$, then $\binom{m, n}{k, 1}=\binom{m}{k}$, so that formula (8) implies the well-known binomial identity

$$
\binom{m}{k}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n+m-i}{n+k} .
$$

Next, since we have $\binom{m, n}{0, q}=q^{n}$, equation (8) yields

$$
q^{n}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{q n+m-q i}{n}
$$

Note that the left hand side does not depend on m, so we have here a family of identities.
We next derive a recurrence relation which stresses the similarity of our function and the binomial coefficients.

Proposition 10. The following formula holds:

$$
\begin{equation*}
\binom{m+1, n}{k+1, Q}=\binom{m, n}{k+1, Q}+\binom{m, n}{k, Q} . \tag{9}
\end{equation*}
$$

Proof. Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}, y_{m+1}\right\}$ be the additional block of X. We divide all $(n+k+1)$-insets of X into two classes. In the first class are the insets which do not contain the element y_{m+1}. There are $\binom{m, n}{k+1, Q}$ such insets. The second class consists of the remaining insets, namely those that contain y_{m+1}. There are $\binom{m, n}{k, Q}$ such insets.

The next formula reduces the case of arbitrary m to the case $m=0$.
Proposition 11. The following formula is true:

$$
\begin{equation*}
\binom{m, n}{k, Q}=\sum_{i=0}^{m}\binom{m}{i}\binom{0, n}{k-i, Q} . \tag{10}
\end{equation*}
$$

Proof. We may obtain all $(n+k)$-insets of X in the following way:
(1) There are $\binom{0, n}{k, Q}(n+k)$-insets not containing elements from Y.
(2) The remaining $(n+k)$-insets of X, are a union of some $(n+k-i)$-inset of X, not intersecting Y, and some i-subset of Y, where $1 \leq i \leq m$. There are $\binom{m}{i}$ such insets.

Particularly, we have

$$
\binom{m, 1}{k, q}=\sum_{i=0}^{m}\binom{m}{i}\binom{0,1}{k-i, q} .
$$

According to (6), we have

$$
\binom{0,1}{k-i, q}=\binom{q}{k-i+1}-\binom{0}{k-i+1},\binom{m, 1}{k, q}=\binom{m+q}{k+1}-\binom{m}{k+1} .
$$

As a consequence, we obtain the Vandermonde convolution:

$$
\binom{q+m}{k+1}=\sum_{i=0}^{m}\binom{m}{i}\binom{q}{k+1-i} .
$$

Using (11) and (10), we obtain another explicit formula for $\binom{m, n}{k, 2}$:

$$
\begin{equation*}
\binom{m, n}{k, 2}=2^{n-k} \sum_{i=0}^{m} 2^{i}\binom{m}{i}\binom{n}{k-i} . \tag{11}
\end{equation*}
$$

Finally, we derive two recurrence relations with respect to the number of main blocks:

Proposition 12. Let $j \in[n]$ be arbitrary. Then,

$$
\begin{gather*}
\binom{m, n}{k, Q}=\sum_{i=0}^{q_{j}-1}\binom{m+i, n-1}{k, Q \backslash\left\{q_{j}\right\}} \tag{12}\\
\binom{m, n}{k, Q}=\sum_{i=1}^{q_{j}}\binom{q_{j}}{i}\binom{m, n-1}{k-i+1, Q \backslash\left\{q_{j}\right\}} \tag{13}
\end{gather*}
$$

Proof. Take $x_{j t} \in X_{j}$ arbitrarily. Consider the set Z_{j}, the main blocks of which are all the main blocks of X, except X_{j}. Let $U=Y \cup\left\{x_{j 1}, \ldots, x_{j, t-1}\right\}$ be the additional block of Z_{j}. If T is a $(n+k-1)$-inset of Z, then $T \cup\left\{x_{j t}\right\}$ is the $(n+k)$-inset of X not containing elements of X_{j}, the second index of which is greater than t. The converse also holds. The assertion follows by summing over $t,\left(1 \leq t \leq q_{j}\right)$. Equation (12) is proved.

Omitting the j th main block of X, we obtain a set Z. Each $n+k$-inset of X may be obtained as a union of some $n+k-i$ - inset of $Z,\left(1 \leq i \leq q_{j}\right)$ and some of $\binom{q_{j}}{i} i$-subsets of the omitting main block, which proves (13).

3. Connections with Other Classes of Integers

We noted that our function is closely connected with the binomial coefficients. In this section, we establish its relation to some other classes of integers.
Proposition 13. If $n \geq 0$, then

$$
\binom{n, 2}{n+2,3}=\frac{(n+5)(n+6)}{2}
$$

that is, $\binom{n, 2}{n+2,3}$ equals the $(n+5)$ th triangular number A000217.
Proof. The proof follows from (7).
Proposition 14. If $n \geq 2$, then

$$
\binom{n-1,1}{1, n}=\frac{3 n(n-1)}{2}
$$

that is, $\binom{n-1,1}{1, n}$ equals the $(n-1)$ th triangular matchstick number A045943.
Proof. The proof follows from (6).
We also give a proof in terms of insets. Note first that $\binom{1,1}{1,2}=3$ equals the first triangular matchstick number. Denote $T M_{n}=\binom{n, 1}{1, n+1}$. We want to calculate the difference $T M_{n}-T M_{n-1}$. Consider two sets X and Z, both having one main block. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right\},\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the main blocks of X and Z respectively, and let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ be the additional blocks. The number $T M_{n}-T M_{n-1}$ equals the number of 2-insets of X, which are not insets of Z. Such an inset must contain either x_{n+1} or y_{n}. All insets of this form are

$$
\left.\left\{x_{i}, y_{n}\right\},(i=1,2, \ldots, n+1),\right\},\left\{x_{n+1}, y_{i}\right\},(i=1,2, \ldots, n-1)\left\{x_{i}, x_{n+1}\right\},(i=1,2, \ldots, n)
$$

which are $3 n$ in number. We conclude that

$$
T M_{n}-T M_{n-1}=3 n
$$

which is the recurrence for the triangular matchstick numbers.
Proposition 15. The following formula holds:

$$
\binom{n, 1}{1, n}=\frac{n(3 n-1)}{2}
$$

that is, $\binom{n, 1}{1, n}$ equals the nth pentagonal number A000326.
Proof. Firstly, a 2-inset may consist of pairs of elements from the main block, and there is $\binom{n}{2}$ such pairs. Secondly, it may consist of one element from the main and one element from the additional block. There is n^{2} such insets. We thus have $\binom{n}{2}+n^{2}=\frac{n(3 n-1)}{2} 2$-insets.

Proposition 16. The following formula is true:

$$
\binom{n, 2}{1, n}=(2 n-1) n^{2}
$$

that is, $\binom{n, 2}{1, n}$ equals the nth structured hexagonal prism number A015237.
Proposition 17. If $Q=\{2,3\}$, then

$$
\binom{m, 2}{2, Q}=3(m+1)^{2}+2
$$

that is, $\binom{m, 2}{2, Q}$ equals the number of points on the surface of a square pyramid $A 005918$.
We give a short proof in terms of insets.
Proof. Let $X_{1}=\left\{x_{11}, x_{12}\right\}, X_{2}=\left\{x_{21}, x_{22}, x_{23}\right\}$ be the main blocks, and $y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the additional block of X. In the next table we write different types of 4 -insets and its numbers.

4 -insets	its number
$\left\{x_{11}, x_{12}, x_{2 i}, x_{2 j}\right\}$,	3,
$\left\{x_{11}, x_{12}, x_{2 i}, y_{j}\right\}$,	$3 m$,
$\left\{x_{1 i}, x_{21}, x_{22}, x_{23}\right\}$,	2,
$\left\{x_{1 i}, x_{2 j}, x_{2 k}, y_{s}\right\}$	$6 m$,
$\left\{x_{1 i}, x_{2 j}, y_{k}, y_{s}\right\}$,	$6\binom{m}{2}$.

We have $3(m+1)^{2}+24$-insets in total.

It follows from (19) that the numbers $\binom{m, n}{k, Q}$ form a Pascal-like array, in which the first row $(m=0)$ begins with $q_{1} \cdot q_{2} \cdots q_{n}$.

In the particular case $n=1$, the first row is

$$
\binom{q}{1},\binom{q}{2}, \ldots,\binom{q}{q} .
$$

Hence, if $q=2$, the first row is 2,1 , so that we obtain the reverse Lucas triangle A029653. We note one property of this triangle connected with the figurate numbers. The third column consists of 2-dimensional square numbers, the forth column consists of 3 -dimensional square numbers, and so on. We conclude from this that the following proposition is true:
Proposition 18. For $m>0, k>2$, the number $\binom{m, 1}{k, 2}$ equals the m th k-dimensional square pyramidal number A000330.

Proof. The proof follows from the preceding notes. We also give a short bijective proof. According to (7), we have

$$
\binom{m, 1}{k, 2}=\binom{m}{k}+\binom{m+1}{k}
$$

Let $X_{1}=\left\{x_{1}, x_{2}\right\}$ be the main, and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ the additional block of X. Consider two disjoint sets $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{m+1}\right\}$. Let the set C consist of k-subsets of A and k - subsets of B. We need to define a bijection between the set of $(k+1)$-insets of X and the set C. A bijection goes as follows:

$$
\begin{aligned}
& \text { 1. }\left\{x_{1}, x_{2}, y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{k-1}}\right\} \leftrightarrow\left\{\left\{b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{k-1}}, b_{m+1}\right\},\right. \\
& \text { 2. } \quad\left\{x_{1}, y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{k}}\right\} \leftrightarrow\left\{b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{k-1}}, b_{i_{k}}\right\}, \\
& \text { 3. } \quad\left\{x_{2}, y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{k}}\right\} \leftrightarrow\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k-1}}, a_{i_{k}}\right\} .
\end{aligned}
$$

The following result follows from the fact that, for $q=3$, the third column $1,4,10,19,31, \ldots$ of the above array consists of the centered triangular numbers.

Proposition 19. For $m>0, k>1$, the number $\binom{m, 1}{k, 3}$ equals the $(m+1)$ th k-dimensional centered triangular number A047010.

For $q=4$, the array consists of m-dimensional centered tetrahedral numbers, and so on. Hence,
Proposition 20. For $m>0, k>1$, the number $\binom{m, 1}{k, 4}$ equals the $(m+1)$ th k-dimensional centered tetrahedral number A047030.

The fourth column (omitting two first terms 1 and 5), in the case $q=3$, consists of numbers $15,34,65,111, \ldots$, which are of the form $\frac{m\left(m^{2}+1\right)}{2},(m=3,4, \ldots)$. This fact connects our function with the magic constants A006003.

Proposition 21. For $m>2$, the number $\binom{m, 1}{3,3}$ equals the magic constant for the standard $m \times m$ magic square.
Proof. The proof follows from (7). We again add a short bijective proof. Let $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ be the main block of X, and let $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the additional block. We have

$$
\frac{m\left(m^{2}+1\right)}{2}=\binom{m+1}{2}+m\binom{m}{2}
$$

Consider the following two sets: $A=\left\{a_{1}, a_{2}, \ldots, a_{m+1}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. Let C be the union of the set of 2-subsets of A and $\left\{i B_{2} \mid i \in\{1,2, \ldots, m\}\right.$, where B_{2} runs over all 2-subsets of B. We define a bijection between sets X and C in the following way:

$$
\begin{array}{ll}
\text { 1. } \quad\left\{x_{1}, x_{2}, x_{3}, y_{i}\right\} \leftrightarrow\left\{a_{i}, a_{m+1}\right\}, \\
\text { 2. } & \left\{x_{1}, x_{2}, y_{i}, y_{j}\right\} \leftrightarrow\left\{a_{i}, a_{j}\right\}, \\
\text { 3. } & \left\{x_{2}, x_{3}, y_{i}, y_{j}\right\} \leftrightarrow i\left\{b_{i}, b_{j}\right\}, \\
\text { 4. } & \left\{x_{1}, x_{3}, y_{i}, y_{j}\right\} \leftrightarrow j\left\{b_{i}, b_{j}\right\}, \\
\text { 5. } & \left\{x_{1}, y_{i}, y_{j}, y_{k}\right\} \leftrightarrow i\left\{b_{j}, b_{k}\right\}, \\
\text { 6. } & \left\{x_{2}, y_{i}, y_{j}, y_{k}\right\} \leftrightarrow j\left\{b_{i}, b_{k}\right\}, \\
\text { 7. } & \left\{x_{3}, y_{i}, y_{j}, y_{k}\right\} \leftrightarrow k\left\{b_{i}, b_{j}\right\} .
\end{array}
$$

Take $Q=\{2, q\}$. In this case, formula (7) takes the following form:

$$
\binom{m, 2}{2, Q}=\frac{q^{3}}{3}+\left(m-\frac{1}{2}\right) q^{2}+\left(m^{2}-m+\frac{1}{6}\right) q
$$

This easily implies that

$$
\begin{equation*}
\binom{m, 2}{2, Q}=m^{2}+(m+1)^{2}+\cdots+(m+q-1)^{2} \tag{14}
\end{equation*}
$$

Proposition 22. The number $\binom{m, 2}{2, Q}$, where $Q=\{2, q\}$, counts the truncated square pyramidal numbers A050409.

There is a relationship of our function with coefficients of the Chebyshev polynomials of the second kind, which immediately follows from (1).
Proposition 23. Let $c(n, k)$ denote the coefficient of x^{k} of the Chebysehev polynomial $U_{n}(x)$ A008312. Then,

$$
c(n, k)=(-1)^{\frac{n-k}{2}}\binom{0, \frac{n+k}{2}}{\frac{n-k}{2}, 2}
$$

if n and k are of the same parity, otherwise $c(n, k)=0$.
Remark 24. In Janjić paper [1], the preceding connection is used to define a generalization of the Chebyshev polynomials.

We now establish a connection of our function to the Catalan numbers A000108. Using (6), we obtain $\binom{2 n, 1}{n, 2}=\binom{2 n+2}{n+1}-\binom{2 n}{n+1}=\frac{3 n+2}{n+1}\binom{2 n}{n}$. Hence,
Proposition 25. If C_{n} is the nth Catalan number, then

$$
C_{n}=\frac{1}{3 n+2}\binom{2 n, 1}{n, 2}
$$

Proof. Let $X=\left\{x_{1}, x_{2}\right\}$ be the main, and $Y=\left\{y_{1}, y_{2}, \ldots, y_{2 n}\right\}$ be the additional block of X. In the next table we write different types of $(n+1)$-insets of X and its numbers.

$$
\begin{array}{cc}
(n+1) \text {-insets } & \text { its number } \\
\left\{x_{1}, x_{2}, y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{n-1}}\right\}, & \binom{2 n}{n-1}, \\
\left\{x_{1}, y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{n-1}, y_{i_{n}}}\right\}, & \binom{2 n}{n}, \\
\left\{x_{2}, y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{n-1}, y_{i_{n}}}\right\}, & \binom{2 n}{n} .
\end{array}
$$

We thus have $\binom{2 n}{n-1}+2\binom{2 n}{n}=\frac{3 n+2}{n+1}\binom{2 n}{n}(n+1)$-insets.

Proposition 26. If F_{q} is the Fibonacci number, and $Q=\left\{F_{q}, F_{q+1}\right\}$, then

$$
\binom{1,2}{1, Q}=\binom{q+2}{3}_{F}
$$

where $\binom{q+2}{3}_{F}$ is the Fibonomial coefficient A001655.
Proof. The formula is an easy consequence of (4).
Finally, we connect our function with Dalannoy and Sulanke numbers.
The Delannoy number $D(m, n)$ A008288 is defined as the number of lattice paths from $(0,0)$ to (m, n), using steps $(1,0),(0,1)$ and $(1,1)$.

Proposition 27. We have

$$
\begin{equation*}
D(m, n)=\binom{m, n}{n, 2} \tag{15}
\end{equation*}
$$

Proof. We obviously have

$$
\binom{0, n}{n, 2}=\binom{m, 0}{0,2}=1
$$

Furthermore, for $m, n \neq 0$, using (9), we obtain

$$
\binom{m, n}{n, 2}=\binom{m-1, n}{n, 2}+\binom{m-1, n}{n-1,2}
$$

Applying (12), we have

$$
\binom{m-1, n}{n-1,2}=\binom{m-1, n-1}{n-1,2}+\binom{m, n-1}{n-1,2}
$$

It follows that

$$
\binom{m, n}{n, 2}=\binom{m-1, n}{n, 2}+\binom{m-1, n-1}{n-1,2}+\binom{m, n-1}{n-1,2}
$$

Hence, the numbers $\binom{m, n}{n, 2}$ satisfy the same recurrence relation as do the Dalannoy numbers.
Remark 28. In his paper [5], Sulanke gave the collection of 29 configurations counted by the central Dallanoy numbers.

The Sulanke numbers $s_{n, k},(n, k \geq 0)$ A064861 are defined in the following way:

$$
s_{0,0}=1, \quad s_{n, k}=0, \text { if } n<0 \text { or } k<0
$$

and

$$
s_{n, k}= \begin{cases}s_{n, k-1}+s_{n-1, k} & \text { if } n+k \text { is even } \\ s_{n, k-1}+2 s_{n-1, k} & \text { if } n+k \text { is odd }\end{cases}
$$

Proposition 29. The following equations are true:

$$
s_{n, k}= \begin{cases}\left(\frac{n+k}{2}, \frac{n+k}{2}\right), & \text { if } n+k \text { is even } ; \tag{16}\\ \left(\frac{n+k-1}{2}, \frac{n+k+1}{2}\right), & \text { if } n+k \text { is odd } . \\ 8\end{cases}
$$

Proof. According to (9), for even $n+k$, we have

$$
\binom{\frac{n+k}{2}, \frac{n+k}{2}}{k, 2}=\binom{\frac{n+k-2}{2}, \frac{n+k}{2}}{k-1,2}+\binom{\frac{n+k-2}{2}, \frac{n+k}{2}}{k, 2} .
$$

For odd $n+k$, using (13), we obtain

$$
\binom{\frac{n+k-1}{2}, \frac{n+k+1}{2}}{k, 2}=\binom{\frac{n+k-1}{2}, \frac{n+k-1}{2}}{k-1,2}+2\binom{\frac{n+k-1}{2}, \frac{n+k-1}{2}}{k, 2} .
$$

We see that the numbers on the right side of (16) satisfy the same recurrence as do the Sulanke numbers.
Equation (11) implies the following explicit formulae for the Sulanke numbers:

$$
s_{n, k}=\sum_{i=0}^{\frac{n+k}{2}} 2^{\frac{n-k+2 i}{2}}\binom{\frac{n+k}{2}}{i}\binom{\frac{n+k}{2}}{k-i}
$$

if $n+k$ is even, and

$$
s_{n, k}=\sum_{i=0}^{\frac{n+k-1}{2}} 2^{\frac{n+1-k+2 i}{2}}\binom{\frac{n+k-1}{2}}{i}\binom{\frac{n+k+1}{2}}{k-i}
$$

if $n+k$ is odd.
Remark 30. Using the method of Z transform, J. Velasco, in his paper [6, derived similar formulae for Sulanke numbers.

The following two results connect our function with the coordination sequences and the crystal ball sequences for cubic lattices.

Proposition 31. (1) The number $\binom{m, n}{n, 2}$ equals the number of solutions of the Diophantine inequality

$$
\begin{equation*}
\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m \tag{17}
\end{equation*}
$$

(2) The number $\binom{m-1, n}{n-1,2}$ equals the number of solution of the Diophantine equation

$$
\begin{equation*}
\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|=m \tag{18}
\end{equation*}
$$

Proof. Each solution $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of (17) corresponds to a $2 n$-inset T of X as follows:
If $a_{i}=0$, then both elements of the main block X_{i} are inserted in T. If $a_{i} \neq 0$, and its sign is + , then the first element from X_{i} is inserted into T. If the sign of a_{i} is - , then the second element of X_{i} is inserted into T. In this way, we insert elements from the main blocks into T.

Assume that $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{t}}, 1<i_{1}<i_{2}<\ldots<i_{t},(1 \leq t \leq n)$ are the main blocks from which, up until now, only one element is inserted into T. This means that $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}$ are all different from 0 . Also, $\left|a_{i_{1}}\right|+\left|a_{i_{2}}\right|+\cdots+\left|a_{i_{t}}\right| \leq m$. Now, we insert elements

$$
y_{\left|a_{i_{1}}\right|}, y_{\left|a_{i_{1}}\right|+\left|a_{i_{2}}\right|} \mid, \ldots, y_{\left|a_{i_{1}}\right|+\left|a_{i_{2}}\right|+\cdots+\left|a_{i_{t}}\right|}
$$

from the additional block Y into T. In this way, we obtain a $2 n$-inset T.
Now, we have to prove that this correspondence is bijective.
Let T be an arbitrary $2 n$-inset of X. If there are no elements of Y in T, then T is obtained by the trivial solutions of (17). Assume that T contains the subset $\left\{y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{s}}\right\},\left(1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq m\right)$ of Y. We also have $s \leq n$, since a $2 n$-inset of X has at most n elements from the additional block Y.

Form the solution $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of (17) in the following way: Since there are $s-n$ main blocks X_{t} from which both elements are in T, we define $b_{t}=0$. Let $X_{u_{1}}, X_{u_{2}}, \ldots, X_{u_{s}}$ be the remaining main blocks. We define $\left|b_{u_{1}}\right|=i_{1}$, and the sign of $b_{u_{1}}$ is + , if the first element of the main block X_{u} is in T, and the sign otherwise. We next define $\left|b_{u_{t}}\right|=i_{u_{t}}-i_{u_{t-1}},(t=2, \ldots, s)$, choosing the sign of $b_{u_{t}}$ in the same way as for $b_{u_{1}}$. It follows that $\left|b_{u_{1}}\right|+\cdots+\left|b_{u_{s}}\right|=i_{s} \leq m$. Hence, $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is the solution of (17), which in the preceding correspondence produces the inset T. This means that the correspondence is surjective.

It is clear that no two different solutions may produce the same inset, which means that our correspondence is injective. This proves (17).

Using (9), we have

$$
\binom{m-1, n}{n-1,2}=\binom{m, n}{n, 2}-\binom{m-1, n}{n, 2}
$$

which proves (18).
Remark 32. Note that the number of solutions of equation (18) is the number of the coordination sequence, and the solution of (17) are the numbers of the crystal ball sequence for the cubic lattice \mathbb{Z}^{n}. Also, the number of solutions of (17) equals the Dalannoy number $D(m, n)$.

Remark 33. The formulae (17) and (18) concern the following sequences in OEIS [3]: A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603, A035604, A035605, A035605.

Comparing the results of the preceding proposition, and the formulae (16) and (17) in Conway and Sloane [4], we obtain the following binomial identities:

$$
\begin{gathered}
\sum_{i=0}^{m} 2^{i}\binom{m}{i}\binom{n}{i}=\sum_{i=0}^{n}\binom{n}{i}\binom{m-i+n}{n} \\
\sum_{i=0}^{m-1} 2^{i+1}\binom{m-1}{i}\binom{n}{i+1}=\sum_{i=0}^{n}\binom{n}{i}\binom{m-i+n-1}{n-1}
\end{gathered}
$$

4. Some Configurations Counted by $\binom{m, n}{k, Q}$.

In this section, we describe a number of configurations counted by our function. The first result concerns the complete bipartite graphs.

Proposition 34. The number $M(n, q-1, q)$ equals the number of spanning subgraphs of the complete bipartite graph $K(q, n)$, having $n+q-1$ edges with no isolated vertices.

Proof. Let $A=\left(a_{i j}\right)_{n \times n}$ be $(0,1)$-matrix which has $n+q-1$ ones, and has no zero rows or zero columns. This matrix corresponds to a spanning subgraph $S=(V(S), E(S))$ of the complete bipartite graph $K(n, q)=$ $\left(V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}, E=\left\{v_{i} u_{j}: 1 \leq i \leq n, 1 \leq j \leq q\right\}\right)$, having $n+q-1$ edges, in the following way:
(1) $a(i, j)=1,(1 \leq i \leq n, 1 \leq j \leq q)$ if and only if $v_{i} u_{j} \in E(S)$.
(2) $a(i, j)=0,(1 \leq i \leq n, 1 \leq j \leq q)$, if and only if $v_{i} u_{j} \notin E(S)$.

Note that the matrix A has $n+q-1$ ones if and only if $|E(S)|=n+q-1$, and that the matrix A has no zero rows or zero columns if and only if the subgraph S has no isolated vertices.

Remark 35. The function $M(n, q-1, q)$ produces the following sequences in [3]: A001787, A084485, A084486.

Proposition 36. The number $\binom{n, 1}{n-1, n}$ equals the number of square submatrices of some n by n matrix A030662.

Proof. Let M be a square matrix of order n. If $X_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ is the main block of X, and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ is the additional block, then each n-inset of X has the form

$$
\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}, y_{j_{k+1}}, \ldots, y_{j_{n}}\right\},(k \geq 1)
$$

Every such inset corresponds to the square submatrix of M, of which the indices of rows are $i_{1}, i_{2}, \ldots, i_{k}$, and indices of columns belong to the set $\{1,2, \ldots, n\} \backslash\left\{j_{k+1}, \ldots, j_{n}\right\}$.

Proposition 37. For $i \geq 0$, the number $\binom{n, 1}{n+i-1, n}$ equals the number of lattice paths from $(0,0)$ to (n, n), with steps $E=(1,0)$ and $N=(0,1)$, which either touch or cross the line $x-y=i$.

Proof.

We may write arbitrary lattice path from $(0,0)$ to (n, n) in the form $P=P_{1} P_{2} \ldots P_{2 n}$, where each P_{i} is either E or N. Assume that s is the least index such that the end of P_{s} touches the line $x-y=i$, and let $(r, r-i),(i \leq r \leq n)$ be the touching point. It follows that $s=2 r-i$.

Consider the lattice path $Q=Q_{1} Q_{2} \ldots Q_{s} P_{s+1} \ldots P_{2 n}$, where P_{t} and Q_{t} are symmetric with respect to the line $y=x-i$. This path connects $(-i, i)$ and (n, n). Since every lattice path from $(i,-i)$ to (n, n) must cross the line $y=x-i$, conversely also holds. We thus have a bijection between the number of considered lattice paths and the number of all lattice paths from $(i,-i)$ to (n, n). The last lattice paths are of the form $L_{1} L_{2} \ldots L_{2 n}$, where $n-i$'s equal E, and $n+i$ equal N. Hence, its number is $\binom{2 n}{n+i}$, and the proof follows from (7).

Again, we add a short bijective proof. Let X be a set which have one main block $X_{1}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and the additional block $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. We need to define a bijection between all lattice paths from $(i,-i)$ to (n, n) and $(n+i)$-insets of of X. Let $\left\{x_{i_{1}}, \ldots, x_{i_{u}}, y_{j_{1}}, \ldots, y_{j_{v}},\right\}(u+v=n+i)$ be an $(n+i)$-inset of X. Define the path $L_{1} L_{2} \ldots L_{2 n}$ in the following way.

$$
L_{p}= \begin{cases}N & \text { if } p \in\left\{i_{1}, \ldots, i_{u}, j_{1}, \ldots, j_{v}\right\} \\ E & \text { otherwise }\end{cases}
$$

It is clear that this correspondence is bijective.
Remark 38. This proposition concerns the following sequences in OEIS [3]: A001791, A002694, A004310 ,A004311 A004312, A004313, A004314, A004315, A004316, A004317, A004318.

We now give a combinatorial interpretation of the formula (14).
Consider the square Q, the vertices of which are $(1,1),(1, m+q),(m+q, 1)$, and $(m+q, m+q)$. Let S be the set of squares, whose vertices are $(u, v),(u+w, v),(u, v+w),(u+w, v+w),(1 \leq w \leq q)$, and which are contained in Q.

Proposition 39. If $Q=\{2, q\}$, then the number $\binom{m, 2}{2, Q}$ equals $|S|$.
Proof. Let $X_{1}=\left\{x_{11}, x_{12}\right\}$ and $X_{2}=\left\{x_{21}, x_{22}, \ldots, x_{2 q}\right\}$ be the main blocks of X, and let $y=\left\{y_{1}, \ldots, y_{m}\right\}$ be the additional block.

We need to define a bijection between 4-insets of X and the set S. If U is a 4-inset of X, then it must contain an element from X_{2}. The length of the side of corresponding square will be the minimal i, such that $x_{2 i} \in U$. In the next correspondence, it will be denoted by d. We now define a correspondence between 4 -insets and pairs (i, j), which represent the upper right corner of the square. Note that the indices of elements in insets are always taken in increasing order.

$$
\begin{array}{lc}
\text { 1. } & \left\{x_{11}, x_{2 d}, x_{2 i}, x_{2 j}\right\} \leftrightarrow(i, j), \\
\text { 2. } & \left\{x_{12}, x_{2 d}, x_{2 i}, x_{2 j}\right\} \leftrightarrow(j, i), \\
\text { 3. } & \left\{x_{11}, x_{12}, x_{2 d}, x_{2 i}\right\} \leftrightarrow(i, i), \\
\text { 4. } & \left\{x_{11}, x_{12}, x_{2 d}, y_{i}\right\} \leftrightarrow(q+i, q+i), \\
\text { 5. } & \left\{x_{11}, x_{2 d}, x_{2 i}, y_{j}\right\} \leftrightarrow(i, q+j), \\
\text { 6. } & \left\{x_{12}, x_{2 d}, x_{2 i}, y_{j}\right\} \leftrightarrow(j+q, i), \\
\text { 7. } & \left\{x_{11}, x_{2 d}, y_{i}, y_{j}\right\} \leftrightarrow(q+i, q+j), \\
\text { 8. } & \left\{x_{12}, x_{2 d}, y_{i}, y_{j}\right\} \leftrightarrow(q+j, q+i) .
\end{array}
$$

It is easy to see that the correspondence is bijective.
Proposition 40. Let $p_{1}<p_{2}<p_{3}$ be prime numbers. If we denote $s=p_{1} p_{2} p_{3}^{2}$, then $\binom{n, 2}{1, n}$ equals the number of divisors of s^{n-1} A015237.

Proof. Let $X_{i}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i n}\right\},(i=1,2)$ be the main blocks of X, and let $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the additional block. It is enough to define a bijection between 3 -insets of X, and 3 -tuples (i, j, k), such that $0 \leq i, j \leq n-1,0 \leq k \leq 2 n-2$. A bijection goes as follows:

1. $\left\{x_{1 i}, x_{1 j}, x_{2 k}\right\} \leftrightarrow(i-1, j-1, k-1)$,
2. $\quad\left\{x_{1 k}, x_{2 j}, x_{2 i}\right\} \leftrightarrow(i-1, j-1, k-1)$,
3. $\left\{x_{1 i}, x_{2 j}, y_{k}\right\} \leftrightarrow(i-1, j-1, n+k-2),(1<k)$.
4. $\quad\left\{x_{1 i}, x_{2 j}, y_{1}\right\} \leftrightarrow(i-1, i-1, j-1)$.

Proposition 41. The number $\binom{1, n}{1,2}$ equals the number of parts in all compositions of $n+1$ A001792.
Proof. Let $X_{i}=\left\{x_{i 1}, x_{i 2}\right\},(i=1,2, \ldots, n)$ be the main blocks of X, and let $Y=\{y\}$ be the additional block. For a fixed $k,(k=0,1, \ldots, n)$, we shall prove that $(n+1)$-insets of X, in which exactly k elements of the form $x_{i 1}$ are not chosen, count the number of parts in all compositions of $n+1$ into $n-k+1$ parts. Take $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$, and consider $(n+1)$-inset U of X not containing elements $x_{i_{1}, 1}, x_{i_{2}, 1}, \ldots, x_{i_{k}, 1}$, but containing the remaining $n-k$ elements of the forme $x_{i 1}$. The remaining k of $k+1$ elements of U must be $x_{i_{1}, 2}, x_{i_{2}, 2}, \ldots, x_{i_{k}, 2}$. For the remaining element, therefore, either y or one of $x_{j 2},\left(j \neq i_{t},(t=1, \ldots, k)\right)$ must be chosen. For this, we have $(n-k+1)$ possibilities. Since i_{1}, \ldots, i_{k} may be chosen in $\binom{n}{k}$ ways, we have $(n-k+1)\binom{n}{n-k}$ insets containing $(n+1)$ elements, but not containing exactly k elements of the form $x_{i 1}$. On the other hand, the number of the compositions of $n+1$ with $n-k+1$ parts equals $\binom{n}{n-k}$. Hence, $(n-k+1)\binom{n}{n-k}$ equals the number of parts in all compositions of $n+1$ with $(n-k+1)$ parts. Since k ranges from 0 to n, the assertion follows.

We now present two configurations counted by the number $\binom{1, n-1}{1,3},(n>1)$ A027471.
Proposition 42. Given n points on a straight line, the number $\binom{1, n-1}{1,3}$ equals the number of coloring of $n-1$ points with three colors.

Proof. Let $X_{i}=\left\{x_{i 1}, x_{i 2}, x_{i 3}\right\},(i=1, \ldots, n-1)$ be the main blocks of X, and $Y=\{y\}$ be the additional block. We define a correspondence between n-insets of X and the above-defined colorings in the following way:
(1) If U is an n-inset such that $y \in U$, then U contains exactly one element from each of the main blocks. If $x_{i j} \in U$, then we color the point i by the color j. In this way, the point n remains uncolored.
(2) If $y \notin U$, then there is exactly one main block k, two elements of which are in U. In this case, the k th point remains uncolored. If $x_{k m} \notin U$, then the point n is colored by the color m. If $x_{i j} \in U,(i \neq k)$, then we color the point i by the color j.

The correspondence is clearly bijective.

Proposition 43. Assume $n>1$. Then,

$$
\begin{equation*}
\binom{1, n-1}{1,3}=\sum_{X \subseteq Y \subseteq[n]}(|Y|-|X|) \tag{19}
\end{equation*}
$$

Proof. Take k, such that $1 \leq k \leq n$. We count all pairs $X \subseteq Y \subseteq[n]$, such that $|Y|-|X|=k$. If $X_{k}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is a given k-subset of $[n]$, and if Z_{k} is arbitrary subset of $[n] \backslash\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, (\emptyset included), then $\left|X_{k} \cup Z_{k}\right|-\left|Z_{k}\right|=k$. Hence, for a fixed X_{k} there are 2^{n-k} mutually different Z_{k} 's. On the other hand, there are $\binom{n}{k}$ mutually different X_{k} 's. We conclude that there are $\binom{n}{k} 2^{n-k}$ pairs (U, V) of subsets, where $U-V$ has k elements. The sum on the right side of (19) thus equals $\sum_{k=1}^{n} k\binom{n}{k} 2^{n-k}$. It is easy to see that

$$
\sum_{k=1}^{n} k\binom{n}{k} 2^{n-k}=n 3^{n-1}
$$

On the other hand, if $X_{i}=\left\{x_{i 1}, x_{i 2}, x_{i 3}\right\},(i=1,2, \ldots, n-1)$ are the main blocks, and $Y=\{y\}$ the additional block of X, then there are obviously 3^{n-1} of n-insets of X containing y. The n-insets of X, not containing y, must contain two elements from one main block, and one element from the remaining main blocks. For this, we have $3(n-1) 3^{n-2}$ possibilities. Hence, there are $3^{n-1}+3(n-1) 3^{n-2}=n 3^{n-1} n$-insets of X.

We next prove that our function, in one particular case, counts the number of the so-called weak compositions. We let $c(n)$ denote the number of the compositions of n. It is well-known that $c(n)=2^{n-1},(n>0)$. Additionally, we put $c(0)=1$. Compositions in which some parts may be zero are called weak compositions. We let $c w(r, s)$ denote the number of the weak compositions of r in which s parts equal zero.

Proposition 44. The following formula is true:

$$
\begin{equation*}
c w(r, s)=\sum_{j_{1}+j_{2}+\cdots+j_{s+1}=r} c\left(j_{1}\right) c\left(j_{2}\right) \cdots c\left(j_{s+1}\right), \tag{20}
\end{equation*}
$$

where the sum is taken over $j_{t} \geq 0,(t=1,2, \ldots, s+1)$.
Proof. We use induction with respect to s. For $s=0$, the assertion is obvious. Assume that the assertion is true for $s-1$. Using the induction hypothesis, we may write equation (20) in the following form:

$$
\begin{equation*}
c w(r, s)=\sum_{j=0}^{n} c(j) c w(r-j, s-1) \tag{21}
\end{equation*}
$$

Let $\left(i_{1}, i_{2}, \ldots,\right)$ be a weak composition of r, in which exactly s parts equal 0 . Assume that i_{p} is the first part equal to zero. Then, $\left(i_{1}, \ldots, i_{p-1}\right)$ is a composition of $i_{1}+\cdots+i_{p-1}=j$ without zeroes. Note that j can be zero. Furthermore, $\left(i_{p+1}, \cdots\right)$ is a weak composition of $r-j$ with $s-1$ zeroes. For a fixed j, there are $c(j) c w(r-j, s-1)$ such compositions. Changing j, we conclude that the right side of (21) counts all weak compositions.

Proposition 45. Let r, s be positive integers. Then,

$$
\begin{equation*}
c w(r, s)=\binom{s+1, n-1}{s, 2} \tag{22}
\end{equation*}
$$

Proof. Collecting terms in (20), in which the indices j_{t} equal zero, we obtain

$$
c w(r, s)=\sum_{i=0}^{s}\binom{s+1}{i} \sum_{j_{1}+j_{2}+\cdots+j_{s-i+1}=r} 2^{j_{1}-1} 2^{j_{2}-1} \cdots 2^{j_{s-i+1}-1}
$$

where the sum is taken over $j_{t} \geq 1$. Hence,

$$
c w(r, s)=2^{r-s-1} \sum_{i=0}^{s} 2^{i}\binom{s+1}{i} \sum_{j_{1}+j_{2}+\cdots+j_{s-i+1}=r} 1 .
$$

Since the last sum is taken over all compositions of r with $s-i+1$ parts, we finally have

$$
c w(r, s)=2^{r-s-1} \sum_{i=0}^{s+1} 2^{i}\binom{s+1}{i}\binom{r-1}{s-i}
$$

and the proof follows from (11).
Remark 46. The formula (22) produces the following sequences in OEIS [3] A000297, A058396, A062109, A169792, A169793, A169794,A169795, A169796, A169797.

We conclude the paper with three chessboard combinatorial problems.
Proposition 47. The number

$$
\binom{n-1,2}{1, n}
$$

equals the number of possible rook moves on an $n \times n$ chessboard A035006.
Proof. Let $X_{i}=\left\{x_{i 1}, \ldots, x_{i, n}\right\},(i=1,2)$ be the main blocks of X, and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ be the additional block. We need a bijection of 3 -insets of the set X, and all the possible rook moves on an $n \times n$ chessboard. The correspondence goes as follows:

1. $\left\{x_{1 i}, x_{1 j}, x_{2 k}\right\}, \leftrightarrow[(i, k) \rightarrow(j, k)]$,
2. $\quad\left\{x_{1 k}, x_{2 i}, x_{2 j}\right\}, \leftrightarrow[(j, k) \rightarrow(i, k)]$,
3. $\left\{x_{1 i}, x_{2 j}, y_{k}\right\}, \leftrightarrow[(i, k) \rightarrow(i, j)],(j \neq k)$,
4. $\left\{x_{1 i}, x_{2 j}, y_{j}\right\}, \leftrightarrow[(i, n) \rightarrow(i, j)],(j=k)$.

According to (77), the number of possible moves equals $2(n-1) n^{2}$.

Proposition 48. If $n \geq 2$, then the number

$$
\binom{1, n}{n-2,2}
$$

equals the total number of possible bishop moves on an $n \times n$ chessboard A002492.
Proof. We give two proofs.
(1) This proof is bijective.

It is enough to count the number of moves from the field (i, j) to the field $(i+k, j+k)$, for a positive k, such that $i+k \leq n, j+k \leq n$. If N is the number of such moves, then $4 N$ is the number of all possible moves.

Let set X consists of n main blocks $X_{i}=\left\{x_{i, 1}, x_{i, 2}\right\},(i=1,2, \ldots, n)$, and the additional block $Y=\{y\}$. We define a bijective correspondence between the set of moves described above and one fourth of all $(n-2)$-insets of X. In fact, we define a bijection between the moves and the complements of $(n-2)$-insets of X. The complements are 3 -sets $\{a, b, c\}$ of X, such that no two of its elements can be in the same main block. The correspondence goes as follows:
(a) $\left\{x_{i, 1}, x_{j, 1}, x_{k, 1}\right\} \leftrightarrow[(i, j) \rightarrow(i+k-j, k)],(1 \leq i<j<k)$. In this correspondence we have $\binom{n}{3}$ elements.
(b) $\left\{x_{i, 2}, x_{j, 2}, x_{k, 2}\right\} \leftrightarrow[(j, i) \rightarrow(k, i+k-j),(i<j<k)]$. In this correspondence we also have $\binom{n}{3}$ elements.
(c) $\left\{x_{i, 1}, x_{j, 2}, y\right\} \leftrightarrow[(i, i) \rightarrow(j, j)],(i<j)$. Now, we have $\binom{n}{2}$ moves.

It is clear that all moves are counted. For this we need

$$
2\binom{n}{3}+\binom{n}{2}=\frac{n(2 n-1)(n-1)}{6}
$$

insets. On the other hand, according to (11), we have

$$
\binom{1, n}{n-2,2}=\frac{2 n(2 n-1)(n-1)}{3}
$$

which proves the assertion.
(2) We let T_{n} be an $n \times n$ chessboard, and let a_{n} denote the total number of possible bishop moves. We may consider that T_{n+1} is obtained by adding to T_{n} one row at the top, and one column at the right. We calculate $a_{n+1}-a_{n}$, which is the number of moves on T_{n+1} that are not possible on T_{n}.
(a) Firstly, if the bishop is on the main diagonal of T_{n} or below, then only one additional move is produced. We have thus obtained $\frac{n(n+1)}{2}$ new moves.
(b) For the bishop on T_{n}, and above the main diagonal, there are 3 additional moves, or $3 \frac{n(n-1)}{2}$ additional moves in total.
(c) For each bishop on T_{n+1} which is not on T_{n}, we have n additional moves. Hence, we have $n(2 n+1)$ additional moves in total.
We thus have $\frac{n(n+1)}{2}+3 \frac{n(n-1)}{2}+n(2 n+1)=4 n^{2}$ additional moves in total. Hence, the following recurrence is obtained:

$$
a_{n+1}-a_{n}=4 n^{2}
$$

It is easy to see that $\binom{1, n}{n-2,2}$ satisfies this recurrence.

Since the queen can move both as a rook and as a bishop, we have
Proposition 49. The number

$$
\binom{1, n}{n-2,2}+\binom{n-1,2}{1, n},(n \geq 2)
$$

equals the possible queen moves on an $n \times n$ chessboard. This number is $\frac{2 n(5 n-1)(n-1)}{3}$ A035005.
Finally, we give a number of additional configurations, counted by our function, and described in sequences in OEIS 3 .

Function $\binom{0, n}{k, 2}$	$\begin{gathered} \text { Numbers of sequences } \\ \text { A000918, A001787, A001788, A001789, A003472, } \\ \text { A054849, A002409, A054851, A140325, A140354, A172242 } \end{gathered}$
$\binom{1, n}{1, Q}$	A059270, A094952, A069072, A007531, A000466, A019583, A076301
$\binom{m, 1}{k, q}$	A015237, A160378, A027620, A028347, A028560, A034428, A000567, A045944, A123865, A034828
$\binom{m, 2}{k, Q}$	A080838, A015237, A091361, A017593, A063488 A039623, A116882, A081266, A202804, A194715
$\binom{m, n}{k, 2}$	A002002, A049600, A142978, A099776, A014820, A069039, A099195, A006325, A061927, A191596 A001792, A045623, A045891, A034007, A111297 A159694, A001788, A049611, A058396, A158920

References

[1] M. Janjić, An Enumerative Function, arXiv:0801.1976
[2] M. Janjić, On a Class of Polynomials with Integer Coefficients, J. Integer Seq. 11.5 (2008), Article 08.5.2.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[4] J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389
[5] R. A. Sulanke, Objects Counted by the Central Dallanoy Numbers, J. Integer Seq. 6.1 (2003), Article 03.1.5.
[6] C. Velasco, Convolution and Sulanke Numbers, J. Integer Seq. 13.1 (2010), Article 10.1.8.
Department of Mathematics and Informatics, University of Banja Luka, Republic of Srpska, BA

