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Abstract We report the number of semigroups with 9 elements up to isomor-
phism or anti-isomorphism to be 52 989 400 714 478 and up to isomorphism
to be 105 978 177 936 292. We obtained these results by combining computer
search with recently published formulae for the number of nilpotent semi-
groups of degree 3. We further provide a complete account of the automor-
phism groups of the semigroups with at most 9 elements. We use this infor-
mation to deduce that there are 148 195 347 518 186 distinct associative binary
operations on an 8-element set and 38 447 365 355 811 944 462 on a 9-element
set.
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1 Introduction

Classification of finite semigroups of a given order goes back to the 1950s when
Tamura undertook hand calculations, first for orders 2 and 3 [22] and later
for order 4 [23]. Around the same time Forsythe introduced computer search
to the problem [8] implementing a backtrack algorithm to find semigroups
on a 4 element set. Subsequently various authors refined his approach [18,
20,15,21], so that by 1994 semigroups were classified up to order 8. These
semigroups are nowadays available in the data library Smallsemi [6]. A recent
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advance in the enumeration of semigroups are the formulae derived in [7] for
the numbers of semigroups S for which |{abc | a, b, c ∈ S}| = 1 and S is not a
zero semigroup. Such semigroups are called nilpotent of degree 3. These were
used in the attempt to establish an asymptotic lower bound on the number of
all semigroups on a finite set [17]. The analysis in [21] shows that for order 8
about 99.4% of the semigroups are nilpotent of degree 3.

Research investigating the automorphism groups of semigroups of a given
order has a far briefer history. It has long been known that every group ap-
pears as the automorphism group of some semigroup which is a consequence
of the analogous result for graphs [10], but the first algorithm to compute
automorphism groups of semigroups was only presented in [1] where Araújo
et al. compute as one application of their general method the automorphism
groups of semigroups of orders at most 7.

Naturally the principal aim of the aforementioned investigations was to
consider ‘structural types’ of semigroups of the given order rather than distinct
semigroups on a set of that size. Two semigroups S and R are anti-isomorphic
if one is isomorphic to the dual of the other, that is if there exists a bijection
σ : S → R such that σ(ab) = σ(b)σ(a) for all a, b ∈ S; in this case σ is an
anti-isomorphism. For short we write (anti-)isomorphic to mean isomorphic
or anti-isomorphic and analogously write (anti-)isomorphism. Classification of
semigroups has mainly been done up to (anti-)isomorphism. The connection to
a classification up to isomorphism is provided by those semigroups which are
anti-isomorphic to themselves, that is isomorphic to their dual, called self-dual.

In this paper we enumerate semigroups of order 9 up to isomorphism and
(anti-)isomorphism. The number up to (anti-)isomorphism, 52 989 400 714 478,
was first reported in [5], without the explanation and justification that are
provided here. The number up to isomorphism is 105 978 177 936 292. We also
classify the semigroups of orders 8 and 9 by their automorphism groups (see
Tables 10 and 11) and deduce that the number of distinct semigroups on a
set with 8 elements is 148 195 347 518 186 and on a set with 9 elements is
38 447 365 355 811 944 462. We find that only a small proportion of the sub-
groups of the symmetric groups of degrees 8 and 9 are isomorphic to the
automorphism group of any such semigroup (Table 13) and prove in particu-
lar that the automorphism group of a semigroup is transitive if and only if it
is a rectangular band (Propostion 1).

We obtain semigroups and their automorphism groups by computer search.
For the enumeration it suffices to count those semigroup that are not nilpotent
of degree 3, since their numbers are known [7]. We perform a series of compu-
tations to find multiplication tables of the remaining semigroups, utilising an
approach similar to that described in [5]: we model the search as a family of
constraint satisfaction problems and execute the constraint solver Minion [12]
to get the solutions. The computer algebra system GAP [11] is used in the
preparation of the input files, in particular for calculations to avoid (anti-)iso-
morphic solutions. We also use Minion to search for automorphism groups and
GAP to identify their isomorphism types.
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In the forthcoming section we explain how we represent semigroups and iso-
morphisms respectively anti-isomorphism between them in an adequate way
for the computer search. Section 3 contains an introduction to Constraint
Satisfaction, and a description of a formal model for finding canonical repre-
sentatives of semigroups of a given order up to (anti-)isomorphism. We also
describe adaptations of the model that allow us to find automorphism groups
of semigroups, and to find self-dual semigroups. In Section 4 we replace the ini-
tial model with an equivalent family of models following an idea introduced by
Plemmons in the classification of semigroups of order 6 [20]. Additionally we
extend the idea proving a unified framework for this approach. The extended
approach allows one to incorporate mathematical knowledge more easily into
the search for particular types of semigroups, a method that we apply in Sec-
tion 5 to the enumeration of bands. In Section 6 we report our computational
experience and give detailed classification results for semigroups of order 9
by various properties. For comparative purposes, we also show the equiva-
lent results for smaller orders in certain cases. In the final section we describe
our approach to the computation of the automorphism groups of semigroups.
We present results for semigroups of order at most 9 up to isomorphism and
up to (anti-)isomorphism. We use this knowledge to calculate the numbers
of distinct semigroups on a set with at most 9 elements, and discuss which
subgroups of the symmetric group are isomorphic to the automorphism group
of a semigroup.

2 Preliminaries

In this paper the elements of a semigroup will mostly be {1, 2, . . . , n}, n ∈ N

which we abbreviate by [n]. As usual the multiplication table of a semigroup
S is the square matrix TS = (ta,b)a,b∈S with ta,b = ab. If the underlying set of
S is [n] we may assume that the rows and columns of the multiplication table
are indexed according to their position in the table which allows us to omit
the row and column header. Under this convention every square matrix of size
n with entries in [n] uniquely defines a binary operation on [n] and we denote
the set of all such matrices by Ωn.

We want to describe isomorphisms and anti-isomorphisms in terms of mul-
tiplication tables. Consider first two isomorphic semigroups S and R on [n]
and a permutation π in the symmetric group Sn which is an isomorphism from
S to R. Given that TS = (ti,j)i,j∈[n] is the multiplication table of S it follows
that ((ti,j)

π)iπ ,jπ∈[n] is the multiplication table of R. And if S and R are anti-
isomorphic and π an anti-isomorphism from S to R then ((tj,i)

π)iπ ,jπ∈[n] is
the multiplication table of R. Hence we can capture isomorphism and anti-
isomorphism in the following action φ : Ωn × (Sn × C2) → Ωn sending a
multiplication table T ∈ Ωn to

T (π,c) =

{

((ti,j)
π)iπ ,jπ∈[n] if c = 1C2

((tj,i)
π)iπ ,jπ∈[n] otherwise.

(1)
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The orbits of this action are sets of those multiplication tables which define
(anti-)isomorphic binary operations.

To avoid confusion and repetition of similar arguments we will throughout
the paper use the action given in (1) only, incorporating both isomorphism
and anti-isomorphism. Considerations up to isomorphism using an action of
Sn on Ωn are left to the reader.

3 Enumeration using Constraint Satisfaction

As in previous classifications of semigroups we search their multiplication ta-
bles. To formalise our task we use the language of Constraint Satisfaction, a
technique developed to model and solve discrete combinatorial problems, and
start by giving basic definitions.

Definition 1 A constraint satisfaction problem (CSP) is a triple (V,D,C),
consisting of a finite set V of variables, a finite set D, called the domain, of
values, and a set C containing subsets of {h | h : V → D} called constraints.

In practice, instead of being subsets of the set of all functions from V
to D, constraints are formulated as conditions defining such subsets. It then
becomes intuitively clear that one is looking for assignments of values in the
domain of a CSP to all variables such that no constraint is violated. This idea
is formalised in the next definition.

Definition 2 Let L = (V,D,C) be a CSP. A partial function p : V → D
is an instantiation. An instantiation p satisfies a constraint if there exists a
function h in the constraint, such that h(x) = p(x) for all x ∈ V on which p
is defined. An instantiation is valid, if it satisfies all the constraints in C. An
instantiation defined on all variables is total. A valid, total instantiation is a
solution to L. The number of solutions of L will be denoted by #L.

3.1 Counting all semigroups

We formulate a CSP which has those multiplication tables in Ωn as solutions
that define an associative multiplication:

CSP 1 For n ∈ N define a CSP Ln = (Vn, Dn, Cn). The set Vn consists of n2

variables {ti,j | 1 ≤ i, j ≤ n}, one for each position in an (n×n)-multiplication
table, having domain Dn = [n]. The constraints in Cn are

tti,j ,k = ti,tj,k for all i, j, k ∈ [n], (2)

reflecting associativity. (Note that (2) is a slight abuse of notation: using a
variable as an index shall refer to its value.)
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The multiplication table defined by a solution of Ln from CSP 1 will be
associative due to the constraints Cn and, in turn, the table of every associative
multiplication fulfils the constraints in Cn. Thus the valid, total instantiations
for Ln correspond to the semigroups on [n]. As the constraints Cn enforcing
associativity will be present in every following model, the solutions will always
define semigroups and are often referred to as such.

The number of all different semigroups on [n] grows rapidly with n and
most of the semigroups are nilpotent of degree 3 [17]. As the construction for
nilpotent semigroups of degree 3 on [n] is also given in [17], they do not have
to be searched for. We forbid these by requiring that not all multiplications of
three elements give the same result. Adding the constraint

∃i, j, k, q, r, s ∈ [n] : ti,tj,k 6= tq,tr,s (3)

to Cn yields the CSP, denoted as L−3
n , having as solutions all different semi-

groups on [n], which are neither nilpotent of degree 3 nor a zero semigroup.

3.2 Counting up to (anti-)isomorphism

Our primary aim is not to find all semigroups on [n], but rather to find repre-
sentatives for all types of structurally different semigroups, where structurally
different means up to (anti-)isomorphism.

With increasing n it becomes – due to the large number of solutions – very
quickly impractical to test for every two semigroups from the solutions of Ln
or L−3

n whether they are (anti-)isomorphic. Instead we shall define a canonical
solution for each class following a standard approach in the classification of
algebraic and combinatorial structures. To make the test for canonicity an
integral part of the CSP we adapt a common symmetry breaking technique
from Constraint Satisfaction.

We first need another way to describe a solution of a CSP. A literal (also
called variable-value pair) of a CSP L = (V,D,C) is an element in the
Cartesian product V × D. Literals are denoted in the form (x = k) with
x ∈ V and k ∈ D. An instantiation p corresponds to the set of literals
{(x = p(x)) | p is defined on x}, which uniquely determines p (but not ev-
ery set of literals yields an instantiation). In particular we get an action of
Sn × C2 on literals, induced from the action (1) on multiplication tables.

(ti,j = k)(π,c) =

{

(tiπ ,jπ = kπ) if c = 1C2

(tjπ ,iπ = kπ) otherwise.
(4)

Given a fixed ordering (χ1, χ2, . . . , χ|V ||D|) of all literals in V × D, an
instantiation p can be represented as a bit vector of length |V ||D|. The bit in
the i-th position is 1 if χi is contained in the set of literals corresponding to p
and otherwise the bit is 0. The resulting bit vector for the instantiation p will
be denoted by (χ1, χ2, . . . , χ|V ||D|)p.
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Sets of solutions of Ln and L−3
n that lead to (anti-)isomorphic semigroups

are orbits under the action of Sn×C2 given in (1). There is one solution in each
orbit for which the corresponding bit vector is lexicographic maximal, which
we take to be the property identifying the canonical solution in the orbit. We
denote the standard lexicographic order on vectors by ≺. We obtain a new

CSP Ln from Ln, respectively L
−3

n from L−3
n , by adding, for all non-identity

g ∈ Sn ×C2, the constraint consisting of those functions h : V → D for which

(χg1, χ
g
2, . . . , χ

g

|V ||D|)h � (χ1, χ2, . . . , χ|V ||D|)h. (5)

The solutions of the new CSPs are pairwise not (anti-)isomorphic, because Ln

respectively L
−3

n have as solutions all canonical tables from orbits of solutions
of Ln respectively L−3

n . Hence #Ln equals the number of semigroups of order

n up to (anti-)isomorphism, while #L
−3

n equals the number of semigroups
of order n that are not nilpotent of degree 3 nor a zero semigroup up to
(anti-)isomorphism.

There is a computational drawback of the method explained in this section
to avoid (anti-)isomorphic solutions: the number of canonicity constraints (5)
to be added to Ln to obtain Ln is 2n!− 1 and their length is n3, which makes
the space requirements for the formulation of the constraints grow very large
already for small values of n. We can improve the situation to some extent by
shortening in (5) the vectors on both sides depending on g without influencing
the constraint. The technique we use is based on [9, Rule 1] and the easiest
example of its application is the removal of literals which appear at the same
position in both vectors. It remains the more significant problem that the
number of constraints grows superexponentially with n. In Section 4 we will
explain an approach that ultimately overcomes this obstacle in our specific
enumeration problem.

3.3 Finding automorphisms and self-dual semigroups

A straightforward variation of the canonicity constraints (5) allows to identify
or prescribe automorphisms of solutions of the CSP. A bijection π ∈ Sn is an
automorphism if equality holds in constraint (5) corresponding to (π, 1C2

). We
can now either record for each solution for which of the constraints equality
holds; or alternatively specify the automorphism group in advance, requiring
equality for the constraints corresponding to permutations in the chosen group
and strict inequality for all other permutations.

A similar approach can be used to identify self-dual semigroups. If we
require equality to hold for at least one of the constraints (5) corresponding
to an anti-isomorphism (that is an element in Sn × C2 with non-trivial C2

component) then the solutions will be exactly the self-dual semigroups of the
original CSP.
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4 Families of CSPs

Possible enhancements of the CSP Ln are restricted by the fact that not much
can be said about the multiplication table of a semigroup in general without
knowing any of the entries. We adapt an idea from [20] to make the search
for multiplication tables of semigroups more efficient. Instead of running a
single computation, the search is split into cases depending on the diagonal of
the multiplication table. A major advantage of this approach is that not all
diagonals have to be considered when searching for semigroups up to (anti-)iso-
morphism.

In our adaptation we formulate one CSP for every diagonal. Note that the
diagonals of multiplication tables naturally correspond to functions from [n]
to itself. For a table T = (ti,j)i,j∈[n] define a function fT : [n] → [n], i 7→ ti,i.
Two tables can lead to the same function, but the correspondence between
diagonals and functions from [n] to itself is a bijection.

CSP 2 Given a function f : [n] → [n] define a CSP Lf = (Vn, Dn, Cf ) based
on Ln = (Vn, Dn, Cn) from CSP 1 by adding for all i ∈ [n] the constraint

ti,i = f(i) (6)

to Cn to obtain Cf .

The solutions to Lf are all multiplication tables in Ωn defining a semigroup
in which the square of the element i is given by f(i). In other words, the entries
on the diagonal of the multiplication table are specified a priori. We note that
for some functions f the CSP Lf will not have any solutions. For example
every finite semigroup has at least one idempotent, which yields that every
function without a fixed point leads to a CSP without solutions.

For a set F of functions from [n] to [n], denote by LF the family of CSPs
{Lf | f ∈ F}. Let Fn denote the set of all functions with at least one fixed
point from [n] to [n]. Then the CSPs in LFn

have together the same solutions
as Ln. To select a smaller subset of functions in Fn such that the corresponding
instances still contain every type of semigroup of order n up to (anti-)isomor-
phism, we use the following lemma which gives conditions in a general setting.
We shall apply it again to a different family of CSPs in Section 5. Many more
applications can be found in [4, Chapter 5].

Lemma 1 Let L = {Lx | x ∈ X} be a family of CSPs with disjoint solution
sets, and let T be a superset of all solutions. Further let

φ : T ×G→ T , (T, g) 7→ T g

be an action of a group G mapping solutions to solutions and let ψ : T → X
be a surjective function.

If each solution T of one of the CSPs in L is a solution of Lψ(T ), and if

φψ is an induced action of G on X (that is, xg = ψ(T g) for x = ψ(T ) is
well-defined), then the following statements hold.
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(i) Let Y ⊆ X contain at least one element of every orbit from X under the
induced action φψ. Then the solutions of {Ly | y ∈ Y } contain at least
one element from every orbit of solutions under the action of φ.

(ii) Let S ∈ Lx and T ∈ Ly. If S is equivalent to T , then x is equivalent to y.
(iii) Let T ∈ Lx. Then the set of solutions of Lx equivalent to T equals the

orbit of T under the stabiliser of x in G.

Proof (i): Let T be a solution of one of the CSPs in L. By assumption T
is a solution of Lψ(T ) and there exists a y ∈ Y equivalent to ψ(T ), that is
ψ(T )g = y for some g ∈ G. As ψ(T )g = ψ(T g), it follows that T g is a solution
of Ly = Lψ(T g).

(ii): Let T be equivalent to S. Thus T g = S for some g ∈ G. Note that
x = ψ(S) and y = ψ(T ) as the solution sets of different CSPs in L are disjoint.
Hence, x = ψ(S) = ψ(T g) = ψ(T )g = yg, showing that x is equivalent to y.

(iii): Let g ∈ G be arbitrary. Then T g is a solution of Lψ(T g). Since the
CSPs in L have disjoint solution sets, T g is a solution of Lx if and only if
ψ(T g) = xg = x. Hence T g is a solution of Lx if and only if g lies in the
stabiliser of x in G. ⊓⊔

Choosing L = LFn
, T to be Ωn, φ to be the action defined in (1), and ψ

as the mapping sending multiplication tables to the function corresponding to
their diagonal, satisfies the conditions in Lemma 1. To obtain a set of non-
equivalent functions in Fn under the induced action φψ is then a reformulation
of a well-known problem: the equivalence classes of functions are in one-to-one
correspondence with unlabelled functional digraphs, that is directed graphs in
which every vertex has outdegree 1. The construction of diagonals and the role
they play in the multiplication tables of semigroups is discussed in detail in [4,
Chapter 3]. If Fn denotes a set of representatives of non-equivalent functions
in Fn then each structural type of semigroup appears as solution of LFn

due
to Lemma 1(i). Moreover, different CSPs in LFn

have pairwise not (anti-)iso-
morphic solutions due to the contraposition of Lemma 1(ii). This allows us to
search independently in different CSPs for solutions up to (anti-)isomorphism.

The solutions of Lf form orbits under the stabiliser of f in Sn×C2 accord-
ing to Lemma 1(iii). Following the considerations in Section 3.2 we add the
canonicity constraint (5) for every non-identity element in the stabiliser to Lf
to obtain a CSP Lf with one solution from every orbit. Hence the solutions
of LFn

= {Lf | f ∈ Fn} form a set of semigroups on [n] up to (anti-)iso-

morphism. As before we define a CSP L−3
f by adding constraint (3) to Lf ,

ruling out zero semigroups and nilpotent semigroups of degree 3. Adding this
constraint is not necessary for all functions f , since Lf does not always allow
solutions that are nilpotent of degree 3. In particular, f must not have more
than one fixed point. The family of CSPs {L−3

f | f ∈ Fn} is denoted by L−3

Fn

and analogously we get

L−3

Fn
= {L−3

f | f ∈ Fn}. (7)

Calculating the stabiliser in Sn × C2 of a function f corresponding to
a diagonal directly under the induced action is not very efficient. This can
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be avoided by reformulating the action to a pointwise action on sets. The
reformulation was in principal already introduced in Section 3.2. Every element
g ∈ Sn × C2 induces a bijection of the literals of the CSP Lf . Take the set of
literals χf = {(ti,i = f(i)) | 1 ≤ i ≤ n} corresponding to the given diagonal
entries. Then g is in the stabiliser of f if and only if χgf = χf . It is not a
coincidence that the stabiliser of f in Sn × C2 equals the stabiliser of a set of
literals, as shown by the following result complementing Lemma 1.

Lemma 2 Let L = (V,D,C) be a CSP with non-empty solution set and let
φ : (V ×D) ×G → V ×D be an action on the literals sending instantiations
to instantiations. Denote the setwise stabiliser of χ in G by StabG(χ).

If there exists a subgroup H ≤ G such that each set of equivalent solutions
of L is an orbit under H, and if there exists a subset of all literals χ ⊆ V ×D
such that the solutions of L are the subsets of χ that are total instantiations,
then each set of equivalent solutions forms an orbit under StabG(χ).

Proof Denote the set of solutions of L by T . For every T ∈ T and every
element g ∈ StabG(χ) it follows from T g ⊆ χg = χ that T g is in T .

It remains to show that H ≤ StabG(χ). Note that χ equals the union of
all solutions. Let h ∈ H then

χh =

(

⋃

T∈T

T

)h

=
⋃

T∈T

T h =
⋃

T∈T

T = χ

and hence h ∈ StabG(χ). ⊓⊔

Lemma 2 does not directly apply to the CSPs in LFn
, because of the asso-

ciativity constraint. If one neglects this constraint, such that the solutions are
all tables fulfilling the remaining constraints, then the assumptions of Lemma 2
are satisfied. Any total instantiation for which the values on the diagonal are
in χf is a solution for f ∈ Fn, and equivalent solutions form orbits under the
stabiliser of the literals in Sn×C2. Adding the associativity constraint back in
does not change this fact, since associativity is invariant under isomorphism
and anti-isomorphism.

Having a family of CSPs depending on the diagonal is not enough to resolve
the computational bottleneck mentioned at the end of Section 3.2. The number
of constraints is still 2n!−1 if f equals the identity function on [n]. In the next
section we show how to avoid this problem by applying the technique from
Lemma 1 again.

5 Enumeration of bands

If f is the identity function idn on [n] then the solutions of Lf as defined
in CSP 2 are the bands on [n]. The structure of bands is well understood,
knowledge that we shall use together with Lemma 1 to substitute Lidn

with a
family of CSPs.
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For the search we rely on a classification of rectangular bands. Every rect-
angular band is isomorphic to a semigroup on a Cartesian product I ×Λ with
multiplication defined by (i, λ)(j, µ) = (i, µ), and each such multiplication de-
fines a rectangular band. Two rectangular bands I1 × Λ1 and I2 × Λ2 are iso-
morphic if and only if |I1| = |I2| and |Λ1| = |Λ2|, and they are anti-isomorphic
if and only if |I1| = |Λ2| and |Λ1| = |I2|. Hence, the number of rectangular
bands on [n] up to (anti-)isomorphism equals the number of divisors of n that
are less than or equal to

√
n.

Every band is a semilattice of rectangular bands [3]. To define a family of
CSPs we use the trivial consequence that the minimal D-class of a band is a
rectangular band.

CSP 3 Given a rectangular band R ⊆ [n] define a CSP BR = (Vn, Dn, CR)
based on Lidn

= (Vn, Dn, Cidn
) by adding the constraints

ti,j = ij if i, j ∈ R (8)

ti,j , tj,i ∈ R if i ∈ R, j ∈ [n] (9)

to Cidn
to obtain CR.

It is obvious that the multiplication table of every band with R as minimal
D-class is a solution of BR. Given a solution of BR all elements of R in the
corresponding band are D-related due to constraint (8) and are in the minimal
D-class due to constraint (9). Elements in the complement of R are not D-
related to elements in R, as constraint (9) implies that their two-sided ideals
differ. Consequently, the solutions of BR are exactly the bands on [n] having
R as their minimal D-class.

Let Rk
n denote the rectangular bands on all subsets of [n] of size k and let

Rn = ∪nk=1Rk
n. We then define the family of CSPs LRn

= {BR | R ∈ Rn}
which fulfils the conditions of Lemma 1. It follows that each (anti-)isomorphism
type of band will appear as a solution of exactly one of the CSPs in LRn

=

{BR | R ∈ Rn} where Rn denotes a set of representatives of rectangular bands
of order at most n up to (anti-)isomorphism.

Lemma 2 allows us to compute the symmetries of a CSP BR as a stabiliser
of literals. We see that an element in Sn × C2 is a symmetry if and only
if its restriction to R is an automorphism or anti-automorphism. Adding the
canonicity constraint (5) for every non-identity element in the symmetry group
then yields BR. The number of constraints added is maximal when R is the
left (or right) zero semigroup on [n], but then R is the unique solution of
BR because constraint (8) covers the whole multiplication table. As no actual
search is needed in this case, replacing Lidn

with the family of CSPs

LRn
= {BR | R ∈ Rn} (10)

strictly reduces the number of symmetries involved, thereby reducing the effect
of the computational bottleneck discussed at the ends of Sections 3.2 and 4.
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Table 1 Numbers of semigroups on [n] up to (anti-)isomorphism

n 2 3 4 5 6 7 8 9

# 4 18 126 1 160 15 973 836 021 1 843 120 128 52 989 400 714 478

e by number e of idempotents

1 2 5 19 132 3 107 623 615 1 834 861 133 52 976 551 026 562
2 2 7 37 216 1 780 32 652 4 665 709 12 710 266 442
3 6 44 351 3 093 33 445 600 027 68 769 167
4 26 326 4 157 53 145 754 315 14 050 493
5 135 2 961 56 020 1 007 475 18 660 074
6 875 30 395 822 176 20 044 250
7 6 749 348 692 12 889 961
8 60 601 4 389 418
9 618 111

d by minimal generator number d

1 2 3 4 5 6 7 8 9
2 2 11 48 149 441 1 230 3 464 9 945
3 4 65 588 4 506 27 743 156 898 911 672
4 9 397 8 370 549 037 18 014 631 240 061 550
5 21 2 600 239 410 1 774 277 445 791 830 876 983
6 50 18 474 50 525 311 52 140 869 887 616
7 120 142 082 56 457 790 001
8 289 1 176 005
9 697

6 The semigroups of order 9

We have used the families of CSPs introduced in the previous sections to obtain
canonical representatives for semigroups of order 9 which are not nilpotent of
degree 3 up to (anti-)isomorphism. More precisely, we solved the CSPs in

L−3

F9
\
{

Lid9

}

and LR9
, (11)

as defined in (7) and (10) obtaining a total of 23 161 651 504 solutions. The
semigroups not searched for were the zero semigroup and the nilpotent semi-
groups of degree 3 of order 9. The number of the latter is 52 966 239 062 973 [7,
Table 4]. All together there are 52 989 400 714 478 semigroups of order 9 up to
(anti-)isomorphism of which almost 99.96% are nilpotent of degree 3.

To perform the computations we used GAP [11] and Minion [12]; the former
to calculate stabilisers and also for the automated creation of the input files;
the latter to solve the CSPs. The computations took around 87 hours on a
machine with 2.66GHz Intel X-5430 processor and 8GB RAM. The code can
be found in [4, Appendix C].

6.1 Classification

We analysed the semigroups obtained by search to extract various classification
results. The numbers of semigroups with 9 elements sorted by their number
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Table 2 Numbers of semigroups of order 9 with various properties

Idpts self-dual commutative regular inverse comm.-inv.

1 613 365 656 9 940 825 2 2 2
2 8 265 721 664 080 23 23 16
3 739 317 249 330 148 129 111
4 410 158 222 637 830 567 504
5 328 937 201 060 4 136 1 750 1 555
6 223 226 148 647 17 535 3 870 3 460
7 113 160 82 481 66 822 6 582 6 137
8 38 979 30 789 217 437 7 505 7 505
9 7 510 5 994 618 111 5 994 5 994
∑

623 492 664 11 545 843 925 044 26 422 25 284

of idempotents are listed in Table 1 together with numbers for lower orders
from [21, Table 4.1], which we also verified using our search method. Also listed
in the table are numbers of semigroups by their minimal generator number.
For nilpotent semigroups of degree 3 these numbers are easily calculated from
the summands of the formula given in [7, Theorem 2.3] using the fact that
every nilpotent semigroup is generated by its indecomposable elements.

Information on the classification of semigroups of order 9 by certain prop-
erties is summarised in Table 2. The total number of commutative semigroups
agrees with the result from [13]. The selection of properties was largely in-
spired by [21, Table 4.2] except that we also report numbers of self-dual semi-
groups. We determined the latter using the method described in the second
paragraph of Section 3.3 to the CSPs from (11). In addition we needed the
number of self-dual semigroups of order 9 that are nilpotent of degree 3 which
is 606 097 491 [7, Table 5]. Note that except for the regular semigroups all
classes listed in Table 2 consist entirely of self-dual semigroups.

6.2 Up to isomorphism

As mentioned in the introduction we also obtained results for the classification
of semigroups up to isomorphism. In general this is achieved by replacing the
group Sn × C2 wherever it appears in the considerations regarding symme-
tries of the CSPs with the group Sn. In many situations we can alternatively
take advantage of the fact that we determined self-dual semigroups: twice the
number of semigroups up to (anti-)isomorphism minus the number of self-dual
semigroups yields the number of semigroups up to isomorphism. Hence there
are 105 978 177 936 292 semigroups of order 9 up to isomorphism. These semi-
groups together with those of lower orders are classified by their number of
idempotents and by their minimal generator number in Table 3.
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Table 3 Numbers of semigroups on [n] up to isomorphism

n 2 3 4 5 6 7 8 9

# 5 24 188 1 915 28 634 1 627 672 3 684 030 417 105 978 177 936 292

e by number e of idempotents

1 2 5 20 171 5 284 1 224 331 3 667 785 000 105 952 488 687 468
2 3 9 50 309 2 806 58 583 9 207 430 25 412 267 163
3 10 72 590 5 422 61 323 1 150 085 136 799 017
4 46 594 7 772 101 539 1 466 691 27 690 828
5 251 5 668 109 107 1 983 558 36 991 211
6 1 682 59 576 1 626 956 39 865 274
7 13 213 690 871 25 666 762
8 119 826 8 739 857
9 1 228 712

d by minimal generator number d

1 2 3 4 5 6 7 8 9
2 3 14 64 212 664 1 930 5 678 17 010
3 7 103 954 7 835 50 541 294 622 1 751 293
4 17 703 15 144 1 075 353 35 850 090 479 050 352
5 41 4 886 463 784 3 546 839 307 1 583 613 947 364
6 99 35 818 100 760 203 104 281 178 828 643
7 239 279 932 112 902 004 698
8 577 2 335 530
9 1 393

7 Automorphism groups and distinct semigroups on a set

To determine the automorphism groups of semigroups with at most 9 ele-
ments, we use the idea described in the first paragraph of Section 3.3. Tech-
nically there are two different methods: we can record for each semigroup the
isomorphisms that are automorphisms, or we can perform one search for every
possible automorphism group. Neither approach is by itself feasible for n = 9,
because of the large numbers of semigroups with 9 elements and of subgroups
of S9. We therefore took a mixed approach distinguishing the following mutu-
ally exclusive cases depending on the orders of automorphisms a semigroup S
allows.

(i) Aut(S) ∼= Ck2 , k ∈ N: Require strict inequality in all constraints that do
not correspond to a permutation of order 2. Require also that equality
holds for exactly 2k − 1 of the remaining constraints.

(ii) |Aut(S)| = 2k, k ∈ N, but Aut(S) 6∼= Ck2 : Require strict inequality in all
constraints that do not correspond to a permutation of order 2m,m ∈ N.
Require also that equality holds for at least one constraint corresponding
to a permutation of order 4.

(iii) |Aut(S)| contains an odd prime factor: Require that equality holds for at
least one constraint corresponding to a permutation of odd prime order.

Semigroups covered by none of the three cases must have the trivial group as
automorphism group. In the first case ⌊n/2⌋ is an upper bound for k because



14 Andreas Distler, Tom Kelsey

Table 4 Automorphism groups of semigroups of order 2

automorphism ID number up to number up to
group (anti-)isomorphism isomorphism

trivial (1, 1) 3 3
C2 (2, 1) 1 2

Table 5 Automorphism groups of semigroups of order 3

automorphism ID number up to number up to
group (anti-)isomorphism isomorphism

trivial (1, 1) 12 15
C2 (2, 1) 5 7
S3 (6, 1) 1 2

Table 6 Automorphism groups of semigroups of order 4

automorphism ID number up to number up to
group (anti-)isomorphism isomorphism

trivial (1, 1) 78 112
C2 (2, 1) 39 62

C2 × C2 (4, 2) 3 5
S3 (6, 1) 5 7
S4 (24, 12) 1 2

Table 7 Automorphism groups of semigroups of order 5

automorphism ID number up to number up to
group (anti-)isomorphism isomorphism

trivial (1, 1) 746 1221
C2 (2, 1) 342 576
C3 (3, 1) 2 2
C4 (4, 1) 1 1

C2 × C2 (4, 2) 26 46
S3 (6, 1) 33 51
D8 (8, 3) 1 2
D12 (12, 4) 4 8
S4 (24, 12) 4 6
S5 (120, 34) 1 2

Ck2 is a subgroup of Sn if and only if 2k ≤ n (see [14, Theorem 2]). We
run a separate computation for each admissible value of k, specifying a unique
isomorphism type of automorphism group, and record the number of solutions.
In the other two cases we let Minion output a list of automorphisms for each
solution and read it into GAP. We then use the identification function in the
SmallGroups library [2] to find the isomorphism types of the groups. Note that
it was not possible to exclude nilpotent semigroups of degree 3 from the various
searches as their numbers with prescribed automorphism groups are unknown.
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Table 8 Automorphism groups of semigroups of order 6

automorphism ID number up to number up to
group (anti-)isomorphism isomorphism

trivial (1, 1) 10 965 19 684
C2 (2, 1) 4 121 7 397
C3 (3, 1) 26 32
C4 (4, 1) 7 7

C2 × C2 (4, 2) 441 806
S3 (6, 1) 300 506
D8 (8, 3) 17 30

C2 × C2 × C2 (8, 5) 6 12
D12 (12, 4) 49 92
S4 (24, 12) 30 48

S3 × S3 (36, 10) 2 4
C2 × S4 (48, 48) 4 8

S5 (120, 34) 4 6
S6 (720, 763) 1 2

Table 9 Automorphism groups of semigroups of order 7

automorphism ID or number up to number up to
group order (anti-)isomorphism isomorphism

trivial (1, 1) 746 277 1 458 882
C2 (2, 1) 76 704 144 879
C3 (3, 1) 412 620
C4 (4, 1) 82 101

C2 × C2 (4, 2) 7 314 13 756
C5 (5, 1) 6 6
S3 (6, 1) 3 638 6 552
C6 (6, 2) 37 53

C4 × C2 (8, 2) 4 6
D8 (8, 3) 169 282

C2 × C2 × C2 (8, 5) 172 330
D10 (10, 1) 2 2
D12 (12, 4) 790 1 476

C2 ×D8 (16, 11) 10 20
S4 (24, 12) 277 475

C2 × C2 × S3 (24, 14) 14 28
S3 × S3 (36, 10) 24 44
C2 × S4 (48, 48) 45 86

(S3 × S3) : C2 (72, 40) 1 2
S5 (120, 34) 30 48

S3 × S4 (144, 183) 4 8
C2 × S5 (240, 189) 4 8

S6 (720, 763) 4 6
S7 5040 1 2
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Table 10 Automorphism groups of semigroups of order 8

automorphism ID or number up to number up to
group order (anti-)isomorphism isomorphism

trivial (1, 1) 1 834 638 770 3 667 253 972
C2 (2, 1) 8 176 697 16 194 638
C3 (3, 1) 17 297 31 567
C4 (4, 1) 1 270 1 907

C2 × C2 (4, 2) 188 316 363 902
C5 (5, 1) 92 110
S3 (6, 1) 69 275 131 242
C6 (6, 2) 1 249 2 086

C4 × C2 (8, 2) 105 153
D8 (8, 3) 2 238 3 876

C2 × C2 × C2 (8, 5) 5 324 10 255
C3 × C3 (9, 2) 5 6

D10 (10, 1) 28 34
D12 (12, 4) 13 583 25 883

C2 ×D8 (16, 11) 263 490
C2 × C2 × C2 × C2 (16, 14) 15 29

C3 × S3 (18, 3) 40 56
C5 : C4 (20, 3) 1 1
C4 × S3 (24, 5) 4 6

S4 (24, 12) 3 461 6 293
C2 × A4 (24, 13) 4 4

C2 × C2 × S3 (24, 14) 491 966
S3 × S3 (36, 10) 368 674
D8 × S3 (48, 38) 11 22
C2 × S4 (48, 48) 768 1 445

(S3 × S3) : C2 (72, 40) 16 28
C2 × S3 × S3 (72, 46) 12 24
C2 × C2 × S4 (96, 226) 14 28

S5 (120, 34) 277 475
S3 × S4 (144, 183) 44 84
PSL(3, 2) (168, 42) 1 1
C2 × S5 (240, 189) 44 84
S4 × S4 (576, 8653) 2 4

S6 (720, 763) 30 48
S5 × S3 (720, 767) 4 8
C2 × S6 (1440, 5842) 4 8

S7 5040 4 6
S8 40320 1 2

Tables 4, 5, 6, 7, 8, 9, 10, and 11 list the automorphism groups of semi-
groups up to (anti-)isomorphism and up to isomorphism with 2 to 9 elements.
There is one table for each order, containing one line for each isomorphism
type of automorphism group. The groups are identified by their ID in the
SmallGroups library [2], if their order is less than 2000. In all cases a structural
description, computed using the GAP command StructureDescription, is
also given. Finally, the numbers of semigroups up to (anti-)isomorphism and
up to isomorphism with the given group as automorphism group are provided.
The numbers for semigroups up to (anti-)isomorphism of order at most 7 agree
with those from [1], except for an obviously typographic omission of C2×C2 as
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Table 11 Automorphism groups of semigroups of order 9

automorphism ID or number up to number up to
group order (anti-)isomorphism isomorphism

trivial (1, 1) 52 961 873 362 324 105 923 135 799 007
C2 (2, 1) 27 478 363 462 54 944 831 554
C3 (3, 1) 6 329 218 12 562 447
C4 (4, 1) 53 591 97 613

C2 × C2 (4, 2) 33 882 706 67 399 096
C5 (5, 1) 1 547 2 295
S3 (6, 1) 7 886 998 15 634 673
C6 (6, 2) 94 521 180 353
C7 (7, 1) 18 18

C4 × C2 (8, 2) 3 286 5 478
D8 (8, 3) 59 672 110 744

C2 × C2 × C2 (8, 5) 203 597 396 962
C3 × C3 (9, 2) 291 449
D10 (10, 1) 420 626
C10 (10, 2) 108 156
C12 (12, 2) 26 34
A4 (12, 3) 3 3
D12 (12, 4) 354 352 689 994

C6 × C2 (12, 5) 850 1 496
D14 (14, 1) 4 4

C4 × C2 × C2 (16, 10) 18 32
C2 ×D8 (16, 11) 5 530 10 252

C2 × C2 × C2 × C2 (16, 14) 1 345 2 654
C3 × S3 (18, 3) 1 286 2 135

(C3 × C3) : C2 (18, 4) 1 2
C5 : C4 (20, 3) 8 9
D20 (20, 4) 36 52

C7 : C3 (21, 1) 2 2
C4 × S3 (24, 5) 105 153
C3 ×D8 (24, 10) 26 36

S4 (24, 12) 67 321 128 046
C2 × A4 (24, 13) 57 69

C2 × C2 × S3 (24, 14) 15 150 29 589
C4 ×D8 (32, 25) 1 2

(C2 × C2 × C2 × C2) : C2 (32, 27) 10 19
C2 × C2 ×D8 (32, 46) 83 166

S3 × S3 (36, 10) 6 429 12 123
GL(2, 3) (48, 29) 1 1
D8 × S3 (48, 38) 263 486
C2 × S4 (48, 48) 13 204 25 243

C2 × C2 × C2 × S3 (48, 51) 44 88
D8 ×D8 (64, 226) 1 1

(S3 × S3) : C2 (72, 40) 158 263
C3 × S4 (72, 42) 34 50

C2 × S3 × S3 (72, 46) 474 940
C4 × S4 (96, 186) 4 6

C2 × C2 × S4 (96, 226) 479 946
S5 (120, 34) 3 454 6 281

S3 × S4 (144, 183) 705 1 327
C2 × ((S3 × S3) : C2) (144, 186) 11 22

PSL(3, 2) (168, 42) 3 3
D8 × S4 (192, 1472) 10 20

S3 × S3 × S3 (216, 162) 4 8
C2 × S5 (240, 189) 755 1 423

C2 × S3 × S4 (288, 1028) 24 48
((((C2 ×D8) : C2) : C3) : C2) : C2 (384, 5602) 1 2

C2 × C2 × S5 (480, 1186) 14 28
S4 × S4 (576, 8653) 20 38

S6 (720, 763) 277 475
S5 × S3 (720, 767) 44 84

(S4 × S4) : C2 (1152, 157849) 1 2
C2 × S6 (1440, 5842) 44 84
S5 × S4 2880 4 8
S6 × S3 4320 4 8

S7 5040 30 48
C2 × S7 10080 4 8

S8 40320 4 6
S9 362880 1 2
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Table 12 Numbers of distinct semigroups on [n]

n semigroups on [n]

2 8
3 113
4 3 492
5 183 732
6 17 061 118
7 7 743 056 064
8 148 195 347 518 186
9 38 447 365 355 811 944 462

automorphism group for semigroups of order 5. The numbers for semigroups
up to (anti-)isomorphism of order 9 partially differ from those in [4, Table
A.15], where some semigroups belonging to Case (iii) above were incorrectly
counted as having trivial automorphism group.

The Minion computations to obtain the results took nearly two months on
our machine with 2.66GHz Intel X-5430 processor. To reduce the possibility
of an error we confirmed the numbers in a second run using a different setup.
Details about the code used to compute the automorphism groups can be
found in [4, Appendix C.2.3].

An immediate observation is that most of the semigroups have trivial au-
tomorphism group and their ratio to all semigroups seems to converge to 1
with increasing order, thus supporting a conjecture from [7].

We further use our results to deduce the numbers of distinct semigroups
on sets with 2 to 9 elements. For a semigroup S the number of isomorphic
semigroups on the same underlying set equals |S|!/|Aut(S)|. Hence the number
of distinct semigroups on a set with n elements equals

n!
∑

S

1

|Aut(S)|

where the summation runs over a set of representatives of semigroups of order
n up to isomorphism. New results in Table 12 are the numbers for orders 8
and 9, for lower orders we confirm the numbers available from [19, Sequence
A023814].

While it is known that every group appears as the automorphism group of
some semigroup, the number of isomorphism types of automorphism groups is
small in comparison with the number of all isomorphism types of subgroups
of the symmetric group (Table 13). Information about which types of auto-
morphism groups appear could be useful in the development of algorithms to
compute the automorphism group of a given semigroup. We observe in par-
ticular that for 2 ≤ n ≤ 9 only rectangular bands have a transitive subgroup
of Sn as automorphism group. We complete this section by showing that this
statement holds for every order.

Proposition 1 Let R be a finite semigroup. Then the following are equivalent:
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Table 13 Comparison of the numbers of isomorphism types of (a) subgroups of the sym-
metric group of degree n with (b) automorphism groups of semigroups of order n

n 1 2 3 4 5 6 7 8 9

(a) subgroups of Sn 1 2 4 9 16 29 55 137 241
(b) Aut(S) for |S| = n 1 2 3 5 10 14 24 38 65

(i) R is a rectangular band.
(ii) The automorphism group of R acts transitively on R.

Proof (i) ⇒ (ii): Let R = I × Λ. Then every element in the direct product
SI × SΛ is an automorphism of R.

(ii) ⇒ (i): Let e ∈ R be an idempotent. For every a ∈ R there exists an
automorphism π of R that sends e to a. Hence R consists entirely of idem-
potents. As a band R is a semilattice of rectangular bands. Clearly, the set
of rectangular bands, that is the set of D-classes of R, is preserved by every
automorphism. Hence every automorphism induces an automorphism of the
semilattice. The automorphism group of a finite semilattice is transitive if and
only if the semilattice is trivial. Therefore R consists of a single rectangular
band. ⊓⊔

We conclude noting that the previous proposition implies that there are
arbitrarily high orders, all prime numbers, for which the full symmetric group
is the only transitive automorphism group for a semigroup of the given order.
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