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Abstract—A new inner bound on the capacity region of the exists a sequence of2"f1,... 2"~ n) codes such that
general index coding problem is established. Unlike most ésting (™) _ 0. The capacity regior¢ of the index

hmn—>oo Pe
bounds that are based on graph theoretic or algebraic toolsthe . . .
bound relies on a random coding scheme and optimal decoding, coding problem is the closure of the set of achievable rate

and has a simple polymatroidal single-letter expression. fe tuples_(Rl,.._.,RN)._(Sir_niIarIy, one can define the zero-error
utility of the inner bound is demonstrated by examples that capacity region, which is shown inl[1] to be identical to the

include the capacity region for all index coding problems wih
up to five messages (there are 9846 nonisomorphic ones).

Consider the simple communication problem in Figlre
which is often referred to as th@dex coding problem. The

INTRODUCTION

sender wishes to communicaté messages/; € [1: 2],

jefl

: NJ, to their respective receivers over a common

noiseless link that carries bits X™. Each receiveyj € [1: N]
has prior knowledge of/ 4,, i.e., a subse#d; C [1: N]\ {j}

of the messages. Based on this side informatidpn, and
the received bitsX™, receiver;j finds the estimaté/; of the

messagé/;. A nontrivial tradeoff arises between the rafes

J € [L: N], of the messages since receivers with incompatiblgy a directed graplg = (V,€), whereV = |1

knowledge compete for the shared broadcast medium.

capacity region.) The goal is to find the capacity region and
the optimal coding scheme that achieves it.

Note that an index coding problem is fully characterized
by the side information setd;, j € [1: N]. As an example,

fonsider the 3-message index coding problem vdth= {2},

Ay = {1,3}, and A3 =
compactly as

{1}. We represent this problem

(112), (2[1,3), 3[1), 1)

or as a directed graph (see Figlite 2(a)), where nodes represe
indices of the messages/receivers and edges represeht avai
ability of side information (e.g., the edge— 2 means that
side information}; is available at receiver 2). In general, an
index coding problentj|.A;), j € [1: N], can be represented
: N] and
(J, k) e Eiff j € A

Note that the 3-message index coding problenilin (1) can be

Ma, represented as an instance of the network coding problem [2]
Y e as illustrated in Figurél2(b). The same observation can be
—= Decoder1 made for any index coding problem; thus, index coding is a
Ma, special case of network coding.
: it
My,...,Mx xn = Decoder2 2 1
Encoder -
May
v .
2 3
| Decodern | M~
@
Fig. 1. The index coding problem.
We define a2"f1 ... 2nf~ ) code for index coding by M M
an encoder”(m1,...,my) and N decodersi;(z",m;), M i
j € [1: N]. We assume that the message tu@l& , ..., My) ? ?
is uniformly distributed overl : 2"F1] x ... x [1 : 2nf~], M3 M;

that is, the messages are uniformly distributed and indepen

(b)

dent of each other. The average probability of error is then

defined asP” —
A rate tuple(Ry,..

P{(M;,..

aMN) 7& (Mla--
. RN) is said to be achievable if thereproblem. Here every edge of the graph can carry up to 1 bitrpesmission.

S M)}

Fig. 2. (a) Directed graph representation. (b) The equitatetwork coding
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First introduced by Birk and Kol[]3] in the context of 1
satellite broadcast communication, the index coding pobl
has been studied extensively over the past six years in the 5 2
theoretical computer science and network coding comnasiti
with many contributions of combinatorial and algebraic dlies/
(see, for example/ [4]=[16] and the references therein). Ou
Shannon-theoretic formulation of the problem closelydot 4 3
that of Maleki, Cadambe, and Jafar [17], who established the
capacity region for several interesting classes of indedingp ~ Fi9- 3- A graph representation of the 5-message index culiaglem.
problems using interference alignment|[18]. Despite adisth

developments, the capacity region of a general index codiffle following example, due td [15] L7], illustrates thaet
problem is not known. two outer bounds do not coincide in general.

Confirming Maslow’s axiom [[19] “if all you have is a E le 1 Consider th wic fi ind
hammer, everything looks like a nail,” we proposeaamdom xampie L. Lonsider the symmetric five-message index

coding approach, in contrast to more advanced coding schenf@Sing problem(j[j —1,j +1), j € [1: 5], namely,
of an algebraic nature. This approach is more in the spirit of (115,2), (2]1,3), (3]2,4), (4]3,5), (5]4,1).
the original paper by Ahlswede, Cai, Li, and Yeuhg [2], wher: . L . N
random coding (binning) was used to establish the netwo?lpe corresp_ondmg graph represent_atlon is depicted in Fig-
coding theorem. In particular, we develog@mposite coding ure[3. Applying Corollarf 1L, we obtain
scheme based on random coding and establish a corresponding Ri1 4+ R3 <1, Ry + R4 <1, R34+ Rs <1, 9
single-letter inner bound on the capacity region. Ri+R1 <1, Rs+R,<1. )
Instead of mechanical proofs, this paper focuses on ba
intuitions behind our coding scheme, which we develop grad
ally from simpler coding schemes—*“flat coding” in Sectioh II Ry + Ro+ R3+ Ry + R5 <2, 3)
and “dual index coding” in Sectid1V. The composite cod|n% addition to the five inequalities above. As we discuss in

scheme is explained in Sectibnd V. The next section discusses .. . . T
known outer bounds on the capacity region. %eectlo@, [2) and[{3) characterize the capacity region isf th

index coding problem.
Il. OUTER BOUNDS IIl. FLAT CODING

We first recall the following outer bound on the capacity consider the following simple random coding scheme. For

E%Ccomparison, Theorefd 1 leads to the inequality

region (see, for example, [10] ar [20] for a similar bound "éach(ml, ..ymy) € [1:274] x ... x [1:27R~], generate
the context of a general network coding problem). a codewordz™ (my, . . ., my) randomly and independently as
Theorem 1: Let B; = [1: N]\ ({j} U A;) be the index a Bern(/2) sequence. To communicate, ..., my), the
set of interfering messages at receiyedf (Ri,...,Ry) is sender transmitg” = 2™(m4,...,my). Receiverj uses
achievable, then it must satisfy simultaneous nonunique decodirig][22] and finds the unique
R; < Tjyus, — Ts,, j € [1:N), iy € [1: 27_131'] such thata™(riv;, ma,, ms,) is jointly
typical with (i.e., identical to) the received sequence
for someT7, 7 € [1: N], such that for somemsg,, where B; = [1 : N]\ ({j} U 4;). Since
1) Ty =0, the codebook generation is “flat” (compared with “layered”
2) Tii.n =1, superposition coding), simultaneous nonunique decodéng i
3) Ty <Tx forall 7 C K C[1:N], and essentially identical to uniquely decoditg;, 73,) and then
) Tyr+Tyox <Tg+Tx foral J,K C[1:N]. discarding the unnecessary park,. This flat coding scheme

The upper bound is established by using Fano’s inequali{g!ds the following inner bound.
and settingl'; = (1/n) H(X™| M s.). Properties 1-4 are due Proposition 1. A rate tuple(R, ..., Ry) is achievable for
to the submodularity of entropy. the index coding problengj|.A4,), j € [1: N, if

Recent results by Sun and Jafar![21] indicate that this outer , .
bound is not tight in general. Nevertheless, a relaxed oBrsi Rj + Z Ry <1, je[l:N].

of the bound is sometimes useful. webB;

Corollary 1: If (Ry,...,Ry) is achievable for an index As an example, consider the 3-message problentlin (1).
coding problem represented by the directed grgphhen it Under flat coding, receiver 1 finds the uniqtie such that
must satisfy 2™ (11, ma, m3) = 2™ for somems € [1:2"%3] and the given

Z R; <1 side informationms. By the packing lemme [23, Sec. 3.4], it
jer can be readily shown that the probability of decoding eroor f

for all 7 C [1: N] for which the subgraph of over 7 does receiver 1 tends to zero as— oo if

not contain a directed cycle. Ry + R3 < 1. (4)



Similarly, we obtainR, < 1 (an inactive bound) and My |21
Encoderl >

Ry+ Ry < 1. %)

By comparing with Theoreril1 (or Corollafy 1), it can be M i W L Nn
easily checked that the rate region characterize@by (4f@nd ——~—+ Encoder 7+ Decoder———
is indeed the capacity region.

It can be easily verified that for all index coding problems :
with 1, 2, and 3 messages—there are 1, 3, and 16 nonif, ... My Wi
somorphic problemd [24]—this flat coding scheme (or more—*| Encoder(1 : N]
generally, time sharing of flat coding over different subgaft
messages) achieves the capacity region. Among the 218 four- Fig. 4. The dual index coding problem.
message index coding problems, time sharing of flat coding
over subsets of messages achieves the capacity region for al

Y

but three. The following is one of the three exceptions. Proposition 2: The capacity region of the dual index coding
Example 2: Consider the 4-message index coding probleﬁ'lmblem Is the set of rate tuplést,, ..., ) that satisfy
S R< Y. Sa (7
(1|4‘)’ (2|374‘)’ (3|1’2)7 (4‘|273) 76.7 J'g[lN]j'ﬂj;ﬁ@

On the one hand, flat coding yields an inner bound g@r all 7 C [1:N].

the capacity regior;] trf:at consists of the rate quadrUpIes\Nhat is perhaps more important than this explicit character
(B1, Rz, Ry, Rq) such that ization of the capacity region is the fact that it can be aahie
Ri+ Ry + R3 < 1, by flat coding, which we will utilize later.
Ri+ Ry <1 As an example, consider the three-message three-sender
! 4 ’ dual index coding problem in Figurdd 5, whel . = 1,
Rs + Ry <1. Si3 = S123=2,andS; = S, = S3 = Sy 3 = 0. By (7),
It can be verified that this inner bound cannot be improvdBi® capacity region is the set of rate triple,, 12, I23) such
upon by time sharing over subsets. On the other hand, Théwt
rem[1 (or Corollary 1) yields an outer bound that consists of Ry + Ry + R3 <5, Ry < 3, Ry < 4.
the rate quadruple&R;, Rs, Rs, R4) such that
This can be achieved via flat coding @/, Ms), (M7, Ms),
B+ Ry < 1, R+ Rs < 1, (6) and (M., My, Ms), respectively, and simultaneous decoding
Ri+ Ry <1, Rs+ Ry < 1. at the receiver.

We will see in Sectiof V that this outer bound is tight.

My, M.
While flat coding is suboptimal in general, the analysis,(i.#» Encoder{1, 2} 1,

the proof of Propositiof]1) is trivial and does not rely on any o

i i i i i ia M, M M, M2, M:
graph theoretic machlnery. Th|s observation will be crlcia 1, M3 Encoder{1, 3} 2 Decoder ot 272 413
when we generalize the coding scheme subsequently.

My, Ma, M-
L Encoder{1, 2,3} 2,

IV. DUAL INDEX CODING

Before we move on to a more powerful random coding
scheme, we introduce a communication problem (depicted in
Figure[4) that is, in some sense, dual to the index coding
problem. Here a set g2 — 1) senders wish to communicate V. COMPOSITE CODING
a message tupl@\/y, ..., My) to a common receiver through
a noiseless channel, each encoding a subtdgle into a

Fig. 5. An instance of dual index coding.

Equipped with the results in the previous two subsections,
we now introduce a layered random coding scheme, which

separate indeXV; € [1:2"97] for all nonempty7 C [1: N]. . . . .
What is the capacity region (as a function of the rateg? era:ﬁ;elé to ascomposite coding. This is best described by an

acl-glsss ELoabr:ig (I:/I :C;SF\J/Si(t:rI]alcgfrlZ?atgg tr?]isgggggagt?;gg’% gConsider again the 5-message problem in Exaimple 1. In the
Han [25]. For the general MAC, superposition coding achievcfeIr t step of composite coding, the sender encodds, M)

the capacity region that is characterized by independent aqjgﬁ%i?]g‘i‘feé%; ?\2 ;)at?f}j ]tzl;lg( ]r\jzdﬂcg) cgg:jr}% ?nﬂc; :)lml-

message. Honever, forthe cual dex coding problem, we (SgPeCtVeY. I INdICe8l., Ws.s, Wss, and v Equi-
ge. ’ 9p ' ntly, the sender is decomposed into 5 “virtual” senders,

characterize the capacity region explicitly. each encoding one of the above pairs of messages (as in



the dual index coding problem). In the second step, tl®me of the composite indices, as in the examples abovey. Thi
sender uses flat coding to encode the “composite” indicesding scheme is illustrated in Figurk 6. It easily followsnfi
Wi, Was, Wsa, Was, W1 5. As with encoding, decoding the arguments above that if we allow decogeio decode a
also takes two steps. Each receiver first recovers all comeposubsetC; of the messages, then the rates of the composite
indices, and then recovers the desired message from the comssages need to belong to the polymatroidal rate region
posite indices. For example, receiver 1 recoviig,, W15 Z#(K;|.A;) defined by

(along with other composite indices). Since receiver 1 lides s

information (M», Ms), it can recoverM; from (Wy o, Wi 5) Z Rj < Z
if Ry <S12+4.51 5. Following similar steps for other receivers
and incorporating the flat coding rate condition, it can b@r all 7 € K; \ A;. Note that this is the capacity region of
easily verified that a rate quintupleR,, Ry, R3, R4, R5) is the dual index coding problem (Propositioh 2) with message

Sg (8)
jeg T'CK;UA;: T/ NT#£D

achievable if set ; and side informationd;. Taking the union over all
choices of decoding sefs; yields the following inner bound,
Ry < S12+ 515, which is the main result of the paper.
Ry <512+ 523, Theorem 2 (Composite-coding inner bound): A rate tuple
Rs < 5234 534, (R1,...,Ry) is achievable for the index coding problem
| (14;), 5 € [1: N, if

Ry < S34+4 S5,
Rs < 51754-54,5 (Rlv"'aRN) € ﬂ U ‘%)(K:j |A7) (9)

JjE[1:N] K,;C[1:N]:j€K;
for some(1,2, 52,3, 5,4, Sa.5, 51,5) SAUSNINGS1.2 + 523+ for some(5,: 7 C [1: N) such that Sz <1 for
S3.4+ 545+ 51,5 < 1. Fourier—-Motzkin elimination [23, Ap- all j e 1 (]\‘[7] J S [1:N]) ZJ:JZAj J =
pendix D] of the composite index rates yields the inequediti / o

- e t first glance, composite coding seems to be time sharing
d that define th ter bound, th tablishing th . i
g\)pggity[crgggio?] efine the outer boun us establishing of flat coding over all subsets ¢f : N]. However, it employs

Now consider the four-message problem in Exaniple 2. [P]e optimal decoding rule that utilizes all composite irgdic

: L subsets) that are relevant to the desired message. As such,
this case, we only use the composite indibés, andi 3.4 he corresponding rate region has a very similar form as the
with ratesS; 4 and .S; 2 3 4, respectively, and set the rates 0% P 9 9 y

the remaining indices to zero. It can be easily verified fror?'lptlmal rate region for interference networks with random

o . : coding [26].
Propositior P that receiver 1 can recowdi if Ry < Si 4; re- 2k .
ceiver 2 can recovetl, (andMy) if Ry+ R < S1a+S1 254 Using the polco tool for polyhedral computations|[27], we

and R < 1.5, receiver 3 can recovel; (and M) if (o EORICE TR BEnRoRtE fo it B0 Do e
R34+ R4 < S1,4+ S1,234 and Rg < S} 23.4; and receiver 4 ' P

carecouent, (andA 1) 41 < 5.+ 5151 Adding 1255502 NGEX codng proberisl2d] i a cases, mer and
the constraintS; 4 + S12,34 < 1 and eliminatingS; 4+ and gree, 9 pacily region.

; : i : To further demonstrate the utility of composite coding, we
S1,2,3.4, We obtain the inequalities](6) that define the outerr y P 9

L X ) evisit the following example in_[17].
bound, thus establishing the capacity region. Examole 3+ Consider theV y metric ind q
In general, we can utiliz&" — 1) virtual senders to encode, —aPI€ 5. LONSIGEr -Mmessageymmetric Index cod-

N messages. Moreover, the receivers can employ simultanegl%pmblem
nonunique decoding in the second step (or equivalentlprign (Gli=-Uji=-U+1,....,5—1,j+1,...,5+ D)

Ma, Ma,
v v .

W17W27 .. '7VAV[1:N]‘

M Wi —> Decoderl Decoderl ————
Encoderl >
Ma, Ma,
: W T . o
1, Wa, ..., .
My W xn [ Decoder2 LN, Decoder2 |2»
Encoder7 > Encoder >
. May May
M, ...,Mn Wii:n v P . )
Encoder[1: N - Wi, Wa, ..., W, y
[1: N] L~ DecoderN L2 LN pecodern’ YN,

Fig. 6. Composite coding scheme.
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