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CONSTRUCTING SKOLEM SEQUENCES VIA GENERATING TREES

SOPHIE BURRILL, LILY YEN

Abstract. A Skolem sequence is a linear arrangement of the multiset, {1, 1, 2, 2, . . . , n, n} such that if
r ∈ [n] appears in positions i and j, then |i − j| = r. We first translate the problem to a particular set of
perfect matchings, then apply the method of generating trees for open arc diagrams to generate exhaustively
all Skolem sequences of a given size. Tracking the arc length between pairs of vertices in an arc annotated
diagram is the central task. Although we do not surpass previously known enumerative results, this method
drastically reduces the search space compared to previously known methods.

1. Introduction

Arc diagrams, also known as arc annotated sequences, are structures that encode a variety of combinatorial
classes, including matchings [8], colored matchings [9], set partitions [8], permutations [5], labelled graphs
[13], tangled diagrams [11] and RNA substructures [17]. Each arc diagram is a row of increasingly labelled
vertices from 1 to n with some arcs between them, restricted according to the combinatorial class being
represented. Much recent work has focused on illustrating the equidistribution of two statistics that arise in
arc diagrams: k-crossings (a set of k mutually crossing arcs) and k-nestings (a set of k mutually nesting arcs)
([18], [8], [5], [11], [13]). Also of interest has been the enumeration of combinatorial classes parameterized
by these statistics ([8], [6], [20]). More recently, in [3], a generalized version of an arc diagram was used
for the first time to construct generating trees and functional equations for k-nonnesting set partitions and
permutations. This generalization was the open arc diagram, which allowed for arcs to have left endpoints
but no right endpoints, and was introduced for bijective purposes in [19].

Here we represent a different combinatorial class, Skolem sequences, with arc diagrams, and utilize open
arc diagrams to build a generating tree that exhaustively constructs all Skolem sequences of order n using a
strategy similar to that seen in [3]. While this direct generation scheme is restricted in practical effectiveness
due to memory limitations, we feel this method is valuable for three reasons:

(1) This is a new approach that recursively constructs Skolem sequences;
(2) The strategy is a systematic approach for various generalizations of Skolem sequences;
(3) This method fits within the larger picture of open arc diagrams being used as a tool for generation

and enumeration.

2. Plan of the paper

The paper will proceed as follows: in Section 3 Skolem sequences will be defined and background from
the literature will be put into context. In Section 4 we will depict Skolem sequences as arc diagrams,
and introduce a generalization of them called open Skolem sequences which will be critical to our generation
scheme. In Section 5 we present a label for open Skolem sequences that allows us to formalize a succession rule
for generating all descendants of an open Skolem sequences. We finish with a discussion in Section 6 which
places memory limitations into context, highlights our contribution to the study of Skolem sequences and
potential avenues for other generalizations of Skolem like sequences. Lastly Skolem sequences are viewed as a
subclass of perfect matchings and an observation is made regarding their corresponding oscillating tableaux
as seen in [8].

3. Skolem sequences

Skolem sequences were introduced in 1957 [22], when Thoralf Skolem asked about the possibility of
partitioning the set {1, 2 . . . , 2n} into n pairs (ar, br) where br − ar = r for r = 1, 2, . . . , n. Such a partition
forms what is now referred to as a Skolem sequence.
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Definition 1. A Skolem sequence of order n is an integer sequence w = (s1, s2, . . . , s2n) of the multiset
{1, 1, 2, 2, . . . , n, n} of size 2n satisfying the following conditions:

(1) For all k ∈ {1, 2, . . . n}, there exists exactly two elements si, sj in w such that si = sj = k.
(2) If si = sj = k, and i < j, then j − i = k.

We let S denote the set of all Skolem sequences and Sn to be of order n.

Example 1. When n = 4, w = (3, 4, 2, 3, 2, 4, 1, 1) ∈ S4 is a Skolem sequence.

Skolem sequences have immediate further applications in design theory, particularly, in Steiner Triple
Systems. Let STS(n) denote the set of pairs (V,B) where |V | = v and B consists of 3-subsets (‘blocks’) of V
such that any 2-subset of V is included in exactly one block. These are the Steiner Triple Systems of size n.
In 1958, Skolem [23] showed how to build an element of STS(6n+1) given an element of Sn. Specifically, if
w = (s1, . . . s2n) ∈ Sn, an STS(6n+1) can be constructed with base blocks of the form (x, x+ k, x+ j +n),
where si = sj = k, i < j and x ∈ {0, 1, 2 . . . , 6n}.

Example 2. Let n = 4. The Skolem sequence w = (3, 4, 2, 3, 2, 4, 1, 1) ∈ S4 can be written as:

i = 1 2 3 4 5 6 7 8
si = 3 4 2 3 2 4 1 1

We build base blocks of a STS(25) from this example using x = 0. Notice that s1 = s4 = 3, so our first base
block is (0, 0+3, 0+4+4) = (0, 3, 8). Similarly, s2 = s6 = 4 gives the base block (0, 0+4, 0+6+4) = (0, 4, 10);
s3 = s5 = 2 gives (0, 0 + 2, 0 + 5 + 4) = (0, 2, 9) and s7 = s8 = 1 gives (0, 0 + 1, 0 + 8 + 4) = (0, 1, 12). Thus
our base blocks for creating the STS(25) are

(0, 3, 8), (0, 4, 10), (0, 2, 9), and (0, 1, 12).

Adding integers 1, 2, . . . , 24 to each element of each base block and reducing mod 25 constructs an STS(25).

Beyond STSs, Skolem sequences can also be applied to the areas of starters [21], balanced tertiary designs
[4], factorizations of complete graphs [12] and labellings of graphs [2]. For this reason, generation of Skolem
sequences of arbitrary order is valuable, although most existing algorithms only construct a single, or at least
limited number, of Skolem sequences of order n. Despite this, since its introduction, most work has centered
around the existence of Skolem and Skolem-type sequences, the generation of individual Skolem sequences
of large order, and the strict enumeration of Skolem sequences.

Skolem proved in 1957 that Skolem sequences only exist when n ≡ 0, 1 mod 4 [22]. There are many
methods of generalizing Skolem sequences. These include adding a hook, or 0, into one or multiple positions
in the sequence, allowing λ > 2 copies of an integer, or stipulating that each integer i ∈ {1, . . . , n} must be
present λi times in the sequence. In [15], Navena Francetić and Eric Mendelsohn gave a thorough survey of
the known existence results regarding many of these generalizations.

Eldin et al. [14] gave a hill climbing algorithm to generate Skolem sequences of arbitrary order, easily
constructing Skolem sequences of order 84 in examples.

The enumeration of Skolem sequences has proven quite challenging. In 1986, Jaromı́r Abrham determined
a lower bound for the number of Skolem sequences using a construction called additive permutations. He
showed that if n ≡ 0, 1 mod 4, then |Sn| ≥ 2⌊

n

3
⌋ [1]. Other than such bounds, exact enumeration of the

number of Skolem sequences has seen most success with inclusion-exclusion algorithms [16], [24].
The exact number of Skolem sequences of order n has been computed for n ≤ 23 only (OEIS A004075),

a limited number that is mainly due to the very large search space. Before the inclusion-exclusion algo-
rithms were introduced [16] [24], enumerative results were restricted to the exhaustive generation of all (2n)!
permutations of {1, 2, . . . , 2n}, and counting the valid ones.

Strategies for exhaustive generation of Skolem sequences have also been quite limited. While [16] and
[24] used an inclusion-exclusion algorithm to enumerate Skolem sequences of order up to 23, these methods
did not create the sequences, only counted them. It has been classically believed that the only way of
generating all possible Skolem sequences of order n is to check all (2n)! permutations. Since, as stated,
Skolem sequences can be applied to many other areas, the actual construction of all Skolem sequences is very
useful. The strategy we propose here can theoretically generate all Skolem sequences up to computational
limitations. In our computing environment, we were able to actually generate all of the sequences up to size
7, and some of size 8. The main characteristic of this strategy is a significantly reduced search space.
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4. Skolem sequences as arc diagrams

As suggested by the original problem posed by Skolem, the partitioning of the set {1, 2, . . . , 2n} provides
a natural way to depict these sequences using arc diagrams. Vertices are labeled from 1 to 2n of the 2n
positions in the Skolem sequence and if entries si = sj in w ∈ Sn, then an arc (i, j) is drawn between vertices
i and j in the set partition arc diagram. In an arc diagram we define the length of a given arc (i, j), where
|j − i| = k, as k. Notice that the length of an arc in a Skolem sequence’s arc diagram is si = sj = k.

Example 3. The Skolem sequence w = (3, 4, 2, 3, 2, 4, 1, 1) ∈ S4 is depicted as the following arc diagram:

1 2 3 4 5 6 7 8

3 4 2 3 2 4 1 1w =

Once a Skolem sequence is represented this way, we can easily notice that it is not only a special case of a
set partition, but also a special case of a perfect matching. In [3] a generating tree strategy was employed to
enumerate k-nonnesting set partitions using a carefully chosen label; here a similar method will be employed
using open Skolem sequences. However, instead of a label that keeps track of a nesting index, we will track
arc lengths.

Definition 2. An open Skolem sequence of order n, ρ = (s1, . . . , sn) is a decorated integer sequence made
up of integers ≤ n, some possibly decorated with a ∗, such that the following conditions hold:

(1) If si and sj are not decorated with a ∗, then there are exactly two elements si and sj such that
si = sj = k, and |j − i| = k. In the arc diagram, an arc of length k is drawn between vertices in
positions i and j. Also, such a k is unique.

(2) If si and sj are both decorated with a ∗, then si 6= sj for j 6= i. If si = ∗k, then in the arc diagram,
vertex i = (n+1)− k is an open arc that is not closed. Notice that i is the minimum length that the
open arc must be when completed.

We denote the set of all open Skolem sequences as OS and those of order n with OSn. Notice that for
ρ ∈ OSn, |ρ| = n, while for w ∈ Sn, |w| = 2n, so the corresponding arc diagrams of a open Skolem sequence
and Skolem sequence, each of order n are n and 2n respectively.

To use the language of [3], open Skolem sequences can be represented with open arc diagrams, where the
correspondence between elements in the open Skolem sequence and vertices in the diagram is as follows:

Vertex type Arc Diagram si =

semi-opener i ∗k

opener
i j

k

closer
j i

k

Example 4. Consider the open Skolem sequence ρ = (∗7, 4, 1, 1, ∗3, 4, ∗1) ∈ OS7 and its arc diagram
representation:

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

s1 = ∗7 s2 = 4 s3 = 1 s4 = 1 s5 = ∗3 s6 = 4 s7 = ∗1ρ =

position:

From an open Skolem sequence of size n we can construct its descendants through the addition of these
two distinct vertex types to its arc diagram:
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(1) An opener (see vertices in position 1, 2, 3, 5 and 7 in Example 4) may always be added in position
n+ 1.

(2) A closer, (see vertices in positions 4 and 6 in Example 4) may be added in position n+ 1 provided
an available semi-opener exists.

Example 5. Consider two descendants of the open Skolem sequence w ∈ OS7 seen in Example 4 that will
each have order 8:

1 2 3 4 5 6 7 8
7 4 1 1 ∗4 4 ∗2 7

1 2 3 4 5 6 7 8
∗8 4 1 1 3 4 ∗2 3

Notice that any descendant of this open Skolem sequence will always have s2 = s6 = 4 and s3 = s4 = 1.

5. A generating tree for open Skolem sequences

We present a succession rule for the construction of all open Skolem sequences. To each open Skolem
sequence ρ ∈ OSn, we associate two labels:

(1) The ρ itself;
(2) A set S made up of the unstarred elements ρ (without multiplicity).

Example 6. Take ρ ∈ OS7 as seen in Example 5. Then ρ would have labels (∗7, 4, 1, 1, ∗3, 4, ∗1) and
S = {1, 4}.

Skolem sequences may be recognized as the subset of open Skolem sequences of length 2n where S =
{1, 2, . . . , n}. This may be tested using cardinalities and maximal elements:

Proposition 1. A Skolem sequence represented with labels of ρ ∈ OSn and set S satisfies the following:

(1) 2|S| = |n|;
(2) max(S) = |S|.

Proof. A Skolem sequence is made up of the elements of the multi-set {1, 1, 2, 2 . . . , n, n}. When k is present
twice in ρ ∈ OSn, no ∗ decorates it, and k is in the set S, thus Claim 1 is shown. Since each element
of a Skolem sequence is present twice, the corresponding label set is S = {1, 2, . . . n} whose cardinality is
n = max(S), thus Claim 2. �

We use these labels to generate all open Skolem sequences, and the above proposition to identify Skolem
sequences.

We use open Skolem sequences of order n to build open Skolem sequences of order n+ 1. There are two
ways of adding the next element:

(1) Adding an element with a ∗ decorating it at the end.
(2) Adding a copy of one of the ∗ elements to alter the ∗ element to a non-decorated state, provided

that its value is not already present in the S label set:

In the language of [3], (1) corresponds to the addition of an opener and (2) to the addition of a closer.

Example 7. In Examples 5 and 4 we saw an open Skolem sequence of order 7 and two of its children. In
Example 6, we established that the labels of the given ρ would be: (∗7, 4, 1, 1, ∗3, 4, ∗1) and {1, 4}. The labels
of the first descendant seen in Example 4 is (7, 4, 1, 1, ∗4, 4, ∗2, 7) and {1, 4, 7}, while the labels of the second
are (∗8, 4, 1, 1, 3, 4, ∗2, 3) and {1, 3, 4}.

We describe the succession rule for constructing open Skolem sequences of order n + 1 from an open
Skolem sequence of order n:

(1) To add an opener: To each ∗k ∈ ρ ∈ OSn → ∗(k + 1), and ∗1 is appended to ρ to create a
µ ∈ OSn+1.

(2) To add a closer: For each ∗j ∈ ρ ∈ OSn, check if j ∈ S. If yes, stop. If no:
• For all ∗k 6= ∗j, ∗k → ∗(k + 1),
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• ∗j → j,
• j is appended to ρ ∈ OSn to create a µ ∈ OSn+1, and
• S → S ∪ {j}.

We depict the start of the generating tree in Figure 1.

∅

(), {}

(*1), {}

(*2,*1),{} (1,1),{1}

(∗3, ∗2, ∗1), {} (∗3, 1, 1), {1} (2, ∗2, 2), {2} (1, 1, 1∗), {1}

Figure 1. The start of the generating tree.

Example 8. We consider the open Skolem sequences that arise from adding a vertex to ρ = (5∗, 4∗, 1, 1, 1∗) ∈
OS5 in Figure 2.

1 2 3 4 5

(∗5, ∗4, 1, 1, ∗1), {1}

→

1 2 3 4 5 6

(∗6, ∗5, 1, 1, ∗2, ∗1), {1}

1 2 3 4 5 6

(∗6, 4, 1, 1, ∗2, 4), {1, 4}

1 2 3 4 5 6

(5, ∗5, 1, 1, ∗2, 5), {1, 5}

Figure 2. w = (5∗, 4∗, 1, 1, 1∗) ∈ OS5 and its descendants.

6. Discussion

Programming: The succession rule has been successfully programmed, see [7] or Appendix 1, in Maple
16 using a 2 Intel Xeon. The generating tree produces open Skolem sequences which are then searched for
Skolem sequences, using Proposition 1. The total number of open Skolem sequences is:

1, 2, 4, 8, 20, 52, 146, 430, 1306, 4176, 13832, 47452, 169044, 619672, 234225

Note that the sequence made up of |OSn| is not found in the Online Encycolpedia of Integer Sequences.
Enumerating the number of open Skolem sequences requires the use of more memory than is given with our
large computing power, which runs out after over 30GBs are used, and time is less than 10 minutes. Due to the
nature of our labelling system insufficient memory to compute OS16 is unsurprising, if disappointing. That
said, while we have not pushed the enumeration of Skolem sequences further, we have dramatically reduced
the potential search space for future endeavors. For example, historically when exhaustively searching for all
Skolem sequences of order n = 5, all (2 · 5)! = 3, 628, 800 permutations were considered. Using our method,
only 4176 open Skolem sequences must be searched to find Skolem sequences of order n = 5. We anticipate
that there are less than 10 million open Skolem sequences to search in order to find the next exhaustive
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set of all 504 Skolem sequences of order 8, while classically there would be over 20 × 1012 permutations to
consider.

Beyond this purely enumerative benefit of our method, it should be noted that through our generating tree,
Skolem sequences are also exhaustively constructed, a definite goal in the field of design theory. Furthermore,
this method lends itself to reasonable modifications that the authors are confident will lead to exhaustive
generation and construction of other Skolem-type sequences.

Indeed there are a variety of methods for extending Skolem sequences, including adding in hooks, or 0’s,
in the sequence, and allowing more than one pair of entries to have value k. In the latter, this could include
having entries with the same value k all be k units apart, or different pairs with the same value could be
independent of each other, see [10]. In each case, with some careful bookkeeping, we are confident the
succession rules may be carefully manipulated to include these extensions.

While the enumeration of Skolem sequences, and various generalizations of Skolem sequences has been
considered to varying degrees in various algorithms ([10], [24], [16]), the strategy presented here is a departure
from them in two different ways. Firstly, Skolem sequences of size n+1 are built from open Skolem sequences
of size n, and all may exhaustively be generated in this manner. Secondly, and perhaps more importantly,
this method in which the sequence is represented as an arc diagram and then a label is used in order to
produce a succession rule for a generating tree speaks to a larger picture in which arc diagrams provide a
unifying theory. By encoding Skolem sequences in arc diagrams, we may use this framework for construction
and enumeration. This framework highlights the potential for many other combinatorial classes to be studied
in this manner.

Remark: In [8], matchings are encoded in oscillating tableaux with integer fillings in order to prove
equidistribution between crossing and nesting statistics. A Skolem sequence, when viewed as a subset of
matchings, corresponds to those oscillating tableaux in which each integer filling appears k times for every
k ∈ {1, 2, . . . n}.

Example 9. We have seen the Skolem sequence w = (3, 4, 2, 3, 2, 4, 1, 1) ∈ S4 drawn as an arc diagram:

1 2 3 4 5 6 7 8
w = 3 4 2 3 2 4 1 1

Its filled oscillating tableaux is as follows:

∅ 1 1 2 1 2

3

2 3 2 ∅ 7 ∅

We see that the 7 appears once, the 3 appears twice, the 1 appears three times, and the 2 four times. The
presence of n different integers, appearing each of the {1, . . . , n} times is unsurprising for a Skolem sequence.
This is because an arc of length k enters the tableaux at the presence of its closer, (when read right to left)
and does not leave until its opener has been reached.

Future work includes the construction of generalized Skolem-type sequences using this method and the
translation of the succession rule to a functional equation for faster enumeration.
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[15] Nevena Francetić and Eric Mendelsohn. A survey of Skolem-type sequences and Rosa’s use of them. Math. Slovaca,

59(1):39–76, 2009.
[16] Mike Godfrey. Background to the method. http://legacy.lclark.edu/~miller/langford/godfrey/method.html,

March 2002. [Online; accessed 16-November-2012].

[17] Emma Y. Jin and Christian M. Reidys. Irreducibility in RNA structures. Bull. Math. Biol., 72(2):375–399, 2010.
[18] Christian Krattenthaler. Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes. Adv. in

Appl. Math., 37(3):404–431, 2006.
[19] Anisse Kasraoui and Jiang Zeng. Distribution of crossings, nestings and alignments of two edges in matchings and

partitions. Electron. J. Combin., 13(1):Research Paper 33, 12 pp. (electronic), 2006.
[20] Marni Mishna and Lily Yen. Set partitions with no m-nesting. To appear in W-80 Birthday Conference Volume, June

2011.
[21] David A. Pike and Nabil Shalaby. Starters, Skolem sequences and perfect 1-factorizations (progress report). In Proceed-

ings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca
Raton, FL, 2000), volume 145, pages 147–155, 2000.

[22] Thoralf Skolem. On certain distributions of integers in pairs with given differences. Math. Scand., 5:57–68, 1957.
[23] Thoralf Skolem. Some remarks on the triple systems of Steiner. Math. Scand., 6:273–280, 1958.
[24] Jeppe Winther-Larsen. Counting the number of Skolem sequences using inclusion-exclusion. Master’s thesis, IT-

university of Copenhagen, 2009.

Appendix A. Maple code

### Preamble ###########

‘type/openSkolemlabel‘ := [ list(integer), set(posint) ];

incrementstar := proc(n::integer)

if n >= 0 then

n;

else

n - 1;

fi;

end;

addopener := proc(L::openSkolemlabel)

[ [ op(map(incrementstar, L[1])), -1], L[2] ];

end;

addcloser := proc(L::openSkolemlabel)

seq( addcl(L, i), i=1..nops(L[1]) );

end;

addcl := proc(L::openSkolemlabel, i::posint)

local K;

if L[1][i] >= 0 or member(-L[1][i], L[2]) then

return NULL;
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fi;

K := L[1];

K[i] := -K[i];

[ [ op(map(incrementstar, K)), -L[1][i] ],

L[2] union { -L[1][i] } ];

end;

Skolem := proc(L::openSkolemlabel)

local n;

n := nops(L[1])/2;

type(n, integer)

and

L[2] = {$1..n};

end;

### end preamble ###############

L := [ [], {} ];

to 20 do

L := op(map(addopener, [L])), op(map(addcloser, [L]));

K := select(Skolem, [L]);

n := nops(K);

if n > 0 then

print( n, op(K) );

fi;

od:

(S. Burrill, L. Yen) Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
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