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Abstract

We study classes of set partitions determined by the avoidance of multiple pat-
terns, applying a natural notion of partition containment that has been introduced
by Sagan. We say that two sets S and T of patterns are equivalent if for each n
the number of partitions of size n avoiding all the members of S is the same as the
number of those that avoid all the members of T .

Our goal is to classify the equivalence classes among two-element pattern sets
of several general types. First, we focus on pairs of patterns {σ, τ}, where σ is
a pattern of size three with at least two distinct symbols and τ is an arbitrary
pattern of size k that avoids σ. We show that pattern-pairs of this type determine
a small number of equivalence classes; in particular, the classes have on average
exponential size in k. We provide a (sub-exponential) upper bound for the number
of equivalence classes, and provide an explicit formula for the generating function
of all such avoidance classes, showing that in all cases this generating function is
rational.

Next, we study partitions avoiding a pair of patterns of the form (1212, τ), where
τ is an arbitrary pattern. Note that partitions avoiding 1212 are exactly the non-
crossing partitions. We provide several general equivalence criteria for pattern pairs
of this type, and show that these criteria account for all the equivalences observed
when τ has size at most six.

In the last part of the paper, we perform a full classification of the equivalence
classes of all the pairs {σ, τ}, where σ and τ have size four.
Keywords: set partition, pattern avoidance, Wilf-equivalence class
2010 Mathematics Subject Classification: 05A18, 05A15, 05A19

1. Introduction

If n ≥ 1, then a partition of [n] = {1, 2, . . . , n} is any collection of nonempty,
pairwise disjoint subsets, called blocks, whose union is [n]. (If n = 0, then there
is a single empty partition of [0] = ∅ which has no blocks.) A partition Π having
exactly k blocks is called a k-partition. We will denote the set of all k-partitions of
[n] by Pn,k and the set of all partitions of [n] by Pn. The number n is referred to as
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2 ON MULTIPLE PATTERN AVOIDING SET PARTITIONS

the size of a partition. A partition Π is said to be in standard form if it is written
as Π = B1/B2/ · · · , where min(B1) < min(B2) < · · · . One may also represent
the partition Π = B1/B2/ · · · /Bk ∈ Pn,k, equivalently, by the canonical sequential
form π = π1π2 · · ·πn, wherein j ∈ Bπj

, 1 ≤ j ≤ n (see, e.g., [25]). Throughout this
paper, we will represent set partitions by their canonical forms and consider the
problem of avoidance on these words.

For instance, the partition Π = 1, 3, 8/2, 5/4, 7/6 ∈ P8,4 has the canonical se-
quential form π = 12132431. Note that π = π1π2 · · ·πn ∈ Pn,k is a restricted
growth function from [n] to [k] (see, e.g., [18] for details), meaning that it satis-
fies the following three properties: (i) π1 = 1, (ii) π is onto [k], and (iii) πi+1 ≤
max{π1, π2, . . . , πi} + 1 for all i, 1 ≤ i ≤ n− 1. We remark that restricted growth
functions are often encountered in the study of set partitions [23, 26] as well as
other related topics, such as Davenport-Schinzel sequences [4, 19].

Let σ = σ1σ2 · · ·σn and τ = τ1τ2 · · · τm be two partitions, represented by their
canonical sequences. We say that σ contains τ if σ contains a subsequence that is
order-isomorphic to τ ; that is, σ has a subsequence σf(1), σf(2), . . . , σf(m), where
1 ≤ f(1) < f(2) < · · · < f(m) ≤ n, such that for each i, j ∈ [m], we have
σf(i) < σf(j) if and only if τi < τj and σf(i) > σf(j) if and only if τi > τj . Otherwise,
we say that σ avoids τ . In this context, τ is usually called a pattern. For example,
the partition σ avoids the pattern 1212 if there exist no indices i < j < k < ℓ
with σi = σk < σj = σℓ and avoids 1232 if there exist no such indices with
σi < σj = σℓ < σk.

The concept of pattern-avoidance described above was introduced by Sagan [23],
who considered, among other topics, the enumeration of partitions avoiding patterns
of size three. Several other notions of pattern-avoidance of set partitions have been
studied, see, e.g., the works of Klazar [8], Chen et al. [3], or Goyt [5].

We will use the following notation. If {τ1, τ2, . . .} is a set of patterns, then let
Pn(τ1, τ2, . . .) and Pn,k(τ1, τ2, . . .) denote the subsets of Pn and Pn,k, respectively,
which avoid all of the patterns. We will denote the cardinalities of Pn(τ1, τ2, . . .)
and Pn,k(τ1, τ2, . . .) by pn(τ1, τ2, . . .) and pn,k(τ1, τ2, . . .), respectively. From the
definitions, note that pn(τ1, τ2, . . .) =

∑
k≥0 pn,k(τ1, τ2, . . .). In accordance with the

terminology first used for permutations (see, e.g., [10]), we will say that two sets
of partition patterns T = {τ1, τ2, . . . , } and R = {ρ1, ρ2, . . .} are (Wilf) equivalent,
denoted by T ∼ R, if pn(τ1, τ2, . . .) = pn(ρ1, ρ2, . . .) for all n ≥ 0.

The pattern avoidance question is a rather broad one in enumerative combina-
torics and has been the topic of much research, starting with Knuth [9] and Simion
and Schmidt [24] on permutations. See also, for example, [20, 22, 16]. More re-
cently, the problem has been considered on further structures such as k-ary words
and compositions.

Jeĺınek and Mansour [6] have determined all the equivalences among singleton
sets of patterns of size at most seven. In this paper, we focus on classes of partitions
determined by two forbidden patterns. We address three main problems. First, in
Section 2 we consider set partitions avoiding a pair of patterns {σ, τ}, where σ is a
pattern of size three and τ is an arbitrary pattern not containing σ. The situation
when σ = 111 corresponds to single-pattern avoidance in partial matchings, which
has been previously addressed [7]. We therefore restrict our attention to the cases
when σ 6= 111.
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We derive general criteria for Wilf-equivalence between pairs of patterns {σ, τ}
of this form. In particular, we show that when τ has size k, these pairs form at
most ξk +1 equivalence classes, where ξk is the number of integer partitions having
no summand equal to 2 [21, sequence A027336]. This implies that on average the
equivalence classes have exponential size. For small values of k (up to k = 20), we
are able to verify that the estimate ξk + 1 is sharp and all the equivalence classes
may be described explicitly.

We also derive explicit formulas for the generating functions
∑

n≥0 pn(σ, τ)x
n,

where σ 6= 111 is of size three and τ is any pattern not containing σ. In particular,
we show that all these generating functions are rational.

Next, in Section 3, we study the equivalences among pairs of patterns of the form
{1212, τ}, where τ is a pattern that avoids 1212. Note that the partitions avoiding
1212 correspond to the classical non-crossing partitions. We may therefore regard
this section as the study of single-pattern avoidance among non-crossing partitions.
We derive several general criteria for equivalences of pairs of patterns of this form.
It turns out that some of the equivalence classes have size that is exponential in
the size of τ . We verify, with the help of computer enumeration, that our criteria
are sufficient to fully describe the equivalences among the pairs {1212, τ} for τ of
size at most six.

Finally, in Section 4, we perform a systematic classification of the equivalences
among the pairs {σ, τ}, where σ and τ are distinct patterns of size four. Partial
results in this direction have already been provided by previous research [11, 12, 15].
We provide several new results concerning the avoidance of two or more patterns,
including ones involving infinite families of patterns. By combining these results
with some specific cases which are worked out, we are able to provide a complete
solution to the problem of identifying all of the equivalence classes corresponding
to two patterns of size four.

We shall employ the following notation: if τ = τ1, τ2, . . . , τn is a sequence of
numbers, then τ + 1 refers to the sequence τ1 + 1, τ2 + 1, . . . , τn + 1. Also, if a is a
symbol and q ≥ 0 an integer, then aq refers to the constant sequence a, a, . . . , a of
length q.

2. Avoiding a pattern of size three and another pattern

Our first main goal is to study classes of partitions that avoid a pair of patterns
(σ, τ), where σ is a pattern of size three.

Note first that a set partition avoids 111 if and only if each of its blocks has size
at most two. Such a partition is known as a partial matching. Pattern avoid-
ance in partial matchings has already been addressed in a previous paper [7].
We therefore focus on the remaining patterns of size three, that is, we assume
σ ∈ {112, 121, 122, 123}. We may also assume that τ does not contain σ, otherwise
Pn(σ, τ) = Pn(σ).

Let us remark that Sagan [23] has shown that for any pattern σ from the set
{112, 121, 122, 123}, we have pn(σ) = 2n−1.

Let us say that a pair of patterns (σ, τ) is a (3, k)-pair if σ ∈ {112, 121, 122, 123}
and τ is a pattern of size k that avoids σ. Our first results deal with general criteria
for equivalences among (3, k)-pairs. These criteria will apply to (3, k)-pairs for any
value of k. For values of k up to k = 20, we have verified that our criteria account
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for all equivalences among the (3, k)-pairs. We conjecture that this is the case for
larger k as well.

We also give an explicit formula for the generating function of partitions avoiding
an arbitrary given (3, k)-pair.

2.1. The patterns 112 and 121. Let us first consider the (3, k)-pairs (σ, τ), where
σ is equal to either 121 or 112. We will show that the two avoidance classes Pn(121)
and Pn(112) are closely related. More precisely, these two classes form isomorphic
posets under the containment relation.

Notice that a partition τ avoids 121 if and only if τ is a weakly increasing pattern
of the form 1a12a2 · · ·mam for some m ≥ 1 and some sequence a = (a1, . . . , am) of
positive integers. In particular, there is a bijection between 121-avoiding partitions
of size n and sequences of positive integers whose sum is n.

Similarly, a partition τ avoids 112 if and only if τ has the form 12 · · ·mmam−1(m−
1)am−1−1 · · · 1a1−1, for some m ≥ 1 and some sequence a = (a1, . . . , am) of positive
integers. We use the term composition to refer to any finite sequence of positive
integers. The size of a composition is the sum of its components, and the length of
a composition is the number of its components.

For a composition a = (a1, . . . , am), let τ121(a) denote the 121-avoiding pattern
1a12a2 · · ·mam and let τ112(a) denote the 112-avoiding pattern 12 · · ·mmam−1(m−
1)am−1−1 · · · 1a1−1. Note that τ112(a) is the unique 112-avoiding partition with m
blocks whose i-th block has size ai, and similarly for τ121(a).

Let a = (a1, . . . , am) and b = (b1, . . . , bk) be two compositions. We say that
b dominates a, if there is an m-tuple of indices i(1), i(2), . . . , i(m) such that 1 ≤
i(1) < i(2) < · · · < i(m) ≤ k, and aj ≤ bi(j) for each j ∈ [m]. In other words,
b dominates a if b contains a subsequence of length m whose every component is
greater than or equal to the corresponding component of a.

We present the following simple fact without proof.

Observation 2.1. For any two compositions a and b, the following are equivalent:

• b dominates a,
• τ112(b) contains τ112(a),
• τ121(b) contains τ121(a).

Observation 2.1 shows that the classes Pn(112) and Pn(121) ordered by con-
tainment and the set of all integer compositions ordered by domination are three
isomorphic posets, with size-preserving isomorphisms identifying a composition a
with τ112(a) and τ121(a).

Corollary 2.2. For any integer composition a, the (3, k)-pairs (112, τ112(a)) and
(121, τ121(a)) are equivalent.

For two compositions a and a′, let us write a
d∼ a′ if for every n, the number of

compositions of size n dominating a is equal to the number of compositions of size

n dominating a′. Observation 2.1 implies that a
d∼ a′ if and only if (112, τ112(a)) ∼

(112, τ112(a
′)) which is if and only if (121, τ121(a)) ∼ (121, τ121(a

′)).
For a composition a = (a1, . . . , am), let M(a) denote the multiset {a1, . . . , am}.

Lemma 2.3. Let a and a′ be two compositions such that M(a) = M(a′). Then

a
d∼ a′.
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Proof. It is enough to prove the lemma in the case when a′ is obtained from a by
exchanging the order of two consecutive elements. Let m be the length of a and
of a′. Suppose a equals (a1, . . . , am), and that a′ is obtained from a by exchanging
the components ar and ar+1 for some r < m, so that we have

a′ =(a1, . . . , ar−1, ar+1, ar, ar+2, . . . , am).

We prove the lemma bijectively. Let b = (b1, . . . , bk) be a composition of size
n that dominates a. Let i ∈ [k] be the smallest index such that (b1, . . . , bi) dom-
inates (a1, . . . , ar−1). Let j ∈ [k] be the largest index such that (bj+1, . . . , bk)
dominates (ar+2, . . . , am). Since b dominates a, we know that i + 2 ≤ j and that
(bi+1, bi+2, . . . , bj) dominates (ar, ar+1). Consider now a composition b′ obtained
from b by reversing the order of the elements bi+1, bi+2, . . . , bj , that is,

b′ = (b1, . . . , bi, bj , bj−1, . . . , bi+1, bj+1, . . . , bk).

Clearly, b′ dominates a′, and the mapping b 7→ b′ is a size-preserving bijection
between compositions that dominate a and those that dominate a′. �

Lemma 2.4. Let a = (a1, . . . , am) be a composition, with am = 2. Define another

composition a′ = (a1, . . . , am−1, 1, 1). Then a
d∼ a′.

Proof. Fix a size n. We provide a bijection f between compositions of size n that do
not dominate a and compositions of size n that do not dominate a′. Suppose that
b = (b1, . . . , bk) is a composition of size n that does not dominate a. If b does not
even dominate (a1, . . . , am−1), then b does not dominate a′, and we put f(b) = b.

Suppose now that b dominates (a1, . . . , am−1). Let i ∈ [k] be the smallest index
such that (b1, . . . , bi) dominates (a1, . . . , am−1). Since b does not dominate a, we
know that all of the components (bi+1, bi+2, . . . , bk) must be equal to 1. Define
a new composition b′ = f(b) obtained from b by replacing all the components
(bi+1, bi+2, . . . , bk) with a single component equal to bi+1 + bi+2 + · · ·+ bk (if i = k,
then we put b′ = b). Clearly, the new composition b′ has size n and does not
dominate a′, and the mapping f is the required bijection. �

From Lemmas 2.3 and 2.4, we see that every composition a is
d∼-equivalent to

a composition a′ that has the property that its components are weakly decreasing
and none of them are equal to 2. Let us call such a composition a′ a 2-free integer
partition. Let ξk be the number of 2-free integer partitions of size n. Note that
the sequence (ξk)k≥0 is listed as A027336 in the OEIS [21]. Basic estimates on the

number of integer partitions (see, e.g., [1]) imply the bound ξk = 2O(
√
k).

Let a = (a1, a2, . . . , aℓ) be an integer composition, and let Fa(x, y) be the gen-
erating function for the number of partitions of [n] having exactly k blocks and
avoiding {112, τ112(a)}, i.e.,

Fa(x, y) =
∑

n,k≥0

pn,k(112, τ112(a))x
nyk.

We may give an explicit formula for Fa(x, y) as follows.

Theorem 2.5. We have

(2.1) Fa(x, y) =

ℓ−1∑

j=0

xa1+···+ajyj(1− x)
∏j+1

i=1 (1− x(1 + y) + xaiy)
.
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Proof. Let b be the integer composition (a2, a3, . . . , aℓ). Let π be a nonempty
partition from the set Pn,k(112, τ112(a)), and let r be the size of the first block of π.
We consider the following two cases:

(1) 1 ≤ r ≤ a1 − 1,
(2) r ≥ a1.

In the first case, π must be of the form 1π′1r−1, where π′ is some partition on the
letters {2, 3, . . .} avoiding {112, τ112(a)}, which implies that the generating function
counting these partitions is given by

xyFa(x, y) + x2yFa(x, y) + · · ·+ xa1−1yFa(x, y) =
x− xa1

1− x
yFa(x, y).

In the second case, π must be of the form 1π′1r−1, where π′ is now a partition
on the letters {2, 3, . . .} avoiding {112, τ112(b)} since r ≥ a1. Thus, the generating
function counting the partitions in this case is given by

xa1yFb(x, y) + xa1+1yFb(x, y) + · · · = xa1y

1− x
Fb(x, y),

where we put Fb(x, y) = 0 in the case ℓ = 1. Adding the contributions from the
two cases above gives

Fa(x, y) = 1 +
x− xa1

1− x
yFa(x, y) +

xa1y

1− x
Fb(x, y),

which may be rewritten as

(2.2) Fa(x, y) =
1− x

1− x(1 + y) + xa1y
+

xa1y

1− x(1 + y) + xa1y
Fb(x, y).

Iterating recurrence (2.2) yields (2.1), as desired. �

2.2. The pattern 123. Consider now the (3, k)-pairs (123, τ), for a 123-avoiding
partition τ . Of course, a partition avoids 123 if and only if it has at most two
blocks. We will distinguish two cases, depending on whether τ has a single block
or whether it has two blocks.

The first case is trivial:

Observation 2.6. A partition avoids the pair of patterns (123, 1k) if and only it
has at most two blocks and each block has size at most k − 1. In particular, the
generating function of the class Pn(123, 1

k) is given by the formula

∑

n≥0

pn(123, 1
k)xn = 1 +

k−1∑

a=1

k−1∑

b=0

(
a+ b− 1

b

)
xa+b.

To deal with the pairs (123, τ), where τ has two blocks, we first prove a more
general theorem.

Theorem 2.7. Let m ≥ 2 be an integer. Let τ = τ1τ2 · · · τk be a partition with
exactly m blocks and with the property that τi = i for each i ∈ [m − 1]. Then the
generating function

∑
n≥0 pn(12 · · · (m+ 1), τ)xn is equal to


∑

n≥0

pn(12 · · · (m+ 1))xn


 −

(
x

1− (m− 1)x

)k−m
x

1−mx

m−1∏

j=1

x

1− jx
.

In particular, the generating function depends on the size of τ but not on τ itself.
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Proof. Let Qn be the set of partitions of size n that avoid 12 · · · (m+1) but contain
τ ; in other words, Qn = Pn(12 · · · (m + 1)) \ Pn(12 · · · (m + 1), τ). Define the
generating function G(x) =

∑
n≥0 |Qn|xn. To prove the theorem, we need to prove

the formula

(2.3) G(x) =

(
x

1− (m− 1)x

)k−m
x

1−mx

m−1∏

j=1

x

1− jx
.

Consider a partition π ∈ Qn. Clearly π must have exactly m blocks. Since
π contains τ as a pattern, and since τ has m blocks as well, we see that π even
contains τ as a subsequence. Recall that τi = i for i ∈ [m−1], that is, τ has the form
12 · · · (m− 1)τmτm+1 · · · τk. By fixing the leftmost occurrence of the subsequence τ
in π, we see that π can be decomposed as

π = 1w12w23w3 · · · (m− 1)wm−1τmwmτm+1wm+1 · · ·wk−1τkwk,

where the wj ’s are determined as follows:

• for 1 ≤ j < m− 1, wj is an arbitrary word over the alphabet [j],
• for m− 1 ≤ j < k, wj is an arbitrary word over [m] \ {τj+1}, and
• wk is an arbitrary word over [m].

Conversely, any sequence with such a decomposition is an element of Qn. This
directly implies formula (2.3). �

Applying Theorem 2.7 to the case m = 2, and noting that
∑

n≥0 pn(123)x
n =

(1− x)/(1− 2x), we get the next result.

Corollary 2.8. For every k, the (3, k)-pairs of the form (123, τ) where τ has two
blocks are all equivalent, and the generating function of any such pair is

∑

n≥0

pn(123, τ)x
n =

1− x

1− 2x
−
(

x

1− x

)k−1
x

1− 2x
=

k−1∑

i=0

(
x

1− x

)i

.

Comparing the generating function of the previous corollary with the formula of
Theorem 2.5, we can say even more.

Corollary 2.9. For every k and every partition τ ∈ Pk with two blocks, the (3, k)-
pair (123, τ) is equivalent to the (3, k)-pair (112, 12 · · ·k).
2.3. The pattern 122. Note that a partition τ avoids 122 if and only if each block
of τ except possibly the first one has size one, or equivalently, any number greater
than 1 appears at most once in τ .

We will show that for every k, all the (3, k)-pairs of the form (122, τ) are equiv-
alent to (112, 1k). To this end, we first describe a bijection between 122-avoiding
and 123-avoiding partitions which, under suitable assumptions, preserves contain-
ment. Let τ = τ1τ2 · · · τk be a 122-avoiding partition. Define a new partition
f(τ) = τ ′1τ

′
2 · · · τ ′k by putting τ ′i = 1 if τi = 1 and τ ′i = 2 if τi > 1. For exam-

ple, if π = 1123145, then f(π) = 1122122. Note that the mapping f defined by
these properties is a bijection from the set of 122-avoiding partitions to the set of
123-avoiding partitions.

Lemma 2.10. Let τ = τ1 · · · τk be a 122-avoiding partition with at least two blocks,
and let π = π1 · · ·πn be any 122-avoiding partition. Then π contains τ if and only
if f(π) contains f(τ).
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Proof. Let us write f(π) = π′
1 · · ·π′

n and f(τ) = τ ′1 · · · τ ′k.
Assume that π contains τ , and let i(1) < i(2) < · · · < i(k) be indices such that

the sequence πi(1)πi(2) · · ·πi(k) is order isomorphic to τ . We may assume without
loss of generality that i(1) = 1. It then follows that π′

i(1)π
′
i(2) · · ·π′

i(k) is order-

isomorphic to f(τ) and hence f(π) contains f(τ).
Conversely, assume that f(π) contains f(τ). Since τ has at least two blocks, f(τ)

has exactly two blocks, and therefore f(π) contains f(τ) even as a subsequence,
not just as a pattern. This implies that π contains τ . �

Proposition 2.11. For any partition τ ∈ Pk(122) with at least two blocks, the
(3, k)-pair (122, τ) is equivalent to the (3, k)-pair (123, f(τ)).

Proof. Lemma 2.10 shows that f maps Pn(122, τ) bijectively to Pn(123, f(τ)). �

Combining Proposition 2.11 with Corollary 2.9, we get the following result.

Corollary 2.12. For any k and any partition τ ∈ Pk(122) with at least two blocks,
the (3, k)-pair (122, τ) is equivalent to the (3, k)-pair (112, 12 · · ·k).

It remains to deal with (3, k)-pairs of the form (122, 1k). It turns out that these
pairs are also equivalent to all the other (3, k)-pairs of the form (122, τ).

Proposition 2.13. The (3, k)-pairs (122, 1k) and (122, 12 · · ·k) are equivalent.

Proof. Note that a 122-avoiding partition of [n] is uniquely determined by specifying
which of the elements of the set {2, 3, . . . , n} belong to the first block.

Thus, a 122-avoiding partition avoids 1k if and only if its first block has at most
k−2 elements from {2, 3, . . . , n}, and it avoids 12 · · ·k if and only if the complement
of the first block has at most k−2 elements from {2, 3, . . . , n}. Clearly, in both cases

there are exactly
∑k−2

i=0

(
n−1
i

)
possibilities to specify the first block, and therefore

the whole partition. �

Combining Corollary 2.12 and Proposition 2.13, we obtain the main result of
this subsection.

Corollary 2.14. For any k, the (3, k)-pairs of the form (122, τ) are all equivalent,
and they are equivalent to the pair (112, 12 · · ·k).
2.4. Summary of equivalences among (3, k)-pairs. Let us summarize the equi-
valences among (3, k)-pairs that follow from the results established so far (see Ta-
ble 1 for an example with k = 4).

• There is an equivalence class containing all the patterns (112, τ112(a)) and
(121, τ121(a)) for all compositions a of size k all of whose components are
equal to 1 or 2 (Observation 2.1, Lemma 2.3, and Lemma 2.4). That same
class also contains all the (3, k)-pairs of the form (122, τ) (Corollary 2.14).
By Corollary 2.9, the same class also contains all the pairs of the form
(123, τ), where τ is different from 1k.

• The pair (123, 1k) is not equivalent to any other (3, k)-pair. There are
only finitely many partitions avoiding both 123 and 1k, whereas any other
(3, k)-pair is avoided by infinitely many partitions.

• For every 2-free integer partition a of size k, there is an equivalence class
containing all the pairs from the set

{(121, τ121(a′)), a′ d∼ a} ∪ {(112, τ112(a′)), a′ d∼ a}.
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Generating function
(ρ, τ) for the sequence {pn(ρ, τ)}n≥0

(112, 1231) ∼ (112, 1232) ∼ (112, 1233)
∼ (121, 1122) ∼ (121, 1123) ∼ (121, 1223)
∼ (121, 1233) ∼ (121, 1234) ∼ (122, 1111)
∼ (122, 1112) ∼ (122, 1121) ∼ (122, 1123)

∼ (122, 1211) ∼ (122, 1213) ∼ (122, 1231)
∑3

i=0
xi

(1−x)i

∼ (122, 1234) ∼ (112, 1221) ∼ (123, 1112)
∼ (123, 1121) ∼ (123, 1122) ∼ (123, 1211)
∼ (123, 1212) ∼ (123, 1221) ∼ (123, 1222)
∼ (112, 1234)

(123, 1111)
∑3

i=1

∑3
j=0

(
i+j−1

j

)
xi+j

(121, 1222) ∼ (121, 1112)

∼ (112, 1211) ∼ (112, 1222) 1−x+x3

(1−x)(1−x−x2)

(121, 1111) ∼ (112, 1111) 1
1−x−x2−x3

Table 1. The equivalence classes of (3, 4)-pairs

Note that if a = (1, 1, . . . , 1), then this class corresponds to the equivalence
class mentioned in the first item of this list. By Lemmas 2.3 and 2.4,

any composition is
d∼-equivalent to a 2-free integer partition, therefore, the

classes mentioned so far contain all the (3, k)-pairs.

Corollary 2.15. For each k and each (3, k)-pair (σ, τ), the generating function of
(σ, τ)-avoiders is rational, and can be computed explicitly.

Corollary 2.16. For each k ≥ 3, the (3, k)-pairs form at most 1 + ξk equivalence
classes, where ξk is the number of 2-free integer partitions (A027336).

We do not know whether the bound of the previous corollary is tight or whether
there actually exist some more equivalences among the (3, k)-pairs. Note that if
such ‘hidden’ equivalences exist, they must involve τ of size at least 21, because for
size 20 and less, we can check (with the aid of a computer) that the classes listed
above are all non-equivalent. Also the additional equivalences must involve σ = 112
(or equivalently σ = 121) because all the pairs of the form (122, τ) are equivalent,
and all the patterns of the form (123, τ) are equivalent to them as well, except for
(123, 1k), which is not equivalent to any other (3, k)-pair.

Problem 2.17. Are there any more equivalences among the (3, k)-pairs of the
form (112, τ) other than those that we know about? Equivalently, are there any two

distinct 2-free integer partitions that are
d∼-equivalent?

3. Pattern avoidance in non-crossing partitions

Our goal is to study partitions that avoid the pattern 1212 and another pattern.
Note that a partition avoids 1212 if and only if it is non-crossing.

We write σ
nc∼ τ if (1212, σ) is equivalent to (1212, τ). If σ

nc∼ τ , we say that σ
and τ are nc-equivalent (‘nc’ stands for ‘non-crossing’).
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To simplify our notation, we will employ the following convention: whenever we
write [σ] as a subsequence of a longer pattern π, we assume that [σ] refers to the
sequence σ + k, where k is the number of distinct symbols of π that appear before
the first symbol of σ in π. Thus, for example, 1[112]1 refers to the sequence 12231,
and π = 11[121][112] should be understood as π = 11232445.

Let us say that a set partition π is connected, if it cannot be written as π = σ[τ ]
where σ and τ are nonempty partitions. Note that a non-crossing partition is
connected if and only if its last element belongs to the first block. For any set
partition π, there is a unique sequence of nonempty connected partitions σ1, . . . , σm

such that π = σ1[σ2][σ3] · · · [σm]. We call the partitions σi the components of π.
We say that two non-crossing partition patterns σ and τ are cc-equivalent, de-

noted by σ
cc∼ τ , if there is a bijection f from the set of (1212, σ)-avoiding partitions

to the set of (1212, τ)-avoiding partitions, such that for every non-crossing σ-avoider
π, the partition f(π) has the same size and the same number of components as π.
In particular, cc-equivalence is a refinement of nc-equivalence.

Suppose that σ = σ1 · · ·σk and τ = τ1 · · · τn are two partitions. We say that a
sequence I = (i(1), i(2), . . . , i(k)) is an occurrence of σ in τ , if 1 ≤ i(1) < i(2) <
· · · < i(k) ≤ n and τi(1), τi(2), . . . , τi(k) is order-isomorphic to σ. We say that an
occurrence (i(1), . . . , i(k)) of σ in τ is a leftmost occurrence if i(k) has the smallest
possible value among all occurrences of σ in τ , or equivalently, σ has no occurrence
in τ1, . . . , τi(k)−1. We say that an occurrence (i(1), . . . , i(k)) of σ in τ is a topmost
occurrence if τi(1) has the largest possible value among all the occurrences of σ in
τ , or equivalently, if the subsequence of τ formed by all the elements greater than
τi(1) is order-isomorphic to a σ-avoiding partition. If σ is the empty partition, we
assume that the empty sequence is the unique occurrence of σ in τ , and that this
occurrence is both leftmost and topmost.

For example, taking σ = 122 and τ = 11233245466233, we see that 1, 4, 5 and
2, 4, 5 are the two leftmost occurrences of σ in τ , both corresponding to a subse-
quence 133 of τ , while 8, 10, 11 is the (in this case unique) topmost occurrence of σ
in τ , representing the subsequence 566.

Let I = (i(1), . . . , i(k)) be a topmost occurrence of σ in τ , with b = τi(1). Suppose
that i′ is the smallest index such that τi′ = b. Observe that replacing i(1) with i′

yields another topmost occurrence of σ in τ .

Lemma 3.1. Let ρ, σ and τ be non-crossing partitions of size k, ℓ and m, re-
spectively. Let I = (i(1), . . . , i(k)) be a leftmost occurrence of ρ in τ , let J =
(j(1), . . . , j(ℓ)) be a topmost occurrence of σ in τ , and let H = (h(1), . . . , h(k + ℓ))
be any occurrence of ρ[σ] in τ . Then (i(1), . . . , i(k), h(k+ 1), . . . , h(k+ ℓ)), as well
as (h(1), . . . , h(k), j(1), . . . , j(ℓ)) are both occurrences of ρ[σ] in τ . In particular, τ
contains ρ[σ] if and only if (i(1), . . . , i(k), j(1), . . . , j(ℓ)) is an occurrence of ρ[σ].

Proof. Let us assume that ρ, σ and τ are nonempty, otherwise the lemma is trivial.
Let us prove that (i(1), . . . , i(k), h(k + 1), . . . , h(k + ℓ)) is an occurrence of ρ[σ].

Since we already know that I is an occurrence of ρ and that h(k+1), . . . , h(k+ℓ) is an
occurrence of σ, we only need to prove that i(k) < h(k+1), and that every element
of τi(1), τi(2) . . . , τi(k) is smaller than any element of τh(k+1), τh(k+2), . . . , τh(k+ℓ).

Since I is a leftmost occurrence of ρ, we know that i(k) ≤ h(k) and therefore
i(k) < h(k + 1). We now show that τi(a) < τh(k+b) for every a ∈ [k] and b ∈ [ℓ].
Suppose that we have τi(a) ≥ τh(k+b) for some a ∈ [k] and b ∈ [ℓ]. We know
that τh(k) < τh(k+b). Let us write x = τh(k) and y = τh(k+b). Let i′ and j′ be
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the indices of the first occurrences of x and y in τ , respectively. Since we know
that x < y ≤ τi(a), we know that i′ < j′ ≤ i(a) < h(k). Thus, the four indices
i′, j′, h(k), h(k + b) are an occurrence of 1212 in τ , contradicting the assumption
that τ is non-crossing.

Let us now show that h(1), . . . , h(k), j(1), . . . , j(ℓ) is an occurrence of ρ[σ]. Since
J is a topmost occurrence of σ, we know that τh(k+1) ≤ τj(1), and therefore τh(a) <
τj(b) for any a ∈ [k] and b ∈ [ℓ]. To show that h(1), . . . , h(k), j(1), . . . , j(ℓ) is an
occurrence of ρ[σ], we thus only need to prove that h(k) < j(1). Suppose that this
is not the case. Let us write x = τh(k) and y = τh(k+1), and let i′ and j′ be the
indices of first occurrences of x and y in τ , respectively. Since x < y ≤ τj(1), we
know that i′ < j′ ≤ j(1), showing that i′, j′, h(k), h(k+ 1) is an occurrence of 1212
in τ , a contradiction. �

Theorem 3.2. If σ and τ are (possibly empty) non-crossing partitions, and if ρ

and ρ′ are two cc-equivalent non-crossing partitions, then σ[ρ][τ ]
cc∼ σ[ρ′][τ ].

Note that in the previous theorem, cc-equivalence cannot be replaced by nc-
equivalence. For example, 11 and 12 are nc-equivalent partitions, but 1[11] = 122
and 1[12] = 123 are not nc-equivalent.

Proof of Theorem 3.2. Let us write α = σ[ρ][τ ] and α′ = σ[ρ′][τ ]. We will define
a bijection f that maps α-avoiding non-crossing partitions of size n to α′-avoiding
non-crossing partitions of the same size, while preserving the number of connected
components.

Let π = π1 · · ·πn be a non-crossing partition on n vertices. If π avoids σ[τ ], then
we may define f(π) = π. Suppose that π contains σ[τ ]. Let I = (i(1), . . . , i(k))
be the leftmost occurrence of σ in π, and J = (j(1), . . . , j(ℓ)) the top-most oc-
currence of τ . Furthermore, assume that j(1) is chosen as small as possible,
that is, τj(1) is the first element of its π-block. By Lemma 3.1, we know that
i(1), . . . , i(k), j(1), . . . , j(ℓ) is an occurrence of σ[τ ].

Let us define a = i(k) and b = j(1). We will refer to the elements π1, π2, . . . , πa

as the left part of π, while πa+1, πa+2, . . . , πb−1 are the middle part, and πb, . . . , πn

are the right part. A block of π is a left block (or middle block or right block) if its
first element appears in the left part of π (middle part, right part, respectively).
We say that an element πi is an outlier if it belongs to a different part of π than
the first element of its block. In other words, an outlier is an element of a left
block belonging to the middle part or right part, or an element of a middle block
belonging to the right part.

Let πM denote the partition obtained from π by deleting all the left blocks and
right blocks, and then by deleting all the outliers from the middle blocks. In other
words, πM consists of the elements of π belonging to middle blocks and to the
middle part of π. We will abuse the terminology by identifying an element of πM

with the corresponding element of π.
It is clear that if πM contains ρ, then π contains α. We claim that the converse is

true as well, i.e., if π contains α then πM contains ρ. To see this, fix an occurrenceH
of α in π, and writeH as a concatenation I ′KJ ′, where I ′, K and J ′ are occurrences
of σ, ρ and τ , respectively. By Lemma 3.1, IKJ is also an occurrence of α, which
shows that all the indices in K refer to the middle part of π. To see that for each
k ∈ K, πk belongs to a middle block, notice that πk > πa, and if πk belonged to a
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left block, then the block containing πk would cross the block containing πa. Thus,
K induces an occurrence of ρ in πM.

Suppose now that π is an α-avoiding partition, and therefore πM is a ρ-avoiding
partition. Let κ1, . . . , κt be the connected components of πM. Note that any outlier
appearing in the middle part of π must appear in the ‘gap’ between two components
κi and κi+1, otherwise we would have a crossing between a left block and a middle
block. In particular, each κi corresponds to a consecutive sequence of elements of π.
Note also that if the right part of π contains an element from a middle block, then
this middle block must correspond to the first block of one of the components κi.

Suppose that the cc-equivalence of ρ and ρ′ is witnessed by a bijection g. Assume
that the ρ′-avoiding partition g(πM) has components κ′

1, . . . , κ
′
t. We now define an

α′-avoiding partition π′ having the same size and the same number of components
as π. The left part of π′ is identical to the left part of π. In the middle part, we
replace the elements corresponding to κi with the elements corresponding to κ′

i,
for each i = 1, . . . , t. The elements belonging to left blocks and appearing in the
gap between κi and κi+1 will remain in the same block and will appear in the gap
between κ′

i and κ′
i+1. Since we do not assume that each κ′

i has the same size as κi,
it may happen that the position of the gap changes. We also do not assume that
g(πM) has the same number of blocks as πM, so the numbering of right blocks may
change as well. Finally, if in π the first block of κi contains some elements in the
right part of π, then in π′ these elements will be inserted into the first block of κ′

i.
We now define f(π) = π′. It is clear that f has the required properties. �

Theorem 3.3. If σ and ρ are non-crossing partitions and σ is connected, then

σ[ρ]
cc∼ ρ[σ].

Proof. Let us define α = σ[ρ] and α′ = ρ[σ]. Of course, a partition that avoids σ
must avoid both α and α′. To prove the theorem, we characterize the structure of
a partition π that contains σ but not α, as well as the structure of a partition π′

containing σ but not α′. From the two characterizations, it will be clear that the
two classes are equinumerous and there is a bijection between them preserving the
number of components.

We will first describe the structure of an α-avoiding non-crossing partition π
that contains σ. Let I = (i(1), . . . , i(k)) be a leftmost occurrence of σ in π. Define
a = i(1) and b = i(k). Note that since σ is connected, we know that πa and πb

correspond to the same block of π. Choose I in such a way that a is the first
element of the block containing b.

Define the left part of π to be the elements strictly to the left of πa, the middle
part to be the elements πa, . . . , πb, and the right part to be the rest of π. Define left
blocks, middle blocks, right blocks and outliers in the same way as in the previous
proof. Note that there are no outliers in the middle part of π.

Let πL be the left part of π, let πM be the partition order-isomorphic to the
middle part of π, and let πR be the partition formed by the elements in the right
blocks of π. By the choice of I, we know that πL is σ-avoiding. It is not hard
to see that π is σ[ρ]-avoiding if and only if πR is ρ-avoiding. Let κ1, . . . , κt be
the connected components of πL ordered right-to-left, and let ζ1, . . . , ζu be the
connected components of πR ordered left-to-right. Every outlier in π is in the right
part of π and its block is either the first block of πM or the first block of one of
the κi. Each outlier must be placed between the last vertex of ζi and the first
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vertex of ζi+1 for some i ≤ u, or between πb and the first vertex of ζ1. Note that
the outliers form a weakly decreasing subsequence in π.

Let x0 be the number of outliers belonging to the first block of πM, and for
i ∈ [t], let xi be the number of outliers from the first block of κi. Thus,

∑t
i=0 xi is

the number of all outliers in π. Let y0 be the number of outliers appearing between
the last element of πM and the first element of ζ1, and for i ∈ [u], let yi be the
number of outliers between the last element of ζi and the first element of ζi+1, with
yu being the number of outliers to the right of ζu. The two sequences x0, . . . , xt and
y0, . . . , yu determine uniquely the position and value of the outliers in π. Thus, π
is uniquely determined by specifying (πL, πM, πR, (xi)

t
i=0, (yi)

u
i=0). We may easily

check that this gives a bijection between σ[ρ]-avoiding partitions containing σ,
and five-tuples of the form (πL, πM, πR, (xi)

t
i=0, (yi)

u
i=0), where πL is a σ-avoiding

partition, πM is a connected partition that contains σ and every occurrence of σ in
πM intersects the last element of πM, πR is a ρ-avoiding partition, and (xi)

t
i=0 and

(yi)
u
i=0 are nonnegative integer sequences of the same sum, where t is the number

of components in πL and u is the number of components of πR. Note that we rely
on the fact that σ is connected, which implies that if πL avoids σ, then the leftmost
occurrence of σ in πL[πM] is contained in the component πM.

From the sequences (xi)
t
i=0 and (yi)

u
i=0, we may deduce the number of com-

ponents of π — each component of π is either equal to κi for some i, or equal
to ζj for some j, or it contains πM. Moreover, κi is a component of π if and
only if xi = xi+1 = · · · = xt = 0, and ζj is a component of π if and only if
yj = yj+1 = · · · = yu = 0.

Let us now provide an analogous analysis of the ρ[σ]-avoiding partitions con-
taining σ. Let π′ be such a partition, and let I ′ = (i′(1), . . . , i′(k)) be a topmost
occurrence of σ in π′, chosen in such a way that i′(1) is the first element of its block
and i′(k) is as small as possible. Put a = i′(1) and b = i′(k), and define the left
part, middle part and right part of π′ in the same way as in the first part of the
proof. Let π′

L be the left part of π′, let π′
M be the middle part of π′, and let π′

R be
the partition induced by the right blocks of π′. Then π′

L is a ρ-avoiding partition
and π′

R is a σ-avoiding partition. Suppose that κ′
1, . . . , κ

′
t′ are the components of

π′
L numbered right-to-left and ζ′1, . . . , ζ

′
u′ are the components of π′

R numbered left-
to-right. Let x′

i be the number of outliers belonging to the same π-block as the first
vertex of κ′

i, with x′
0 being the outliers belonging to the block of πa. Let y

′
i be the

number of outliers between ζ′i and ζ′i+1, with y′0 being the number of outliers be-

tween π′
M and ζ1. Then π′ is uniquely determined by (π′

L, π
′
M, π′

R, (x
′
i)

t′

i=0, (y
′
i)

u′

i=0),
and the x′

is and y′is determine the number of components of π′, in the same way as
in the case of π. We see that by mapping πL to π′

R, πM to π′
M, πR to π′

L, t to u′, u
to t′, xi to y′i and yi to x′

i, we get the required bijection. �

Theorem 3.4. Let σ1, . . . , σk be a k-tuple of non-crossing partitions, and let p
be a permutation of the set {1, 2, . . . , k}. Then the partitions σ1[σ2] · · · [σk] and
σp(1)[σp(2)] · · · [σp(k)] are cc-equivalent.

Proof. We may assume, without loss of generality, that all the σi are connected
and that p is a transposition of adjacent elements. Suppose that for some i < k we
have p(i) = i + 1, p(i + 1) = i, and p(j) = j otherwise. By Theorem 3.3, we know
that σi[σi+1] is cc-equivalent to σi+1[σi], and then from Theorem 3.2 we obtain
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the desired result, by putting σ = σ1[σ2] · · · [σi−1], ρ = σi[σi+1], ρ
′ = σi+1[σi], and

τ = σi+2[σi+3] · · · [σk]. �

Theorem 3.5. Let σ1, . . . , σk be a k-tuple of non-crossing partitions, let q < k
be an index such that the partition σq is empty, or connected, or contains only
singleton blocks. Then the partition

σ = 1[σ1]1[σ2]1 · · · 1[σq−1]1[σq]1[σq+1]1[σq+2]1 · · · 1[σk]1

is cc-equivalent to

σ′ = 1[σ1]1[σ2]1 · · · 1[σq−1]1[σq+1]1[σq]1[σq+2]1 · · · 1[σk]1.

Proof. We proceed by induction. Fix an integer n, and suppose that for every
n′ < n and for every p, the number of σ-avoiding partitions of size n′ with p
components is equal to the number of σ′-avoiding such partitions. Let g be a
bijection between σ-avoiders and σ′-avoiders of size less than n, preserving size and
number of components. We may assume, without loss of generality, that g has the
property that g(π) = π for any partition π that avoids both σ and σ′. We will
define a bijection f mapping σ-avoiders of size n to σ′-avoiders of the same size and
number of components.

Let π be a σ-avoiding partition of size n. If π is disconnected, it can be
written as π = π1[π2] · · · [πm] for m > 1 and πi connected. We then define
f(π) = g(π1)[g(π2)] · · · [g(πm)]. This clearly satisfies all the claimed properties.

Assume now that π is connected. Thus, π can be uniquely written as π =
1[π1]1[π2]1 · · · 1[πm]1 for some σ-avoiding partitions πi. We use the following ter-
minology: for a partition ρ, an occurrence I = (i(1), . . . , i(ℓ)) of ρ in π is a top-level
occurrence if it maps the elements of the first block of ρ to the elements of the first
block of π; in other words, if πi(1) = 1. If I is not a top-level occurrence, we say
that it is a deep occurrence. Note that if ρ is connected, then any deep occurrence
of ρ in π must correspond to an occurrence of ρ in one of the partitions π1, . . . , πm.

For i ≤ j ∈ [m+1], let π(i, j) denote the partition 1[πi]1[πi+1]1 · · · 1[πj−1]1, i.e.,
π(i, j) is the subpartition of π between the i-th and j-th element of the first block.
For an integer i ≤ m + 1, let π(≤i) denote the partition π(1, i) and π(≥i) be the
partition π(i,m+ 1). We apply analogous notation for other connected partitions
as well.

Let πi denote the partition g(πi), and let π be the partition 1[π1]1[π2]1 · · · 1[πm]1.
By induction, we know that for any i ∈ [m], πi is σ

′-avoiding and πi contains σ if
and only if πi contains σ

′. Consequently, π has no deep occurrence of σ′, and π has
a deep occurrence of σ if and only if π has a deep occurrence of σ′. Using the fact
that πi = πi whenever πi avoids both σ and σ′, we also see that for any j ∈ [k], πi

contains σj if and only if πi does, and more generally, for any h, i ∈ [m+1], π(h, i)
has a top-level occurrence of 1[σj ]1 if and only if π(h, i) does. Consequently, π has
no top-level occurrence of σ, and π has a top-level occurrence of σ′ if and only if π
does.

Let a ∈ [m+1] be the smallest index such that π(≤a) has a top-level occurrence
of σ(≤q), and let b ∈ [m+ 1] be the largest index such that π(≥b) has a top-level
occurrence of σ(≥q + 2). If such a or b do not exist, or if a+ 2 > b, then π has no
top-level occurrence of either σ or σ′, and we define f(π) = π.

Suppose that a+2 ≤ b, and let c be the smallest integer from {a+1, a+2, . . . , b}
such that π(a, c) has a top-level occurrence of 1[σq]1. If no such c exists, we again
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put f(π) = π. Otherwise, define a partition π̂ = 1[π̂1]1[π̂2]1 · · · 1[π̂m]1, by putting
π̂(≤a) = π(≤a), π̂(≥b) = π(≥b), π̂(a, a + b − c) = π(c, b), and π̂(a + b − c, b)
being equal to 1[πc−1]1[πc−2]1 · · · 1[πa+1]1[πa]1. Notice that π̂(a + b − c, b) has a
top-level occurrence of 1[σq]1, while π̂(a + b − c + 1, b) does not (here we use the
assumption that σq is empty, or connected, or only contains singleton blocks). We
also know that π(c, b) has no top-level occurrence of 1[σq+1]1, because π has no
top-level occurrence of σ. This implies that π̂ has no top-level occurrence of σ′,
and therefore π̂ is a σ′-avoiding partition. We then define f(π) = π̂. It is easy to
check that f is a bijection between σ-avoiding and σ′-avoiding partitions of size n
which preserves the number of components. �

Theorem 3.6. Let σ1, . . . , σk be a k-tuple of non-crossing partitions, let q < k be
an index, and let σ′

q be a partition cc-equivalent to σq. Then the pattern

σ = 1[σ1]1[σ2]1 · · · 1[σq−1]1[σq]1[σq+1]1 · · · 1[σk]1

is cc-equivalent to

σ′ = 1[σ1]1[σ2]1 · · · 1[σq−1]1[σ
′
q]1[σq+1]1 · · · 1[σk]1.

Proof. As in the proof of Theorem 3.5, we proceed by induction. Suppose again
that n is given, and that there is a bijection g mapping the σ-avoiders of size less
than n to σ′-avoiders of the same size and same number of components. Suppose
also that g(π) = π for any partition that avoids both σ and σ′. We define a
bijection f mapping σ-avoiders of size n to σ′-avoiders of the same size and number
of components. Let h be a mapping from σq-avoiding partitions to σ′

q-avoiding
partitions which witnesses the cc-equivalence of σq and σ′

q.
Let π be a σ-avoiding partition of size n. If π is disconnected with components

π1, . . . , πm, we define f(π) to be the partition with components g(π1), . . . , g(πm).
Suppose now that π is connected, and has the form 1[π1]1 · · · 1[πm]1.

We will define a new partition π that has no top-level occurrence of σ′. Let a be
the smallest integer such that π(≤a) has a top-level occurrence of σ(≤q), and let b
be the largest integer such that π(≥b) has a top-level occurrence of σ(≥q + 1). If
such a or b does not exist, or if a ≥ b, we define π = π. Otherwise, let ρ be the
partition πa[πa+1] · · · [πb−1], and let pi be the number of connected components of
πi, so that ρ has pa + pa+1 + · · ·+ pb−1 components. Note that ρ avoids σq . Define
ρ′ = h(ρ), and write ρ′ as ρ′ = πa[πa+1] · · · [πb−1], where each πi is chosen so that
it has exactly pi components. We now define the partition π = 1[π1]1 · · · 1[πm]1 by
putting π(≤a) = π(≤a), π(≥b) = π(≥b), and π(a, b) is determined by the partitions
πi obtained from ρ′.

Note that π has no top-level occurrence of σ′. Also, π(a, b) has no deep occur-
rence of σ′, because it does not even have a deep occurrence of σ′

q. Define now a
partition π̂ = 1[π̂1]1 · · · 1[π̂m]1 by putting π̂i = πi for each a ≤ i < b, and π̂i = g(πi)
for each i < a and i ≥ b. Then π̂ has no deep occurrence of σ′. Using the fact that
g(πi) = πi whenever πi avoids both σ and σ′, we can also see that a is the smallest
index such that π̂(≤a) has a top-level occurrence of σ′(≤q), and b is the largest
index such that π̂(≥b) has a top-level occurrence of σ′(≥q + 1). We put f(π) = π̂,
and easily see that f is the required bijection. �

In the rest of this section, we will often employ generating functions as tools
in our proofs. Let us therefore fix the following notation. For a partition π, we
let NC(x;π) denote the generating function of the set of non-crossing π-avoiding
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partitions, and we let C(x;π) denote the generating function of the set of nonempty
connected non-crossing π-avoiding partitions.

Theorem 3.7. Let σ and τ be two possibly empty connected partitions. Then
1[σ]1[τ ] and 1[τ ]1[σ] are nc-equivalent.

In the previous theorem, the assumption that σ and τ are connected is necessary,
as shown, e.g., by the two patterns 1[1]1[12] = 12134 and 1[12]1[1] = 12314, which
are not nc-equivalent. Also, nc-equivalence in the conclusion cannot in general be
replaced with cc-equivalence. For example, taking σ empty and τ = 1, we see that
1[σ]1[τ ] = 112, while 1[τ ]1[σ] = 121. Since 112 and 121 do not have the same
number of components, it is easy to see that they cannot be cc-equivalent.

Proof of Theorem 3.7. Let us first deal with the situation where both σ and τ are
nonempty. Let G(x;σ, τ) denote the generating function of non-crossing partitions
that avoid 1[σ]1[τ ] but contain σ[τ ], in other words,

G(x;σ, τ) = NC(x; 1[σ]1[τ ])−NC(x;σ[τ ]).

We know from Theorem 3.3 that NC(x, σ[τ ]) = NC(x, τ [σ]). Therefore, to show
that 1[σ]1[τ ] is nc-equivalent to 1[τ ]1[σ], it is enough to prove that G(x;σ, τ) =
G(x; τ, σ). We will derive a formula for G(x;σ, τ) from which the previous identity
will easily follow.

Note that if ρ is a connected partition, a non-crossing partition π avoids ρ if
and only if each component of π avoids ρ. In particular, we have the identity
NC(x; ρ) = 1/(1 − C(x; ρ)). We say that a partition π = π1, . . . , πn is ρ-minimal
if it is connected, non-crossing, contains ρ, but avoids 1[ρ]1. Let M(x; ρ) be the
generating function of the set of ρ-minimal partitions.

Suppose that π = π1, . . . , πn is a non-crossing partition that avoids 1[σ]1[τ ] and
contains σ[τ ]. Let I = (i(1), . . . , i(k)) be a leftmost occurrence of σ in π, chosen in
such a way that i(1) is as small as possible. This implies that πi(1) is the leftmost
element of its π-block. Let us write a = i(1).

Let J = (j(1), ..., j(ℓ)) be a topmost occurrence of τ . Choose J in such a way
that j(1) is as small as possible, and write b = j(1). Then πb is the leftmost
element of its block. Let πc be the rightmost element of the block containing πb.
Then πb, πb+1, . . . , πc is order-isomorphic to a τ -minimal partition, because if it
contained a copy of 1[τ ]1, it would contradict the topmost choice of J .

Let πL denote the partition π1, π2, . . . , πb−1. Note that πL avoids 1[σ]1. Let
π1
L, π

2
L, . . . , π

m
L be the connected components of πL. Let πq

L be the component of
πL containing the vertex πa. Note that πa must be the leftmost vertex of πq

L,
otherwise πq

L would contain 1[σ]1. We see that πq
L is a σ-minimal partition. Note

also that all the components preceding πq
L must avoid σ, since πq

L contains the
leftmost occurrence of σ.

We say that an element πi of π is an outlier, if i > c and πi < πc. In other
words, an outlier is an element that does not belong to πL, but belongs to a π-block
whose leftmost element belongs to πL. Note that if πi is an outlier, then the π-block
containing πi intersects a unique component πj

L of πL, and it is the first block of

of πj
L; we then say that πi is an outlier from πj

L
.

For a component πj
L of πL, define the zone of πj

L, denoted by Zj , inductively

as follows. If πj
L has no outlier, then Zj is empty, otherwise Zj is the sequence

πg, πg+1, . . . , πh, where πg is the leftmost outlier of πj
L and πh is the rightmost
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vertex not belonging to Z1 ∪ Z2 ∪ · · · ∪ Zj−1. Let πd be the rightmost vertex of
π not belonging to any zone. The zones Z1, . . . , Zm form a disjoint collection of
subsequences whose union is πd+1, . . . , πn. Each zone Zj is order-isomorphic to a
partition of the form 1[ρ1]1[ρ2]1 · · · 1[ρr] in which each occurrence of 1 corresponds

to an outlier from πj
L, and each ρi is a τ -avoiding partition formed by non-outliers.

The generating function of such partitions is

Z(x) =
1

1− xNC(x; τ)
=

1

1− x
1−C(x;τ)

.

Note also that the elements πc+1, πc+2, . . . , πd (which do not belong to any zone
and do not contain any outliers) are order-isomorphic to a τ -avoiding partition.

We claim that the generating function of all the non-crossing partitions π avoid-
ing 1[σ]1[τ ], containing σ[τ ], having m components in πL, and with the component
πq
L containing the leftmost occurrence of σ is equal to

(C(x;σ)Z(x))
q−1

M(x;σ)Z(x) (C(x; 1[σ]1)Z(x))
m−q

M(x; τ)
1

1 − C(x; τ)
.

To see this, note first that each factor C(x;σ)Z(x) corresponds to one of the first
q − 1 components of πL, together with its zone. Next, the factor M(x;σ)Z(x)
corresponds to the possible choices for the component πq

L and its zone. The factor
C(x; 1[σ]1)Z(x) corresponds to a component πi

L for i > q, together with its zone.
The factor M(x; τ) corresponds to the elements from πb to πc, and the next factor
(1− C(x; τ))−1 corresponds to the elements πc+1, . . . , πd.

Summing the above expression for all possible m ≥ 1 and q ∈ [m], we obtain
(3.1)

G(x;σ, τ) =
1

1− C(x;σ)Z(x)
M(x;σ)Z(x)

1

1 − C(x; 1[σ]1)Z(x)
M(x; τ)

1

1 − C(x; τ)
.

Using the identity

C(x; 1[ρ]1) = x+
x2

1− x− C(x; ρ)
=

x

1− x
1−C(x;ρ)

,

which is valid for any connected non-crossing partition ρ, we define two auxiliary
expressions, both of which are symmetric in σ and τ :

F1(x;σ, τ) =
1

1− C(x; 1[σ]1)Z(x)
=

1

1− x(1−C(x;σ))(1−C(x;τ))
(1−x−C(x;σ))(1−x−C(x;τ))

and

F2(x;σ, τ) =
Z(x)

(1 − C(x;σ)Z(x))(1 − C(x; τ))

=
1

1− x− C(x;σ) − C(x; τ) + C(x;σ)C(x; τ)
.

With this notation, (3.1) simplifies into

G(x;σ, τ) = M(x;σ)M(x; τ)F1(x;σ, τ)F2(x;σ, τ),

This makes it clear that G(x;σ, τ) = G(x; τ, σ), completing the proof for the case
when both σ and τ are nonempty.
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It remains to deal with the case when σ or τ is empty, i.e., to show that 1[τ ]1
nc∼

11[τ ] for any connected τ . The generating function of 1[τ ]1-avoiding non-crossing
partitions is equal to

1

1− C(x; 1[τ ]1)
=

1− x− C(x; τ)

1− 2x− C(x; τ) + xC(x; τ)
.

Let us now sketch the argument for the pattern 11[τ ]. Partitions avoiding 11 have
generating function 1/(1−x). Let π be a partition containing 11 and avoiding 11[τ ].
Let I = (a, b) be the leftmost occurrence of 11 in π. All the elements π1, π2, . . . , πb−1

belong to distinct blocks of π. An element πi is an outlier if i > b and πi ≤ πa.
The elements πb+1, . . . , πn that are not outliers form a τ -avoiding partition. We
may define zones Z1, . . . , Za in analogy to the previous case. All elements of π to
the right of the leftmost outlier (inclusive) belong to a unique zone. This yields a
generating function

1

1− xZ(x)

x2Z(x)

1− x

1

1− C(x; τ)
,

where the factor 1/(1− x) counts the elements between πa and πb, while the factor
(1−C(x; τ))−1 counts subpartitions formed by the elements to the right of πb but
to the left of the leftmost zone.

Adding 1/(1 − x) to the above expression and simplifying shows that 11[τ ]-
avoiding partitions have the same generating function as 1[τ ]1-avoiding partitions.

�

Theorem 3.8. Let σ be a connected partition, and let τ be a partition of the form
1[ρ] for some partition ρ. If σ and τ are nc-equivalent, then 1[σ] and τ1 = 1[ρ]1
are nc-equivalent as well.

Proof. Let NC(x;π) denote the generating function of the set of π-avoiding non-
crossing partitions. By assumption, we have NC(x;σ) = NC(x; τ).

Note that a partition π avoids 1[σ] if and only if it can be written as

π = 1[π1]1[π2]1 · · · 1[πk]

for some k, where each πi is a σ-avoiding partition (here we use the fact that σ is
connected). Therefore, we have the identity

NC(x; 1[σ]) =
1

1− xNC(x;σ)
.

Consider now the partition τ1 = 1[ρ]1. Since this partition is connected, we
see that π avoids τ1 if and only if each component of π avoids τ1. Moreover, a
connected partition π = π1, . . . , πn avoids τ1 if and only if π1, . . . , πn−1 avoids τ
(here we use the fact that τ has only one occurrence of the symbol 1, and that
πn = 1 because π is connected). This implies the identity

NC(x; τ1) =
1

1− xNC(x; τ)
.

Since NC(x;σ) = NC(x; τ), we get that NC(x; 1[σ]) = NC(x; τ1). �

As an example of an application of Theorem 3.8, consider the partitions σ = 11
and τ = 12. Since these two partitions are nc-equivalent, the theorem implies that
1[σ] = 122 and τ1 = 121 are nc-equivalent as well. We may in fact apply the

theorem again to this new pair of patterns, and obtain that 1221
nc∼ 1232, and a
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third application reveals that 12332
nc∼ 12321. Generalizing this example into a

straightforward induction argument, we get the next corollary.

Corollary 3.9. For any k, the pattern 12 · · · (k−1)kk(k−1) · · ·32 is nc-equivalent
to the pattern 12 · · · (k−1)k(k−1) · · ·21, and the pattern 12 · · · (k−1)kk(k−1) · · ·21
is nc-equivalent to 12 · · · k(k + 1)k · · · 32.

Note that the partitions avoiding 12 · · · (k − 1)k(k − 1) · · · 21 are precisely those
that do not have a k-tuple of pairwise nested blocks.

Theorem 3.10. The partitions 12333 and 12321 are nc-equivalent. In other words,
the non-crossing partitions whose every block has size at most two except possibly
the first two blocks are equinumerous with the non-crossing partitions that have no
3-nesting.

Proof. We again let NC(x;π) denote the generating function of non-crossing π-
avoiding partitions, and let C(x;π) be the generating function of nonempty con-
nected non-crossing π-avoiding partitions. As we have already pointed out before,
for a connected partition π, we have the identity

NC(x;π) =
1

1− C(x;π)
,

and for arbitrary τ , we have the identity

C(x; 1[τ ]1) =
x

1− xNC(x; τ)
.

Combining these two identities and simplifying, we deduce that

NC(x; 12321) =
1− 3x+ x2

(1 − x)(1 − 3x)
= 1 +

∑

n≥1

3n−1 + 1

2
xn.

Let us now turn to the pattern τ = 12333. The generating function for the empty
partition together with those that have a single block is of course 1/(1−x). On the
other hand, a non-crossing partition with at least two blocks avoids τ if and only
if it has a decomposition of the form 11 · · ·12[ρ1]2[ρ2]2 · · · 2[ρk]1[σ1]1[σ2]1 · · · 1[σℓ]
for some k ≥ 1 and ℓ ≥ 0, where the ρi and σj are 111-avoiding non-crossing
partitions. It is known that non-crossing 111-avoiding partitions are counted by the
Motzkin numbers ([21, sequence A001006]), and their generating function satisfies
the identity

NC(x; 111) = 1 + xNC(x; 111) + (xNC(x; 111))2.

We deduce that

NC(x; 12333) =
1

1− x
+

x2NC(x; 111)

(1− x)(1 − xNC(x; 111))2
,

from which the result easily follows. �

We remark that the counting function of 12333-avoiding non-crossing partitions
(and therefore also 12321-avoiding non-crossing partitions) has been encountered
before in different contexts (see [21, sequence A124302]).

We may again use Theorem 3.8 iteratively to extend the equivalence 12333
nc∼

12321 to an infinite sequence of equivalences.
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Corollary 3.11. For every k ≥ 3, the pattern 12 · · ·k(k + 1)k(k − 1) · · · 2 is nc-
equivalent to 12 · · · (k−1)kkk(k−2) · · · 1, and the pattern 12 · · · (k−1)k(k−1) · · · 1
is nc-equivalent to 12 · · · kkk(k − 2) · · · 2.

As an application of the above theorems, one may completely identify the Wilf-
equivalence classes corresponding to {1212, τ}, where τ is of size at most six. For
example, we have the following equivalences in the cases when τ is of size four or
five, while the corresponding table for size six can be found on the second author’s
webpage [17].

• [15] 1232
nc∼ 1213

nc∼ 1221
nc∼ 1122 by Theorem 3.4, Theorem 3.7 and Corol-

lary 3.9,

• 1123
nc∼ 1223

nc∼ 1233 by Theorem 3.4,

• [12] 1211
nc∼ 1121 by Theorem 3.5,

• [11] 1112
nc∼ 1222 by Theorem 3.4,

• 1234,
• 1231,
• 1111,

• 12332
nc∼ 12333

nc∼ 12133
nc∼ 11123

nc∼ 12213
nc∼ 12321

nc∼ 12223
nc∼ 11232 by

Theorem 3.4, Theorem 3.7, Corollary 3.9 and Corollary 3.11,

• 12234
nc∼ 12334

nc∼ 12344
nc∼ 11234 by Theorem 3.4,

• 12113
nc∼ 12322

nc∼ 12232
nc∼ 11213 by Theorem 3.4 and Theorem 3.5,

• 12233
nc∼ 11233

nc∼ 11223 by Theorem 3.4,

• 12343
nc∼ 12134

nc∼ 12324 by Theorem 3.4,

• 11122
nc∼ 12221

nc∼ 11222 by Theorem 3.4 and Theorem 3.7,

• 11121
nc∼ 11211

nc∼ 12111 by Theorem 3.5,

• 12331
nc∼ 12231 by Theorem 3.6 using Theorem 3.4,

• 12342
nc∼ 12314 by Theorem 3.4,

• 11231
nc∼ 12311 by Theorem 3.5,

• 12211
nc∼ 11221 by Theorem 3.5,

• 12222
nc∼ 11112 by Theorem 3.4,

• 12131,
• 12341,
• 12345,
• 11111.

4. Avoiding two patterns of size four

Let us say that a pair of patterns (σ, τ) is a (4, 4)-pair, if σ and τ are two
distinct partitions of size four. In this section, we will provide the full classification
of equivalences among all (4, 4)-pairs.

4.1. Previously known equivalences. Equivalences among sets of patterns have
been previously studied in a series of papers by Mansour and Shattuck [11, 12, 13,
14, 15], and some of the equivalence classes of (4, 4)-pairs have been identified.
Specifically, the following results are known.

Theorem 4.1 (Theorem 1.1 in [12]). If n ≥ 0, then pn(u, v) = wn for the following
pairs (u, v):

(1211, 1212), (1121, 1212), (1121, 1221), (1112, 1123), (1122, 1123).
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The generating function for the sequence wn is given by

∑

n≥0

wnx
n =

(1− x)2 −
√
1− 4x+ 2x2 + x4

2x2
.

Theorem 4.2 (Theorem 1.1 in [11]). If n ≥ 0, then pn(u, v) = Ln for the following
pairs (u, v):

(1222, 1212), (1112, 1212), (1211, 1221), (1222, 1221).

The generating function for the sequence Ln is given by

∑

n≥0

Lnx
n =

1− 3x+
√
1− 2x− 3x2

2(1− 3x)
.

Furthermore, results from [15] imply the following fact.

Fact 4.3. These pairs are all equivalent: (1112, 1213), (1122, 1212), (1123, 1213),
(1123, 1223), (1211, 1231), (1212, 1213), (1221, 1231), (1222, 1223), (1222, 1232),
(1212, 1232), and (1212, 1221). Moreover, for any such pair (u, v), pn(u, v) is equal
to F2n−2, where Fi is the i-th Fibonacci number.

4.2. Known results on pattern equivalences. In the paper on partial patterns
in matchings [7], the authors introduce the notion of strong partition equivalence.
We say that two patterns σ and τ are strongly partition equivalent, if there exists
a bijection f between the sets of σ-avoiding and τ -avoiding partitions with the
property that for any σ-avoiding partition ρ, the number of blocks of ρ is equal to
the number of blocks of f(ρ), and moreover for any i, the i-th block of ρ has the
same size as the i-th block of f(ρ). Intuitively, strong partition equivalence means
that we can bijectively map σ-avoiders to τ -avoiders by just permuting the letters
of their standard representation.

The concept of strong partition equivalence is first explicitly used in [7], although
most pairs of strongly partition equivalent patterns follow from the bijections con-
structed in an earlier paper [6]. Let us list the known facts about strong partition
equivalence (references point to the corresponding statement in [6]).

Fact 4.4 (Lemma 9, Theorem 18, Corollary 18). For every k and every partition
τ , the two partitions

12 · · · k(τ + k)12 · · · k and 12 · · ·k(τ + k)k(k − 1) · · · 1
are strongly partition equivalent.

Fact 4.5 (Theorem 31). Let pn(ρ; a1, a2, . . . , am) be the number of partitions that
avoid ρ such that the i-th block has ai elements. Then for any partition τ ,

pn(1(τ + 1); a1, a2, . . . , am) =

(
n− 1

a1 − 1

)
pn−a1

(τ ; a2, a3, . . . , am).

Consequently, if τ and σ are strongly partition-equivalent, then so are 1(τ +1) and
1(σ + 1).

Fact 4.6 (Theorem 34). For every j ≥ 1 and k ≥ 0, the partition 1j21k is strongly
partition-equivalent to 1j+k2.
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Fact 4.7 (Theorem 42). For every sequence s over the alphabet [m], for every p ≥ 1
and q ≥ 0, the partitions

12 · · ·m(m+ 1)p(m+ 2)(m+ 1)qs and 12 · · ·m(m+ 1)p+q(m+ 2)s

are strongly partition-equivalent.

Fact 4.8 (Theorem 48). For every k, all the partitions of size k that start with
12 and that contain two occurrences of the symbol 1, one occurrence of the symbol
3, and all their remaining symbols are equal to 2, are mutually strongly partition-
equivalent.

In the study of multi-avoidance, the concept of strong partition equivalence be-
comes relevant through the following simple result.

Theorem 4.9. Let ρ be a pattern of the form 12 · · · (k − 1)ka for some a ≥ 1 and
k ≥ 1. That is, ρ is formed by a strictly increasing sequence of length k, followed
by another a− 1 occurrences of the symbol k. Suppose that the two patterns σ and
τ are strongly partition equivalent. Then the two pattern pairs (ρ, σ) and (ρ, τ) are
equivalent.

Proof. Note that a partition avoids ρ if and only if it either has fewer than k blocks,
or for every i ≥ k, its i-th block has size less than a. In other words, avoidance of
ρ can be characterized as a property of block sizes.

Now assume that σ and τ are strongly partition equivalent via a bijection f .
Since f preserves the sizes of each block, we know that a partition π avoids ρ if
and only if f(π) avoids ρ. In particular, f maps the set of (ρ, σ)-avoiding partitions
bijectively to the set of (ρ, τ)-avoiding partitions. �

4.3. General arguments. Before we deal with individual (4, 4)-pairs, we first
provide several general results applicable to infinite families of pattern-avoiding
classes. Our first argument involves patterns containing one symbol equal to 2
and the remaining symbols equal to 1. Fix such a pattern σ = 1a21b with a ≥ 1
and b ≥ 0. Let k = a+ b + 1 be the size of σ.

For a set of patterns T , let T ′ denote the set {1(τ + 1), τ ∈ T }.
For a set of patterns R, let Pn(σ,R) denote the set of partitions of size n that

avoid the pattern σ as well as all the patterns in R, and let Pn(σ,R; i) denote the
set of partitions in Pn(σ,R) whose first block has size i. Let fn(σ,R) and fn(σ,R; i)
denote the cardinality of Pn(σ,R) and Pn(σ,R; i), respectively.

Lemma 4.10. For any set of patterns T , and for σ and T ′ as above, we have

fn(σ, T
′) =

k−2∑

i=1

fn−i(σ, T )

(
n− 1

i− 1

)
+

n∑

i=k−1

fn−i(σ, T )

(
n− i+ k − 3

k − 3

)
.

Proof. We will compute the size of Pn(σ, T
′; i) for i ∈ [n]. Suppose first that

i < k − 1. Then a partition π of size n belongs to Pn(σ, T
′; i) if and only if its

first block has size i and the remaining blocks induce a partition that belongs to
Pn−i(σ, T ). Therefore, we have fn(σ, T

′; i) = fn−i(σ, T )
(
n−1
i−1

)
.

Now suppose that i ≥ k − 1. Then a partition π of size n belongs to Pn(σ, T
′; i)

if and only if its first block has size i, the remaining blocks induce a partition
that belongs to Pn−i(σ, T ), and moreover, no symbol greater than 1 may have a
occurrences of 1 before it and b occurrences of 1 after it. That means that every
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symbol greater than 1 appears either before the a-th occurrence of 1 or after the
(i− b+ 1)-th occurrence of 1. That gives fn(σ, T

′; i) = fn−i(σ, T )
(
n−i+k−3

k−3

)
.

Summing over all i ∈ [n] gives the result. �

Note that the formula in the previous lemma does not depend on a and b. The
next statement is a direct consequence of Lemma 4.10.

Corollary 4.11. Let σ and ρ be two patterns of size k, with σ = 1a21b and ρ =
1c21d. Let T and U be two sets of patterns. Let T ′ = {1(τ+1), τ ∈ T } and similarly
for U ′ and U . If {σ} ∪ T ∼ {ρ} ∪ U , then {σ} ∪ T ′ ∼ {ρ} ∪ U ′.

Proposition 4.12. If T is a set of patterns and T ′ is the set of patterns 1(τ + 1)

where τ ∈ T , then for every n ≥ 1, we have pn(T
′) =

∑n−1
k=0

(
n−1
k

)
pk(T ). Conse-

quently, if T and R are sets of patterns such that T ∼ R, then T ′ ∼ R′.

Proof. It is enough to observe that a partition π avoids T ′ if and only if the sub-
partition of π obtained by removing the first block of π avoids T . Therefore, there
are exactly

(
n−1
k

)
pk(T ) partitions in Pn(T

′) whose first block has size n− k. �

Corollary 4.13. The (4, 4)-pairs (1222, 1234) and (1211, 1234) are equivalent.

Proof. We express pn(1222, 1234) using Proposition 4.12 and pn(1211, 1234) using
Lemma 4.10. We have, for n ≥ 1,

pn(1222, 1234) =

n−1∑

k=0

(
n− 1

k

)
pk(111, 123)

= 1 + (n− 1) + 2

(
n− 1

2

)
+ 3

(
n− 1

3

)
+ 3

(
n− 1

4

)

and

pn(1211, 1234) = pn−1(123, 1211) + (n− 1)pn−2(123, 1211)

+ 1 +

n−3∑

k=1

pk(123, 1211)(k+ 1).

From Theorem 2.7, we deduce that pn(123, 1211) = n+
(
n−1
2

)
. Substituting into the

above expression and simplifying shows that both pn(1211, 1234) and pn(1222, 1234)
are equal to (n4 − 6n3 + 19n2 − 22n+ 16)/8 for n ≥ 1. �

Reasoning similar to that used in the proof of Lemma 4.10 above yields the
following result, whose proof we omit.

Proposition 4.14. Let T be a set of patterns and T ′ be the set of patterns 1(τ+1),
where τ ∈ T . Let an(R) (respectively, bn(R)) denote the number of partitions of [n]
that avoid all the patterns in R as well as both 1112 and 1121 (respectively, 1121
and 1211). Then, for all n ≥ 4, we have

an(T
′) = an−1(T ) + (n− 1)an−2(T ) + an−3(T ) + an−4(T ) + · · ·+ a0(T ) and

bn(T
′) = bn−1(T ) + (n− 1)bn−2(T ) + bn−3(T ) + bn−4(T ) + · · ·+ b0(T ).
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4.4. Specific patterns of size four. In the next theorem, we consider the case
of avoiding 1213 and another pattern of the form 1(τ + 1).

Theorem 4.15. Let ρ = 1(τ + 1) be any pattern of size at least two such that the
rightmost letter of τ is greater than 1. Then the generating function Hρ(x) is given
by

1 +
x

1− x
Hτ (x) +

x2

(1 − x)(1 − 2x)
(Hτ (x)− 1),

where Hσ(x) denotes the generating function for the number of partitions of [n] that
avoid 1213 and a pattern σ. Moreover, if (1213, τ) ∼ (1213, τ ′), then (1213, 1(τ +
1)) ∼ (1213, 1(τ ′ + 1)).

Proof. Let us write an equation for the generating function Hρ(x). For each
nonempty partition π of [n] that avoids 1213 and ρ, either the first block of π con-
tains only 1 or it contains 1 and 2 or it contains 1 and at least one other element,
not 2. The contributions from the first two cases are xHτ (x) and x(Hρ(x) − 1),
respectively. Each partition π in the last case must have the form 12π′1α, where
π′ does not contain 1 and α is a (possibly empty) word on {1, 2}, which implies a

contribution of x2

1−2x (Hτ (x)− 1). Hence,

Hρ(x) = 1− x+ xHτ (x) + xHρ(x) +
x2

1− 2x
(Hτ (x) − 1),

which yields the required result. �

Example 4.16. We consider some specific examples. Theorem 4.15, together with
the fact that H112(x) =

1−x
1−2x , implies

H1223(x) = 1 +
x(1 − 3x+ 3x2)

(1− 2x)2(1 − x)
.

Since 112 ∼ 123, we then have (1213, 1223)∼ (1213, 1234), by Theorem 4.15.
Using the same reasoning as in the proof of Theorem 4.15 gives

• H1231(x) = 1 + xH1231(x) + x(H1231(x) − 1) + x3

(1−x)(1−2x) , which implies

H1231(x) = H1223(x), whence (1213, 1223) ∼ (1213, 1231);

• H1221(x) = 1 + xH1221(x) + x(H1221(x) − 1) + x3

(1−x)3 , which implies

H1221(x) =
1− 4x+ 6x2 − 3x3 + x4

(1− x)3(1 − 2x)
;

• H1232(x) = 1+xH121(x)+x(H1232(x)−1)+ x3

(1−x)2(1−2x) , whence H1232(x) =

H1221(x).

Similarly, we obtain

H1233(x) = H1221(x) and H1121(x) =
(1 − x− x2)(1 − x)2

1− 4x+ 4x2 − 2x4
.

Example 4.17. Let Lσ(x) be the generating function for the number of partitions
of [n] that avoid 1231 and σ. In this example, we study the generating function
Lσ(x) in a couple of cases.

First, we consider the case σ = 1121. Note that each nonempty partition π that
avoids 1231 and 1121 can be expressed as π = 11 · · ·1π′, π = 122 · · ·211 · · ·1π′′, or
π = 122 · · ·211 · · ·122 · · ·2π′′′, where π′ does not contain the letter 1, π′′ starts with
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3 if nonempty (and is such that 22 · · · 2π′′ is a nonempty partition on the letters
{2, 3, . . .}), and π′′′ does not contain the letters 1 or 2. Thus the generating function
L1121(x) satisfies

L1121(x) = 1 +
x

1− x
L1121(x) +

x2

1− x
(L1121(x) − 1) +

x4

(1− x)3
L1121(x),

whence L1121(x) =
(1−x−x2)(1−x)2

1−4x+4x2−2x4 .
Next, we consider the case σ = 1232. From the structure, each nonempty par-

tition π that avoids 1231 and 1232 can be written as π = 1π′, where π′ does not
contain the letter 1, or as π = 1π′′, where π′′ is nonempty, or as π = 122 · · ·21απ′′′,
where α is a (possibly empty) word in {1, 2} and π′′′ does not contain the letters 1
or 2. Thus the generating function L1232(x) satisfies

L1232(x) = 1 + xL121(x) + x(L1232(x)− 1) +
x3

(1 − x)(1 − 2x)
L121(x),

whence L1232(x) = 1 + x(1−3x+3x2)
(1−2x)2(1−x) .

The remaining results in this section are of a more specific nature and cover most
of the equivalences in the table below left to be shown concerning the avoidance of
two patterns of size four. If m and n are positive integers, then [m,n] = {m,m+
1, . . . , n} if m ≤ n and [m,n] = ∅ if m > n.

Proposition 4.18. If n ≥ 1, then

pn(1221, 1232) = pn(1221, 1223) = 1 + (n− 1)2n−2.

Proof. Suppose π ∈ Pn,k(1221, 1232), where k ≥ 2. We consider whether or not π
contains a repeated letter greater than one. Thus, we see that π must be of one of
the following two forms:

(1) π = 11a121a2 · · · j1aj ja(j + 1)aj+1 · · · kak , where 2 ≤ j ≤ k, a ≥ 1, ai ≥ 0 if
i ∈ [j], and ai ≥ 1 if i ∈ [j + 1, k],

(2) π = 11b121b2 · · · k1bk , where bi ≥ 0 if i ∈ [k].

This implies

pn(1221, 1232) = 1 +
n∑

k=2

k∑

j=2

(
n− k − 1 + k

k

)
+

n∑

k=2

(
n− k + k − 1

k − 1

)

= 1 +

n∑

k=2

(k − 1)

(
n− 1

k

)
+ (2n−1 − 1) = 1 + (n− 1)2n−2.

For the second case, note that if π ∈ Pn,k(1221, 1223), where k ≥ 2, then it must
be of one of the following two forms:

(1) π = 11a121a2 · · · k1akja, where 2 ≤ j ≤ k, a ≥ 1, and ai ≥ 0 if i ∈ [k],
(2) π = 11b121b2 · · · k1bk , where bi ≥ 0 if i ∈ [k].

This implies

pn(1221, 1223) = 1 +

n∑

k=2

n−k∑

a=1

(k − 1)

(
n− a− 1

k − 1

)
+

n∑

k=2

(
n− 1

k − 1

)

= 1 +
n∑

k=2

(k − 1)

(
n− 1

k

)
+ (2n−1 − 1) = 1 + (n− 1)2n−2,
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which completes the proof. �

Proposition 4.19. For n ≥ 1,

pn(1212, 1123) = pn(1212, 1233) = pn(1212, 1223) = 1 + (n− 1)2n−2.

Proof. From Theorem 3.4, we know that the three pairs of patterns are equivalent.
It is therefore enough to show that pn(1212, 1223) = 1+ (n− 1)2n−2. Suppose that
π ∈ Pn,k(1212, 1223), where k ≥ 2. Then we either have π = 12 · · · (k − 1)kaα,
where a ≥ 1 and α is a non-increasing word (i.e., it never strictly increases) on
[k − 1], or

π = 11b121b2 · · · ℓ1bℓ(ℓ + 1)(ℓ+ 2) · · · (k − 1)kaβ,

where a ≥ 1, 1 ≤ ℓ ≤ k − 1, bℓ ≥ 1, bi ≥ 0 if 1 ≤ i < ℓ, and β is a non-increasing
word on [ℓ + 1, k − 1] ∪ {1}. Summing over a and ℓ implies that the members of
Pn,k(1212, 1223) number

n−k+1∑

a=1

(
n− a− 1

k − 2

)
+

n−k∑

a=1

k−1∑

ℓ=1

(
n− a− 1

k − 1

)
=

(
n− 1

k − 1

)
+ (k − 1)

(
n− 1

k

)
.

Summing the last expression over k ≥ 2 then gives (n− 1)2n−2 and completes the
proof. �

Proposition 4.20. We have

∑

n≥0

pn(1122, 1221)x
n =

1− 4x+ 5x2 − x3

(1− x)(1 − 2x)2
.

Proof. If τ is a word, then let fτ (x) denote the generating function for the number
of partitions (of size at least |τ |) avoiding {1122, 1221} of the form τπ′. We first
compute fτ (x) in the case when τ = 12 · · ·m1, where m ≥ 2. Suppose π is a
member of Pn(1122, 1221) whose first m+ 1 letters are 12 · · ·m1. Then π must be
of the form

π = 1α01α12α23α3 · · ·mαm,

where α0 = 23 · · ·m, α1 is a (possibly empty) word in which all the symbols different
from 1 form a strictly increasing sequence m+1,m+2, . . ., and iαi, 2 ≤ i ≤ m, is a
sequence which is either empty or is nonempty and starts with i, with the letters of
αi comprising a (possibly empty) sequence of consecutive integers, the smallest of
which is one more than the largest letter occurring to the left of αi. For example,
if m = 4 and π = 1234115116712894, then α0 = 234, α1 = 1511671, 2α2 = 289,
3α3 = ∅ and 4α4 = 4. From the above decomposition, we see that

(4.1) f12···m1(x) =
xm+1

(1− x)m−1(1− 2x)
, m ≥ 1.

(Note a simpler argument applies to the m = 1 case of (4.1).)

If m ≥ 1, then let f̃12···m(x) denote the generating function for the number of
members π = π1π2 · · · of Pn(1122, 1221) of size at least m such that π1π2 · · ·πm =
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12 · · ·m, with πm+1 ≤ m (if it occurs). From the definitions and (4.1), we have

f̃12···m(x) = xm +
m∑

j=1

f12···mj(x) = xm +
m∑

j=1

xj−1f12···(m−j+1)1(x)

= xm +

m∑

j=1

xm+1

(1− x)m−j(1− 2x)
=

xm(1 − x(1− x)m−1)

(1 − x)m−1(1 − 2x)
.

Thus, we have

∑

n≥0

pn(1122, 1221)x
n = 1 +

∑

m≥1

f̃12···m(x) = 1 +
∑

m≥1

xm(1− x(1 − x)m−1)

(1− x)m−1(1− 2x)

=
1− 4x+ 5x2 − x3

(1 − x)(1 − 2x)2
,

which completes the proof. �

From Proposition 4.20, we see that pn(1122, 1221) = 1+(n−1)2n−2 for all n ≥ 1.
We now consider the case of avoiding {1122, 1223}. For this, let us introduce

the following notation. Let fa1a2···am
= fa1a2···am

(x) denote the generating func-
tion for the number of members π = π1π2 · · ·πn ∈ Pn(1122, 1223) where n ≥ m
such that π1π2 · · ·πm = a1a2 · · ·am, and let f∗

a1a2···am
= f∗

a1a2···am
(x) denote the

generating function counting the same partitions with the further restriction that
max1≤i≤n(πi) = max1≤i≤m(ai). To establish the case {1122, 1223}, we will need
the following lemma.

Lemma 4.21. We have

(4.2) F ∗(x) := 1 +
∑

k≥1

f∗
12···k(x) =

1− 4x+ 5x2 − 2x3 + x4

(1− x)(1 − 2x)2
.

Proof. First note that if k ≥ 2, then partitions π enumerated by f∗
12···k1 are of the

form

π = 12 · · · k1α1αkαk−1 · · ·α2,

where αi, 1 ≤ i ≤ k, is either a nonempty word of the form i1a for some a ≥ 0 or is

empty, whence f∗
12···k1 = xk+1

(1−x)k
. If 2 ≤ j ≤ k, then within partitions enumerated

by f∗
12···kj , the letters j+1, j+2, . . . , k can appear only once (so as to avoid 1223),

whence

f∗
12···kj = xk−jf∗

12···jj = xk−j+1f∗
12···j .

From the definitions, we then have

f∗
12···k = xk + f∗

12···k1 +

k∑

j=2

f∗
12···kj

= xk +
xk+1

(1− x)k
+

k∑

j=2

xk−j+1f∗
12···j , k ≥ 1.(4.3)
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Summing (4.3) over k ≥ 1, and noting f∗
1 = x

1−x
, then yields

F ∗(x) − 1 =
x

1− x
+

x2

1− 2x
+
∑

j≥2

f∗
12···j(x)

∑

k≥j

xk−j+1

=
x

1− x
+

x2

1− 2x
+

x

1− x

(
F ∗(x)− x

1− x
− 1

)
,

which gives (4.2). �

We now prove the case {1122, 1223}.

Proposition 4.22. We have

∑

n≥0

pn(1122, 1223)x
n =

1− 4x+ 5x2 − x3

(1− x)(1 − 2x)2
.

Proof. We first consider the generating function f̃12···k = f̃12···k(x), k ≥ 1, for the
number of partitions π = π1π2 · · ·πn ∈ Pn(1122, 1223) having length at least k such
that π1π2 · · ·πk = 12 · · · k and πk+1 ≤ k (if it exists). From the definitions, we have

f̃12···k = xk + f12···k1 +

k∑

j=2

f12···kj

= xk + f12···k1 +

k∑

j=2

xk−j+1f∗
12···j , k ≥ 1,(4.4)

for if 2 ≤ j ≤ k, then f12···kj = xk−j+1f∗
12···j , since the letters j+1, j+2, . . . , k can

only appear once in a partition enumerated by f12···kj , with no letters greater than
k occurring. Furthermore, we have

(4.5) f12···k1 =
xk+1

(1− x)k−1(1 − 2x)
, k ≥ 1,

the enumerated partition π having the form

π = 1α01α1αkαk−1 · · ·α2,

where α0 = 23 · · · k, α1 is a (possibly empty) word obtained by replacing the 2’s
occurring in a word in {1, 2}, successively, with the letters k + 1, k+ 2, . . ., and αi,
2 ≤ i ≤ k, is a sequence which is either empty or is nonempty and of the form i1a

for some a ≥ 0.
Summing (4.4) over k ≥ 1, and using (4.5), then gives

∑

n≥0

pn(1122, 1223)x
n = 1 +

∑

k≥1

f̃12···k(x)

=
1

1− x
+

∑

k≥1

xk+1

(1 − x)k−1(1− 2x)
+
∑

j≥2

f∗
12···j(x)

∑

k≥j

xk−j+1

=
1

1− x
+

x2(1− x)

(1− 2x)2
+

x

1− x

(
F ∗(x) − x

1− x
− 1

)
,

which yields the requested result, by (4.2). �
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Proposition 4.23. For n ≥ 0, pn(1123, 1233) = pn(1231, 1233) = pn(1123, 1232).
In addition, we have

∑

n≥0

pn(1122, 1232)x
n =

1− 4x+ 6x2 − 3x3 + x4

(1− x)3(1− 2x)
.

Proof. To show the first statement, we define bijections between the classes which
preserve the number of blocks k as follows. We may assume k ≥ 3, since all of the
patterns contain at least one 3. If π ∈ Pn,k(1231, 1233), then π is necessarily of
the form π = 1a2α32b45 · · · k, where a ≥ 1, b ≥ 0, and α is a word in {1, 2}. Let
π′ = 12 · · · (k−1)2a−11bkα and π′′ = 12 · · · (k−1)b+11a−1kα′, where α′ is obtained
from α by replacing each occurrence of the letter 2 with k. Then it may be verified
that the mappings π 7→ π′ and π 7→ π′′ are bijections from Pn,k(1231, 1233) to
Pn,k(1123, 1233) and Pn,k(1123, 1232), respectively.

To prove the second statement, suppose π ∈ Pn(1122, 1232) has at least two
blocks. Then π necessarily has one of the following four forms, where k denotes the
number of blocks in the last three cases:

(1) π = 1π′, where π′ contains no 1’s, avoids {1122, 121} and is nonempty.
(2) π = 1r121r2 · · · k1rk , where r1 ≥ 2 and ri ≥ 0 if i ≥ 2.
(3) π = 1π′1s0(ℓ+1)1s1 · · · k1sk−ℓ , where 2 ≤ ℓ ≤ k, s0 ≥ 1, si ≥ 0 if i ≥ 1, and

π′ is a nonempty partition on the letters {2, 3, . . . , ℓ} avoiding {1122, 121}.
(4) π = 12 · · · (ℓ − 1)ℓa1t0ℓ1t1 · · · k1tk−ℓ+1 , where 2 ≤ ℓ ≤ k, a ≥ 1, t0 ≥ 1,

ti ≥ 0 if i ≥ 1, and an ℓ appears after the second run of the letter 1.

Thus, we get

∑

n≥0

pn(1122, 1232)x
n =

1

1− x
+ x(g(x) − 1) +

x3

(1− x)(1 − 2x)

+
x2

1− x
(g(x) − 1)

(
1 +

x

1− 2x

)
+

x4

(1− x)3(1− 2x)
,

where g(x) =
∑

n≥0 pn(1122, 121)x
n. By the table in Section 2.4 above, we have

g(x) =
∑3

i=0

(
x

1−x

)i

, and substituting this into the last equation gives the second

statement. �

Proposition 4.24. If n ≥ 2, then pn(1123, 1234) = pn(1122, 1233) = 2n−5(n2 −
n+ 14).

Proof. We enumerate both classes directly. If n ≥ 2, then there are 2n−1 members
of Pn(1123, 1234) having no 3’s as well as 2n−1 members of Pn(1122, 1233) having
at most one occurrence of the letter 2. So it remains to show that the members of
Pn(1123, 1234) in which 3 occurs as well as the members of Pn(1122, 1233) in which
2 occurs at least twice both number 2n−5(n− 2)(n+ 1).

To show the first part, let j denote the largest index such that the (j + 2)-
nd letter of π ∈ Pn(1123, 1234) is 3. Then the letters to the right of position
j + 2 may constitute any binary word, while those to the left (excepting the first
two, which are necessarily 1, 2) must form a non-decreasing binary word. Upon
conditioning further on the number, ℓ+1, of 3’s, we see that the remaining members
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of Pn(1123, 1234) number

n−2∑

j=1

2n−2−j

j−1∑

ℓ=0

(j − ℓ)

(
j − 1

ℓ

)
=

n−2∑

j=1

2n−2−j(j + 1)2j−2

= 2n−4
n−2∑

j=1

(j + 1) = 2n−5(n− 2)(n+ 1),

as required.
Members of Pn(1122, 1233) in which 2 occurs at least twice must start 1, 2, with

any letters greater than 2 occurring once. The remaining positions are to be filled
by 1’s and 2’s in such a way that the word comprising the letters in these positions
avoids 122 and contains at least one 2. Let am denote the number of words over
{1, 2} of length m avoiding 122 such that 2 occurs at least once. It may be verified

that am =
(
m+1
2

)
. Upon conditioning on the number, ℓ, of elements greater than

two occurring, we see that the remaining members of Pn(1122, 1233) number

n−3∑

ℓ=0

(
n− 2

ℓ

)
an−2−ℓ =

n−2∑

ℓ=1

(
n− 2

ℓ

)
aℓ

=
1

2

n−2∑

ℓ=1

(
n− 2

ℓ

)
(ℓ2 + ℓ) = 2n−5(n− 2)(n+ 1),

which completes the proof. �

4.5. The cases {1123, 1211} and {1123, 1222}. In order to establish these cases,
we first consider a statistic on the members of Pn having at least two blocks as
follows. We will say that an ascent occurs at position i in π = π1π2 · · ·πn ∈ Pn if
πi < πi+1, where 1 ≤ i ≤ n− 1. For example, the partition π = 1223413142 ∈ P10

has ascents at positions 1, 3, 4, 6, and 8. By the final ascent, we will mean the
largest index i such that πi < πi+1.

Definition 4.25. Suppose that the final ascent in π = π1π2 · · ·πn ∈ Pn occurs at
position m. Then let fasc denote the statistic on Pn defined by fasc(π) = n−m+1.

For example, if π = 123241355311 ∈ P12, then the final ascent occurs at position
7 and fasc(π) = 12 − 7 + 1 = 6. Note that 2 ≤ fasc(π) ≤ n − k + 2 for all
π ∈ Pn,k, where n ≥ k ≥ 2, the minimum being achieved by any partition whose
last two entries form an ascent and the maximum achieved by partitions of the form
12 · · ·kτ , where τ is any non-increasing k-ary word of length n − k. If n ≥ k ≥ 2
and 2 ≤ t ≤ n− k + 2, then let

an,k,t = |{π ∈ Pn,k(1123, 1211) : fasc(π) = t}|,
and define an,k,t to be zero otherwise. For example, we have a4,3,2 = 2 since there
are two members of P4,3(1123, 1211) having fasc value 2, namely 1223 and 1213,
and a4,3,3 = 3, the partitions in this case being 1231, 1232, and 1233. Furthermore,
let An,k,t denote the subset of partitions enumerated by an,k,t. In the following
lemma, we provide an explicit recurrence satisfied by the numbers an,k,t.

Lemma 4.26. If 3 ≤ k ≤ n and 2 ≤ t ≤ n− k + 2, then

(4.6) an,k,t = an−1,k−1,t +

n−k+1∑

j=t−1

an−2,k−1,j ,
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with a2,2,2 = 1 and for n ≥ 3,

(4.7) an,2,t =





n− t+ 1, if 3 ≤ t ≤ n− 1;
n− 2, if t = 2;
2, if t = n.

Proof. First note that members of An,k,t, where 3 ≤ k ≤ n and 2 ≤ t ≤ n− k + 2,
have either one or two 1’s, since such partitions must start with a single 1 and can
have at most a single additional 1 coming after a letter greater than one. To show
(4.6), first observe that there are an−1,k−1,t members of An,k,t containing a single
1, for writing a 1 in front of α ∈ An−1,k−1,t (on the letters {2, 3, . . . , k}) does not
affect the fasc value.

If two 1’s occur in π ∈ An,k,t, then π may be formed from β = β1β2 · · ·βn−2 ∈
An−2,k−1,j , where t− 1 ≤ j ≤ n− k + 1, by first writing a 1 in front of β and then
considering cases on j. If j ≥ t, then write a second 1 just before the (t−1)-st letter
of β from the right to obtain π = 1β1β2 · · ·βn−t+11βn−t · · ·βn−2, and if j = t− 1,
then write a second 1 at the end of β to obtain π = 1β1β2 · · ·βn−21. Note that
j ≥ t in the first case implies no occurrence of 1123 is introduced by the insertion
of the second 1 since the final j− 1 ≥ t− 1 letters of β form a non-increasing word.
Also, in the case when j = t − 1, the addition of 1 at the end increases the fasc
value by one. Thus, the sum in (4.6) conditions on the fasc value of the partition
resulting from the removal of the 1’s from π ∈ An,k,t containing two 1’s.

We now turn to the case when k = 2. Note first that members of An,2,2, n ≥ 3,
are of the form 1ρ12, where ρ = 1a2b with a, b ≥ 0 and a + b = n − 3, whence
they number n−2. There are two members of An,2,n, namely, 12 · · ·2 and 12 · · ·21.
Finally, if 3 ≤ t ≤ n − 1, then An,2,t is the set of size n − t + 1 comprising the
partitions 1n−t+12t−21 and 1n−t+12t−1, together with the partitions of the form
1ρ12t−1, where ρ = 1a2b for some a ≥ 0 and b ≥ 1 satisfying a+ b = n− t− 1. This
establishes (4.7) and completes the proof. �

We can now enumerate the partitions avoiding {1123, 1211}.

Theorem 4.27. We have

∑

n≥0

pn(1123, 1211)t
n =

(1− t2)
√

(1− t)(1 − t− 4t2)

2t2(1− 3t+ t2)
−

1− 3t− 2t2 + 14t3 − 15t4 + 3t5

2t2(1− t)2(1 − 3t + t2)
.

Proof. First define the distribution polynomial An,k(w) =
∑n−k+2

t=2 an,k,tw
t if n ≥

k ≥ 2, with An,k(w) = 0 otherwise. Multiplying (4.6) above by wt, summing over
2 ≤ t ≤ n− k + 2, and interchanging summation yields

An,k(w) = An−1,k−1(w) +

n−k+1∑

j=1

an−2,k−1,j

j+1∑

t=2

wt

= An−1,k−1(w) +
w2

1− w

n−k+1∑

j=2

an−2,k−1,j(1− wj)

= An−1,k−1(w) +
w2

1− w
(An−2,k−1(1)−An−2,k−1(w)) , n ≥ k ≥ 3,(4.8)
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with A2,2(w) = w2 and

(4.9) An,2(w) = (n− 2)w2 +

n−1∑

t=3

(n− t+ 1)wt + 2wn, n ≥ 3.

Next define An(v, w) =
∑n

k=2 An,k(w)v
k if n ≥ 2, with A1(v, w) = A0(v, w) = 0.

Multiplying (4.8) by vk and summing over 3 ≤ k ≤ n yields the recurrence
(4.10)

An(v, w)−An,2(w)v
2 = vAn−1(v, w)+

w2v

1− w
(An−2(v, 1)−An−2(v, w)), n ≥ 3.

Define the generating function A(t, v, w) =
∑

n≥2 An(v, w)t
n. Multiplying (4.10)

by tn and summing over all n ≥ 3 gives

A(t, v, w) −A2(v, w)t
2 − v2

∑

n≥3

An,2(w)t
n

= vtA(t, v, w) +
w2vt2

1− w
(A(t, v, 1)− A(t, v, w)),

which implies by (4.9) the relation
(4.11)(

1− vt+
w2vt2

1− w

)
A(t, v, w) =

w2v2t2(1− t(1 − w)(1 − t))

(1− t)2(1− tw)
+

w2vt2

1− w
A(t, v, 1).

This type of functional equation may be solved systematically using the kernel
method (see [2]). Setting the coefficient of A(t, v, w) equal to zero and solving for
w = w0 in terms of v and t yields

(4.12) w0 =
1− vt−

√
(1− vt)(1 − vt− 4vt2)

2vt2
.

Note that of the two possible values of w0 = w0(t, v), only this one yields a power
series in t and v. Setting w = w0 in (4.11) then gives

(4.13) A(t, v, 1) =
v(w0 − 1)(1− t(1− w0)(1− t))

(1− t)2(1− tw0)
.

Note that A(t, v, 1) is the generating function for the cardinality of Pn,k(1123, 1211)
for n ≥ k ≥ 2. Letting v = 1, and including the k = 0 and k = 1 cases, we see that

∑

n≥0

pn(1123, 1211)t
n =

1

1− t
+ A(t, 1, 1)

=
(1− t2)

√
(1− t)(1 − t− 4t2)

2t2(1− 3t+ t2)
−

1− 3t− 2t2 + 14t3 − 15t4 + 3t5

2t2(1− t)2(1 − 3t + t2)
,

by (4.12) and (4.13), as desired. �

Remark: Note that w0 = C
(

vt2

1−vt

)
, where C(x) = 1−

√
1−4x
2x =

∑
n≥0 cnx

n is the

generating function for the Catalan number cn = 1
n+1

(
2n
n

)
.

We now turn to the case of avoiding {1123, 1222}. For this, we first consider the
avoidance of {1123, 111}. If n ≥ k ≥ 2 and 2 ≤ t ≤ n− k + 2, then let

bn,k,t = |{π ∈ Pn,k(1123, 111) : fasc(π) = t}|,
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and define bn,k,t to be zero otherwise. For example, we have b4,3,2 = 2 (the enu-
merated partitions being 1213 and 1223) and b5,3,3 = 4 (the partitions being 12132,
12133, 12231 and 12233). Note that bn,k,t = 0 for all t if n > 2k.

Next, let

cn,k,t = |{π = π1π2 · · ·πn ∈ Pn,k(1123, 1222) : fasc(π) = t and πn 6= 1}|,
if n ≥ k ≥ 2 and 2 ≤ t ≤ n− k + 2 and put cn,k,t = 0 otherwise. For example, we
have c4,3,2 = 2 (for 1213 and 1223) and c5,3,3 = 3 (for 12132, 12133, and 12233).
In the following lemma, we provide a recurrence for bn,k,t and a relation between
cn,k,t and bn,k,t.

Lemma 4.28. If 3 ≤ k ≤ n and 2 ≤ t ≤ n− k + 2, then

(4.14) bn,k,t = bn−1,k−1,t +

n−k+1∑

j=t−1

bn−2,k−1,j

and

(4.15) cn,k,t = bn−1,k−1,t +
n−k+1∑

j=t

cn−1,k,j .

If k = 2, we have bn,2,t = 0 if n ≥ 5, b4,2,4 = b4,2,3 = b4,2,2 = 1, b3,2,3 = 2, and
b3,2,2 = b2,2,2 = 1. Furthermore,

(4.16) cn,2,t =





n− 2, if t = 2;
1, if t = 3;
0, if t ≥ 4,

if n ≥ 3, with c2,2,2 = 1.

Proof. The proof of (4.14) is similar to the one given above for (4.6); note that a
partition is restricted to containing one or two 1’s since we are now avoiding 111,
which also implies bn,2,t = 0 if n ≥ 5. One may verify directly the other conditions
for bn,2,t.

Let Cn,k,t denote the subset of partitions counted by cn,k,t. To show (4.15), first
note that if n ≥ k ≥ 3, then members of Cn,k,t containing a single 1 are of the
form 1π′, where π′ is a partition on the letters {2, 3, . . . , k} avoiding {1123, 111}.
On the other hand, one may add a 1 just before the (t − 1)-st letter from the
right of α = α1α2 · · ·αn−1 ∈ Cn−1,k,j , t ≤ j ≤ n − k + 1, to obtain π =
α1α2 · · ·αn−t1αn−t+1 · · ·αn−1 ∈ Cn,k,t having two or more 1’s. Note that j ≥ t
implies αn−t+1 · · ·αn−1 is a non-decreasing word and thus contains no 1’s since
αn−1 > 1. Therefore, the sum on the right side of (4.15) is seen to count the
members π ∈ Cn,k,t containing two or more 1’s by conditioning on the fasc value
of the partition resulting when we remove the right-most 1 from π.

We now consider the case k = 2. First, note that there are n − 2 members of
Cn,2,2, n ≥ 3, since they are of the form 1ρ12, where ρ is all 1’s except for possibly a
single occurrence of 2. There is a single member of Cn,2,3 given by 1n−222. Finally,
there are no members of Cn,2,t if t ≥ 4 since the last letter not 1 implies only 2’s
may follow the last ascent and these would then number t − 1 ≥ 3, which is not
permitted. This establishes (4.16) and completes the proof. �

Define the distribution polynomial Bn,k(w) =
∑n−k+2

t=2 bn,k,tw
t if n ≥ k ≥ 2.

When k = 2, note that B2,2(w) = w2, B3,2(w) = w2+2w3, B4,2(w) = w2+w3+w4,
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and Bn,2(w) = 0 if n ≥ 5. If n ≥ 2, then let Bn(v, w) =
∑n

k=2 Bn,k(w)v
k, with

B0(v, w) = B1(v, w) = 0. Finally, define the generating function B(t, v, w) by

B(t, v, w) =
∑

n≥2

Bn(v, w)t
n.

Note that B(t, v, w) counts all of the members of Pn(1123, 111) according to the
number of blocks and the fasc value when n ≥ 3, counts only the partition {1}, {2}
when n = 2, and counts neither {1} nor the empty partition. There is the following
explicit formula for B(t, v, w).

Lemma 4.29. We have

B(t, v, w) =
w2(vt2 − 1)

√
(1− vt)(1 − vt− 4vt2)

2vt2((1− w)(1 − vt) + w2vt2)

+
w2(1 − vt− 3vt2 + v2t3 + 2v3(1− w)t4 + 2w3(1− 2w)t5 − 2v3w3t6)

2vt2((1− w)(1 − vt) + w2vt2)
.

Proof. Multiplying (4.14) by wt and summing over 2 ≤ t ≤ n− k + 2 implies
(4.17)

Bn,k(w) = Bn−1,k−1(w) +
w2

1− w
(Bn−2,k−1(1)−Bn−2,k−1(w)), n ≥ k ≥ 3,

and multiplying (4.17) by vk and summing over 3 ≤ k ≤ n yields
(4.18)

Bn(v, w)−Bn,2(w)v
2 = vBn−1(v, w)+

w2v

1− w
(Bn−2(v, 1)−Bn−2(v, w)), n ≥ 3,

which is seen to hold for n = 2 as well, since B0(v, w) = B1(v, w) = 0. Multiplying
(4.18) by tn and summing over n ≥ 2 then gives

(4.19) B(t, v, w) − w2v2t2(1 + (1 + 2w)t+ (1 + w + w2)t2)

= vtB(t, v, w) +
w2vt2

1 − w
(B(t, v, 1)−B(t, v, w)).

Letting w = w0 in (4.19), where w0 is given by (4.12) above, implies

(4.20) B(t, v, 1) =
w2

0v
2t2(1 + (1 + 2w0)t+ (1 + w0 + w2

0)t
2)

1− vt
.

Substituting (4.20) into (4.19), solving for B(t, v, w), and simplifying then yields
the required expression. �

We can now enumerate the partitions avoiding {1123, 1222}.
Theorem 4.30. We have

∑

n≥0

pn(1123, 1222)t
n =

(1− t2)
√

(1− t)(1 − t− 4t2)

2t2(1− 3t+ t2)
−

1− 3t− 2t2 + 14t3 − 15t4 + 3t5

2t2(1− t)2(1 − 3t + t2)
.

Proof. Let Cn,k(w) =
∑n−k+2

t=2 cn,k,tw
t. Multiplying (4.15) by wt and summing

over 2 ≤ t ≤ n− k + 2 yields

(4.21) Cn,k(w) = Bn−1,k−1(w) +
w2

1− w
Cn−1,k(1)

− w

1− w
Cn−1,k(w), n ≥ k ≥ 3,
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with C2,2(w) = w2 and Cn,2(w) = (n − 2)w2 + w3 if n ≥ 3. Let Cn(v, w) =∑n

k=2 Cn,k(w)v
k if n ≥ 2. Multiplying (4.21) by vk and summing over 3 ≤ k ≤ n

yields

Cn(v, w) − Cn,2(w)v
2 = vBn−1(v, w) +

w2

1− w
(Cn−1(v, 1)− Cn−1,2(1)v

2)(4.22)

− w

1− w
(Cn−1(v, w) − Cn−1,2(w)v

2), n ≥ 3.

Let C(t, v, w) =
∑

n≥2 Cn(v, w)t
n and C̃(t, v, w) = v2

∑
n≥2 Cn,2(w)t

n. Note
that

C̃(t, v, w) = w2v2t2 +
w3v2t3

1− t
+ w2v2

∑

n≥3

(n− 2)tn

=
w2v2t2(1− t(1− w)(1 − t))

(1 − t)2
.(4.23)

Multiplying (4.22) by tn and summing over n ≥ 3 gives

C(t, v, w) − C̃(t, v, w) = vtB(t, v, w) +
w2t

1− w
(C(t, v, 1)− C̃(t, v, 1))(4.24)

− wt

1− w
(C(t, v, w) − C̃(t, v, w)).

Substituting w = 1
1−t

into (4.24), and rearranging, implies

(4.25) C(t, v, 1) = C̃(t, v, 1) + vt(1 − t)B

(
t, v,

1

1− t

)
.

By Lemma 4.29,

(4.26) B

(
t, v,

1

1− t

)
=

(1− vt2)
√

(1− vt)(1 − vt− 4vt2)

2vt3(1− t − 2vt + vt2)

−

1− (3 + v)t + 3t2 − (1 − 6v − v2)t3 − v(8 + 3v)t4 + (3 + 3v − 4v2)t5 − v2(1 − 2v)t6

2vt3(1− t)3(1− t− 2vt + vt2)
.

Note that C(t, 1, 1) is the generating function for the number of elements of
Pn(1123, 1222), n ≥ 2, ending in a letter greater than one, which implies that
1

1−t
C(t, 1, 1) counts all of the members of Pn(1123, 1222) having at least two blocks,

for adding a string of 1’s of arbitrary length to the end does not otherwise affect
the enumeration. Thus, we have

∑

n≥0

pn(1123, 1222)t
n =

1

1− t
+

1

1− t
C(t, 1, 1)

=
1

1− t
+

1

1− t
C̃(t, 1, 1) + tB

(
t, 1,

1

1− t

)

=
(1− t2)

√
(1− t)(1 − t− 4t2)

2t2(1− 3t+ t2)
−

1− 3t− 2t2 + 14t3 − 15t4 + 3t5

2t2(1− t)2(1 − 3t + t2)
,

as required, by (4.23), (4.25), and (4.26). �

Comparison of Theorems 4.27 and 4.30 reveals that the pairs {1123, 1211} and
{1123, 1222} are equivalent. We have searched for a direct bijection demonstrating
this fact and leave it to the reader as an open problem.
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4.6. Table of equivalence classes of (4, 4)-pairs. Combining the results of pre-
vious sections yields a complete solution to the problem of identifying all of the
equivalence classes of (4, 4)-pairs. It should be observed that any pattern pair not
represented in the table below belongs to a Wilf class of size one, such classes being
determined by numerical evidence (note that there are

(
15
2

)
− 84 = 21 singleton

classes in all).

• (1121, 1232)
4.10
∼ (1112, 1223)

4.10
∼ (1121, 1223)

4.10
∼ (1211, 1232)

4.16,4.10
∼

(1213, 1223)
4.16
∼ (1213, 1234)

4.16
∼ (1213, 1231)

4.9
∼ (1231, 1234)

2.7
∼ (1232, 1234)

2.7
∼

(1223, 1234)
2.7
∼ (1233, 1234)

4.12
∼ (1222, 1233)

4.12
∼ (1223, 1232)

4.12
∼ (1223, 1233)

4.12
∼

(1232, 1233)
4.17,4.12

∼ (1231, 1232)
4.19
∼ (1123, 1212)

4.20
∼ (1122, 1221)

4.19
∼ (1212, 1223)

4.22
∼

(1122, 1223)
4.18
∼ (1221, 1223)

4.18
∼ (1221, 1232)

4.19
∼ (1212, 1233)

4.9
∼ (1221, 1233)

• [15] (1212, 1232) ∼ (1112, 1213) ∼ (1123, 1223) ∼ (1221, 1231) ∼ (1123, 1213) ∼

(1212, 1213) ∼ (1212, 1221) ∼ (1222, 1223) ∼ (1122, 1212) ∼ (1222, 1232) ∼ (1211, 1231)

• (1112, 1233)
4.9
∼ (1211, 1233)

4.9
∼ (1121, 1233)

4.10
∼ (1112, 1234)

4.9
∼ (1121, 1234)

4.9
∼

(1211, 1234)
4.13
∼ (1222, 1234)

• (1213, 1221)
4.16
∼ (1213, 1232)

4.16
∼ (1213, 1233)

4.9
∼ (1231, 1233)

4.23
∼ (1123, 1232)

4.23
∼

(1123, 1233)
4.23
∼ (1122, 1232)

• [12] (1112, 1123) ∼ (1211, 1212) ∼ (1122, 1123) ∼ (1121, 1221) ∼ (1121, 1212)

• [11] (1211, 1221) ∼ (1112, 1212) ∼ (1212, 1222) ∼ (1221, 1222)

• (1211, 1222)
4.9
∼ (1121, 1222)

4.9
∼ (1112, 1222)

• (1111, 1121)
4.9
∼ (1111, 1211)

4.9
∼ (1111, 1112)

• (1212, 1234)
4.9
∼ (1221, 1234)

• (1112, 1232)
4.10
∼ (1211, 1223)

• (1222, 1231)
4.9
∼ (1213, 1222)

• (1111, 1223)
4.9
∼ (1111, 1232)

• (1123, 1211)
4.27,4.30

∼ (1123, 1222)

• (1123, 1234)
4.24
∼ (1122, 1233)

• (1121, 1231)
4.16,4.17

∼ (1121, 1213)

• (1111, 1213)
4.9
∼ (1111, 1231)

• (1111, 1212)
4.9
∼ (1111, 1221)

• (1121, 1211)
4.14
∼ (1112, 1121).
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