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ADDENDUM TO UNIQUENESS OF CERTAIN POLYNOMIALS

CONSTANT ON A LINE

JIŘÍ LEBL

Abstract. The computer calculations in [2] to classify sharp polynomials with nonegative
coefficients constant on the line x + y = 1 have been extended to degrees 19 and 21. In
degree 19 a surprisingly large number of 13 sharp polynomials was found, while in degree
21 only the group invariant polynomial exists.

1. Introduction

Let H(2, d) be the space of polynomials p(x, y) of two variables with nonnegative coeffi-
cients such that p(x, y) = 1 whenever x + y = 1. It is known [1] that the degree d satisfies
d ≤ 2N − 3, where N is the number of nonzero coefficients of p. Furthermore, for each
odd degree d, there exists a group invariant polynomial with precisely d = 2N − 3. We
call polynomials satisfying equality the sharp polynomials. See [1, 2] for more information,
background, and motivation.

In [2] using computer code, we have have classified the sharp polynomials in H(2, d) up
to degree 17. Due to the increase in the speed of computers over the last several years
and improvements to the computer code to be described below, it was possible to run the
computer code for degrees 19 and 21. The computation with all the improvements takes
approximately 5 days for degree 19 on a relatively recent 4-core CPU . For degree 21, the
computation took over 8 months.

The computer has found 13 sharp polynomials polynomials in degree 19 up to symmetry
of the variables, several of which were unexpected. Two of the polynomials are symmetric.
The number of sharp polynomials in degree 19 is stunning as there have been only 16 sharp
polynomials in all odd degrees up to degree 17.

In degree 21, the computer code found that up to swapping of variables, there are no sharp
polynomials besides the group invariant one, which was previously known.

We have therefore computed one new term in the sequence A143106 on OEIS [5], of degrees
where the group invariant polynomial is the unique one up to swapping of variables. The
sequence is now known to be:

1, 3, 5, 9, 17, 21. (1)

We have also computed two new terms for the sequence A143107 on OEIS [6]. That is,
a sequence whose Nth term is the number of sharp polynomials of degree 2N − 3, or in
other words, the number of polynomials in H(2, 2N − 3) with N nonzero coefficients. In
this sequence symmetry is not taken into account and therefore there are 24 polynomials
altogether for degree 19 and 2 polynomials for degree 21. The sequence is now known to be:

0, 1, 1, 2, 4, 2, 4, 8, 4, 2, 24, 2. (2)
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2 JIŘÍ LEBL

2. The polynomials

Let us start with degree 21. In this degree only the group invariant polynomial exists. That
is, up to swapping of variables the only sharp degree 21 polynomial is the group invariant
one.

x21 + 21 x19 y1 + 189 x17 y2 + 952 x15 y3 + 2940 x13 y4 + 5733 x11 y5 + 7007 x9 y6+

5148 x7 y7 + 2079 x5 y8 + 385 x3 y9 + 21 x1 y10 + y21 (3)

In degree 19, the situation is dramatically different. Let us list the polynomials we found.
First we have the group invariant polynomial.

x19 + 19 y x17 + 152 y2 x15 + 665 y3 x13 + 1729 y4 x11 + 2717 y5 x9 + 2508 y6 x7+

1254 y7 x5 + 285 y8 x3 + 19 y9 x+ y19 (4)

Then we have several polynomials with integer coefficients.

x19 + 19 y x17 + 152 y2 x15 + 665 y3 x13 + 1729 y4 x11 + 2090 y5 x9 + 627 y9 x5+

627 y5 x5 + 285 y8 x3 + 19 y9 x+ y19 (5)

x19 + 285 y3 x13 + 1425 y4 x11 + 19 y9 x9 + 2679 y5 x9 + 19 y x9 + 2508 y6 x7+

1254 y7 x5 + 285 y8 x3 + 19 y9 x+ y19 (6)

x19 + 285 y3 x13 + 1425 y4 x11 + 19 y9 x9 + 2052 y5 x9 + 19 y x9 + 627 y9 x5+

627 y5 x5 + 285 y8 x3 + 19 y9 x+ y19 (7)

Next, three polynomials with rational coefficients with denominator 25.

x19 + 19 y x17 + 152 y2 x15 +
15371 y3 x13

25
+

6137 y4 x11

5
+

4807 y5 x9

5
+

1254 y13 x3

25
+

4617 y8 x3

25
+

1254 y3 x3

25
+ 19 y9 x+ y19 (8)

x19 +
5871 y3 x13

25
+

4617 y4 x11

5
+ 19 y9 x9 +

4617 y5 x9

5
+ 19 y x9+

1254 y13 x3

25
+

4617 y8 x3

25
+

1254 y3 x3

25
+ 19 y9 x+ y19 (9)

x19 +
5871 y3 x13

25
+

4617 y4 x10

5
+ 19 y9 x9 +

4617 y6 x9

5
+ 19 y x9+

1254 y13 x3

25
+

4617 y8 x3

25
+

1254 y3 x3

25
+ 19 y9 x+ y19 (10)

Then we have two polynomials with denominator 56.

x19 +
855 y x17

56
+

646 y2 x15

7
+

1938 y3 x13

7
+

2907 y4 x11

7
+

3553 y5 x9

14
+

323 y8 x3

7
+

209 y17 x

56
+

323 y9 x

28
+

209 y x

56
+ y19 (11)
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x19 +
855 y x17

56
+

323 y2 x15

7
+

323 y8 x9

7
+

323 y5 x9

2
+

323 y2 x9

7
+

323 y8 x3

7
+

209 y17 x

56
+

323 y9 x

28
+

209 y x

56
+ y19 (12)

Finally, rather surprisingly, there are 4 very similar polynomials with denominator 110,
two of which are symmetric in x and y.

x19 +
19 y x17

2
+

323 y2 x15

11
+

323 y3 x13

11
+

323 y x6

55
+

323 y13 x4

11
+

323 y14 x2

11
+

19 y17 x

2
+

323 y6 x

55
+

399 y x

110
+ y19 (13)

x19 +
19 y x17

2
+

323 y2 x15

11
+

323 y3 x13

11
+

323 y x6

55
+

323 y13 x3

11
+

323 y15 x2

11
+

19 y17 x

2
+

323 y6 x

55
+

399 y x

110
+ y19 (14)

x19 +
19 y x17

2
+

323 y2 x14

11
+

323 y4 x13

11
+

323 y x6

55
+

323 y13 x4

11
+

323 y14 x2

11
+

19 y17 x

2
+

323 y6 x

55
+

399 y x

110
+ y19 (15)

x19 +
19 y x17

2
+

323 y2 x14

11
+

323 y4 x13

11
+

323 y x6

55
+

323 y13 x3

11
+

323 y15 x2

11
+

19 y17 x

2
+

323 y6 x

55
+

399 y x

110
+ y19 (16)

3. No adjacent terms

One new optimization used to compute degree 21 requires a proof. For terminology see
[1–3]. Previously the code has avoided polynomials with both terms xj+1yk and xjyk+1. If
p(x, y) is sharp and contains both terms, one can obtain via an undoing a sharp polynomial
with one of the terms missing. If we could undo both, then the polynomial could not have
been sharp to begin with. However, using recent work, [3], we can prove a stronger assertion,
to improve efficiency of the code.

Proposition 3.1. If p ∈ H(2, d), d > 1 and odd, is sharp, then p contains no adjacent

terms. That is, given any j and k, at least two of the monomials of the form xj+1yk, xjyk+1,

and xjyk do not appear in p.

Proof. In [2] it was proved that p must contain terms xd, yd. The Newton diagram (see [2])

of q(x, y) = p(x,y)−1
x+y−1

must therefore contain all P s on the sides leading to pure monomials.

The top row (degree d−1 in q) must contain all terms. In [2] we have proved that the top
row must be alternating Ns and P s. This fact follows from the observation that the only
degree d terms in p are xd and yd.

For d > 1 then by the above we see that any adjacent terms would have to occur somewhere
in the interior. We also assume that adjacent terms occur at the same degree. For example
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if we got xj+1yk, and xjyk, we could multiply the xjyk term by (x + y) to obtain another
sharp polynomial with two adjacent terms of same degree.

As p is sharp, all terms in p− 1 must correspond to sinks and sources. Using terminology
from [3], the Newton diagram must be connected as p − 1 has only one negative term.
Furthermore, it was proved in [3] that the number of sources and sinks satisfies the same
bound for connected diagrams as those arising from H(2, d). In other words, there can be
at most d+5

2
sinks and sources. Therefore if we fill in any zeros with P s or Ns or flip signs,

without increasing the number of sinks and sources, we cannot in fact decrease the number
of sinks and sources as it is already minimal. So we can never be in a situation where flipping
P s and Ns or setting zeros to P s and Ns reduces the number of sinks or sources. Let us
disqualify certain situations by showing we could reduce the number of sinks or sources.

Suppose we have two sinks next to each other in a configuration such as:

N N

P P P

P P
(17)

Here the rows correspond to a fixed degree of terms in q. For example, the middle row
corresponds to the terms xj−1yk+1, xjyk, and xj+1yk−1.

We could flip the middle P (term corresponding to xjyk) to an N and decrease the number
of sinks. There of course could also be zeros present. However, any time the top two sinks
have both at least one P or N from a term that does not correspond to the xjyk, we could
set the term corresponding to xjyk to N and remove two sinks. If both sinks have just zeros
as in

0 0
0 P 0

P P

(18)

simply switching the P to a 0 will remove the two sinks. Therefore, we must have one of the
sinks have simply zeros and we must have a P at the xjyk term (otherwise one of the sinks
would not be there). In other words we have a situation such as

0 N

0 P P

P P
(19)

Now we cannot just flip the P to an N . Doing so would kill one sink, convert one to a source
and create a new sink, so it would not lower the number of sinks and sources. So let us start
filling.

Take the smallest degree k for which q has a term missing. The row corresponding to
degree k and k − 1 will therefore have a place that has a gap of zeros such as

P 0 · · · 0 P

P N · · · N P
(20)

possibly with the P s and Ns reversed. We know we always have such a situation, since the
diagram is connected and all the sides are already filled.

If we fill the row of 0s with alternating P s and Ns the total number of sinks and sources
cannot increase. We may have converted a sink to a source or vice versa, but we have not
increased the total number.
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We keep filling until we get to the row that is the middle row in the configuration

0 N

0 P P

P P
(21)

we notice that we could start filling that row with an N on the right hand side and that
would cancel one of the two adjacent sinks. And this would lead to a contradiction that the
number of sinks plus sources was optimal. �

4. The computer code

The code used is the C code described in detail in [2]. The new revision of the code
that was used in this computation has been posted at [4]. The basic idea is to consider
p(x, 1 − x) − 1 = 0, which provides a linear equation for the coefficients. We write this
equation as a matrix A that takes coefficients of degree d−1 or less to the degree d coefficients.
We know that the degree d coefficients have the form xd + yd. We iterate over the list of
possible monomials of degree d− 1 or less, taking the corresponding columns of the matrix,
we look for nonzero solutions. The idea of the algorithm is to find those submatrices that
are not of full rank (have a nontrivial solution). Then we check if this solution has positive
coefficients. There are several heuristics that are applied that can avoid doing row reduction
at all. Already in [2], to improve speed of the row reduction, we first used mod p arithmetic
for reduction for a small prime, as most of the submatrices considered are full rank. This
technique reduces the need to do row reduction in full integer arithmetic in vast majority of
the cases. We have used p = 19 in degree 17 or less, and in this calculation, we used p = 23.
The prime must not divide the degree, as most entries in the matrix are divisible by d.

The major improvements done in this revision are the following

(i) The row reduction is first done mod 2 before being done mode p. Mod 2 is much faster
than mod p. The code actually does column reduction in mod 2 and considers columns
as unsigned integers. The reduction removes one internal loop as adding columns
together is simply an XOR operation. Unfortunately mod 2 arithmetic only eliminates
90% of the full rank cases, but it is approximately 4 times as fast on these 90%. If the
test fails with mod 2, we move to mod p as before.

(ii) Just as the Mathematica code from [2], the C code now ignores polynomials that are
“right side heavy.” That is, polynomials where there are more terms with higher power
of y than of x. This optimization reduces the run time by approximately one third.

(iii) No adjacent terms can appear as was mentioned before. Skipping all these cases im-
proved the runtime by another factor of one half.

(iv) Many other more minor optimizations were done, whose individual impact was harder
to measure.

Overall, the new optimizations together with improvements in speed of computers since
2008, the current code runs approximately 25–50 times faster than it did in 2008.

5. Candidate sequence for uniqueness

In [2] we have stated that we tried the construction of section 8 up to degree 513 and
listed the degrees not ruled out up to degree 149. The code was run to degree 1250 and it
seems this is a proper place to record the results. Therefore, the construction of section 8 in
[2] and hence an extension of the list in Proposition 7.2 is:
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1, 3, 5, 9, 17, 21, 33, 41, 45, 53, 69, 77, 81, 93, 105, 113, 117, 125, 129, 141, 149, 153,
161, 165, 177, 185, 201, 213, 221, 225, 249, 261, 269, 273, 285, 297, 305, 309, 333, 341, 345,
357, 365, 369, 381, 405, 413, 417, 429, 437, 441, 453, 465, 473, 489, 501, 521, 525, 537, 549,
581, 585, 597, 609, 617, 621, 633, 645, 653, 665, 689, 693, 701, 705, 725, 729, 741, 753, 765,
773, 777, 789, 809, 825, 833, 837, 845, 861, 881, 885, 897, 905, 909, 921, 933, 953, 957, 969,
981, 993, 1017, 1029, 1041, 1049, 1053, 1061, 1065, 1085, 1089, 1097, 1101, 1113, 1125, 1137,
1149, 1157, 1173, 1185, 1193, 1197, 1205, 1229, 1233

References
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