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Abstract

Using the notion of the composita, we obtain a method of solving iterative func-

tional equations of the form A2n(x) = F (x), where F (x) =
∑

n>0 f(n)x
n, f(1) 6= 0.

We prove that if F (x) =
∑

n>0 f(n)x
n has integer coefficients, then the generating

function A(x) =
∑

n>0 a(n)x
n, which is obtained from the iterative functional equation

4A(A(x)) = F (4x), has integer coefficients.

Key words: iterative functional equation, composition of generating functions, com-

posita.

1 Introduction

For a given A(x) the n-th iteration is the function that is composed with itself n times.

A0(x) = x, A1(x) = A(x), A2(x) = A(A1(x)), . . . , An(x) = A(An−1(x))

and denoted by An(x).
By an iterative functional equation we mean the equation, where the analytical form of

a function A(x) is not known, but its composition with itself is known.
Iterative functional equations arise in various fields such as fractal theory, computer sci-

ence, dynamical systems, and maps. In particular, a challenging iterated functional equation
A(A(x)) = x2 − 2 circulate as a test of one’s intelligence.

Despite their prevalence, they are very difficult to solve, and few mathematical tools
exist to analyse them. In the general case, solving the equations involve deep mathematical
insight and experimentation with different substitutions and reformulations.

In the literature you can find extensive investigations concerning iterates and functional
equations, classical books [1, 2, 3, 4] and recent surveys and papers [5, 6, 7, 8, 9].

In this paper, we propose using the notion of the composita to identify and solve such
iterative functional equations, where F (x) =

∑

n>0 f(n)x
n, f(1) 6= 0.
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2 Preliminary

In the paper [10], the authors introduced the notion of the composita of a given ordinary
generating function F (x) =

∑

n>0 f(n)x
n.

Definition 1. The composita of the generating function F (x) =
∑

n>0 f(n)x
n is the function

of two variables
F∆(n, k) =

∑

πk∈Cn

f(λ1)f(λ2) . . . f(λk), (1)

where Cn is a set of all compositions of an integer n, πk is the composition
∑k

i=1 λi = n into
k parts exactly.

The generating function of the composita of F (x) is equal to

[F (x)]k =
∑

n≥k

F∆(n, k)xn. (2)

The composita is the coefficients of the powers of an ordinary generating function

F∆(n, k) := [zn]F (x)k.

For the case k = n the composita F∆(n, k) (see the formula (1) is

F∆(n, n) = f(1)n. (3)

In tabular form, the composita is presented as a triangle as follows

f(1)
f(2) f 2(1)

f(3) F∆
3,2 f 3(1)

f(4) F∆
4,2 F∆

4,3 f 4(1)

. .
. ...

...
...

. . .

f(n) F∆
n,2 . . . . . . F∆

n,n−1 fn(1)

Comtet[11, p. 141] considered similar objects and identities for exponential generating
functions, and called them potential polynomials. In this paper we consider the more general
case of generating functions ordinary generating functions. For more information about the
composita you can see [10, 12, 13].

In the following theorem we give the formula for the composita of a composition of
generating function, which was proved by the authors in [10].

Theorem 2. Suppose we have the generating functions A(x) =
∑

n>0 a(n)x
n, G(x) =

∑

n>0 g(n)x
n, and their compositae A∆(n, k), G∆(n, k) respectively. Then for the compo-

sition of generating functions F (x) = G (A(x)) the composita is equal to

F∆(n, k) =
n
∑

m=k

A∆(n,m)G∆(m, k). (4)
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3 Iterative functional equation A(A(x)) = F (x)

The simplest case of an iterative functional equation for an unknown function A(x) with
given function F (x)

A(A(x)) = F (x)

appeared in 1820 (Babbage, with F (x) = x).
In this section we consider the case, when the expression for coefficients of a generating

function A(x) =
∑

n>0 a(n)x
n is not known, but its composition with itself is known.

Theorem 3. Suppose F (x) =
∑

n>0 f(n)x
n is a generating function, where f(1) 6= 0,

F∆(n, k) is the composita of F (x), A(x) =
∑

n>0 a(n)x
n is the generating function, which

is obtained from the functional equation A(A(x)) = F (x). Then for the composita of the
generating function A(x) we have the following recurrent formula

A∆(n, k) =







f(1)
n
2 , n = k;

1

f(1)
n
2 +f(1)

k
2

(

F∆(n, k)−
n−1
∑

m=k+1

A∆(n,m)A∆(m, k)

)

, n > k.
(5)

Proof. Using Theorem 2, for the case n = k we get

A∆(n, n)A∆(n, n) = F∆(n, n).

According to the formula (3), we obtain

A∆(n, n) = f(1)
n
2 .

Using Theorem 2, for the case n > k we get

n
∑

m=k

A∆(n,m)A∆(m, k) = F∆(n, k)

or

A∆(n, k)A∆(k, k) +

n−1
∑

m=k+1

A∆(n,m)A∆(m, k) + A∆(n, n)A∆(n, k) = F∆(n, k).

Therefore, we have

A∆(n, k)
(

A∆(k, k) + A∆(n, n)
)

= F∆(n, k)−
n−1
∑

m=k+1

A∆(n,m)A∆(m, k).

Since A∆(n, n) = a(1)n = f(1)
n
2 , we obtain the desired formula

A∆(n, k) =







f(1)
n
2 , n = k;

1

f(1)
n
2 +f(1)

k
2

(

F∆(n, k)−
n−1
∑

m=k+1

A∆(n,m)A∆(m, k)

)

, n > k.
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Next we show that the formula (5) is computable. For the case n = 1 the formula is
computable

A∆(1, 1) =
√

f(1).

By induction, we put that there exist A∆(k, l) for k, l 6 n.
Then we prove that A∆(n+ 1, m) is computable for m 6 n+ 1.

1. First case m = n + 1. From Theorem 2, we have

A∆(n+ 1, n+ 1)A∆(n+ 1, n+ 1) = F∆(n+ 1, n+ 1).

Then A∆(n+ 1, n+ 1) is computable.

2. Next case m = n. From Theorem 2, we have

A∆(n + 1, n)A∆(n, n) + A∆(n+ 1, n+ 1)A∆(n+ 1, n) = F∆(n+ 1, n).

Since A∆(n, n) and A∆(n+ 1, n+ 1) are known, A∆(n+ 1, n) is computable.

3. The case m = n− 1. From Theorem 2, we have

A∆(n + 1, n− 1)A∆(n+ 1, n+ 1) + A∆(n, n− 1)A∆(n+ 1, n)+

+A∆(n− 1, n− 1)A∆(n + 1, n− 1) = F∆(n+ 1, n).

Since A∆(n + 1, n + 1),A∆(n + 1, n) are obtained previously, and other are known by
the condition, A∆(n+ 1, n− 1) is computable.

Therefore, by induction we can obtain all values of A∆(n + 1, m) for m 6 n+ 1.

For applications of Theorem 3 we give some examples.

Example 4. Let us consider the iterative functional equation A(A(x)) = sin(x) (for details,
see A048602, A048603 in [14]). According to [10], the composita of sin(x) is equal to

1 + (−1)n−k

2kn!

⌊k
2
⌋

∑

m=0

(

k

m

)

(2m− k)n(−1)
n+k
2

−m.

Using Theorem 3, we obtain following recurrent formula

A∆(n, k) =











1, n = k;

1
2

(

1+(−1)n−k

2kn!

⌊k
2
⌋

∑

m=0

(

k

m

)

(2m− k)n(−1)
n+k
2

−m −
n−1
∑

m=k+1

A∆(n,m)A∆(m, k)

)

, n > k.

Therefore, using the formula (2), the expression for coefficients of A(x) =
∑

n>0 a(n)x
n

is
a(n) = A∆(n, 1).
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Example 5. Let us consider the iterative functional equation A(A(x)) = ex− 1 (for details,
see A052104, A052122, and A052105 in [14]). Stanley studied the problem of finding an
expression for the coefficients of A(x), however the problem remains unsolved [15, ex.
5.52.c].

Next, we obtain the composita of the exponential generating function [10]

F (x) = ex − 1.

Raising this generating function to the power of k and applying the binomial theorem,
we obtain

(ex − 1)k =
k
∑

j=0

(

k

j

)

exj(−1)k−j .

Since

(ex)k =
∑

n≥0

kn

n!
xn,

we get

F∆(n, k) =
k
∑

j=0

(

k

j

)

jn

n!
(−1)k−j.

or since the general formula for the Stirling numbers of the second kind is given as follows:

{

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn,

we have

F∆(n, k) =
k!

n!

{

n

k

}

. (6)

Here
{

n

k

}

stand for the Stirling numbers of the second kind(see [11, 16]). The Stirling
numbers of the second kind

{

n

k

}

= S(n, k) count the number of ways to partition a set of n
elements into k nonempty subsets.

Using Theorem 3, we obtain following recurrent formula

A∆(n, k) =







1, n = m,

1
2

(

n!
n!

{

n

k

}

−
n−1
∑

m=k+1

A∆(n,m)A∆(m, k)

)

, n > k.

Therefore, using the formula (2), the expression for coefficients of A(x) =
∑

n>0 a(n)
xn

n!

is
a(n) = n!A∆(n, 1).

Other examples of solutions of iterative functional equations written in the On-line En-
cyclopedia of Integer Sequences (see Table 1).
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Table 1: Iterative functional equations and their solutions in OEIS
N of sequence Equation
A030274 A(A(x)) = x

(1−x)2

A097088 A(A(x)) = x+ x2

A097090 A(A(x)) = x(1 + 2x)2

A048607 A(A(x)) = ln(1 + x)
A072350 A(A(x)) = tan(x)

A199822 A(A(x)) = 1−4x−
√
1−8x

8x

A199823 A(A(x)) = x+2x2

1−2x−4x2

A199852 A(A(x)) = x exp(2x)
A199917 A(A(x)) = 1

x
(2− 2 cos(x))

4 Integer properties of an iterative functional equation

A(A(x)) = F (x)

In this section we study an iterative functional equation A(A(x)) = F (x), where F (x) =
∑

n>0 f(n)x
n is a generating function with integer coefficients.

First for case f(1) = 1, the formula (5) has form

A∆(n, k) =







1, n = k;

1
2

(

F∆(n, k)−
n−1
∑

m=k+1

A∆(n,m)A∆(m, k)

)

, n > k.
(7)

According to the above formula (7), we present the composita of A(x) in tabular form

1
F∆
2,1

2
1

− (F∆
2,1F

∆
3,2−4F∆

3,1)

8

F∆
3,2

2
1

((F∆
2,1F

∆
3,2−2F∆

3,1)F
∆
4,3−2F∆

2,1F
∆
4,2+8F∆

4,1)

16

−(F∆
3,2F

∆
4,3−4F∆

4,2)

8

F∆
4,3

2
1

(8)

Considering Triangle 8, we can see that not all expressions 2n−kA∆(n, k) is integer (for
example for A∆(3, 1)). Now we give the following theorem.

Theorem 6. Suppose F (x) =
∑

n>0 f(n)x
n is a generating function with integer coefficients

such that f(1) = 1, F∆(n, k) is the composita of F (x), A(x) =
∑

n>0 a(n)x
n is the generating

function, which is obtained from the functional equation A(A(x)) = F (x). Then for the
composita of the generating function A(x) the expression

4n−kA∆(n, k)

is integer.
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Proof. To prove the theorem we use the formula (7).
For the case n < 5 the expression 4n−kA∆(n, k) is integer for all k 6 n (see Triangle 8).
By induction, we put that 4n−kA∆(k, l) is integer for k, l 6 n.
Then we prove that

4n+1−kA∆(n+ 1, k).

is integer for all k 6 n+ 1.
According to the formula (7), we have

4n+1−kA∆(n+ 1, k) =

= 4n+1−k 1

2

(

F∆(n+ 1, k)−
n
∑

m=k+1

A∆(n + 1, m)A∆(m, k)

)

=

=
1

2

(

4n+1−kF∆(n+ 1, k)−
n
∑

m=k+1

4n+1−mA∆(n + 1, m)4m−kA∆(m, k)

)

. (9)

Since 4n+1−mF∆(n + 1, m) is even and 4k−mA∆(k,m) is integer, we need to prove that
the expression

4n+1−mA∆(n+ 1, m)

is even for m < n+ 1.

1. First case m = n. According to the formula (9), we have

4A∆(n+ 1, n) = 4F∆(n + 1, n)
1

2
.

Then 4n+1−mA∆(n+ 1, m) is even for m = n.

2. Next case m = n− 1. According to the formula (9), we have

42A∆(n + 1, n− 1) =
1

2

(

42F∆(n+ 1, n− 1)− 4A∆(n, n− 1)4A∆(n + 1, n)
)

.

Since above conditions, the expression 4n+1−mA∆(n + 1, m) is even for m = n− 1.

3. The case m = n− 2. According to the formula (9), we have

43A∆(n+ 1, n− 2) =
1

2

(

43F∆(n + 1, n− 2)− 42A∆(n, n− 2)41A∆(n+ 1, n)+

+42A∆(n, n− 2)41A∆(n+ 1, n) + 41A∆(n− 1, n− 2)42A∆(n + 1, n− 1)
)

.

Since 42A∆(n+1, n− 1) is even, and other are known by the condition, the expression
4n+1−mA∆(n+ 1, m) is even for m = n− 2.
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Therefore, by induction we can obtain all values of A∆(n + 1, m) for m < n + 1 which
will be even.

The theorem is proved.

Corollary 7. Suppose F (x) =
∑

n>0 f(n)x
n is a generating function with integer coefficients

such that f(1) = 1, F∆(n, k) is the composita of F (x). Then the generating function A(x) =
∑

n>0 a(n)x
n, which is obtained from the functional equation A(A(x)) = F (4x)

4
, has integer

coefficients.

Proof. According to [10], the composita of F (4x)
4

is equal to

4n−kF∆(n, k).

Next we consider the formula (7)

A∆(n, k) =







1, n = k;

1
2

(

4n−kF∆(n, k)−
n−1
∑

m=k+1

A∆(n,m)A∆(m, k)

)

, n > k.

Replacing A∆(n, k) by the composita 4n−kB∆(n, k), we get

4n−kB∆(n, k) =
1

2

(

4n−kF∆(n, k)−
n−1
∑

m=k+1

4n−mB∆(n,m)4m−kB∆(m, k)

)

.

According to Theorem 6, the expression 4n−kB∆(n, k) is integer.
Therefore, the generating function A(x) such that satisfies to the equation

A(A(x)) =
F (4x)

4
,

where F (x) =
∑

n>0 f(n)x
n is a generating function with integer coefficients and f(1) = 1,

has integer coefficients.
The corollary is proved.

Example 8. Let us consider the iterative functional equation

A (A (x)) =
1−

√
1− 16 x

8
.

Also the generating function A(x) satisfies the following functional equation (for details, see
A213422 in [14])

A(A(x)− 4A(x)2) = x, A(A(x)) = x+ 4A(A(x))2.

Here F (x) is the generating function for the Catalan numbers

F (x) =
1−

√
1− 4 x

2
.

8
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According to [10], the composita of F (4x)
4

= 1−
√
1−16 x
8

is equal to

4n−kF∆(n, k) = 4n−k

(

2n− k − 1

n− 1

)

k

n
.

Using Theorem 3, we obtain following recurrent formula

A∆(n, k) =







1, n = k;

1
2

(

4n−k
(

2n−k−1
n−1

)

k
n
−

n−1
∑

k=m−1

A∆(n, k)A∆(k,m)

)

, n > k.

According to the above formula, we present the composita of A(x) in tabular form

1,
2F∆

2,1, 1
8F∆3, 1− 2F∆

2,1A3,2, 2F∆
3,2, 1

(4F∆
2,1F

∆
3,2 − 8F∆

3,1)F
∆
4,3 − 8F∆

2,1F
∆
4,2 + 32F∆

4,1, 8F∆
4,2 − 2F∆

3,2F
∆
4,3, 2F∆

4,3, 1

Therefore, using the formula (2), the expression for coefficients of A(x) =
∑

n>0 a(n)x
n is

a(n) = A∆(n, 1).

The first elements of the obtained generating function A(x) are shown below

x+ 2x2 + 12x3 + 96x4 + 880x5 + 8720x6 + 90752x7 + · · ·

5 Iterative functional equation A2n(x) = F (x)

We start with the case A(A(A(A(x)))) = F (x). Let us get the following iterative functional
equation

B(B(x)) = F (x),

where B(x) = A(A(x)).
Using Theorem 3, we obtain the composita of B(x)

B∆(n, k) =







f(1)
n
2 , n = k;

1

f(1)
n
2 +f(1)

k
2

(

F∆(n, k)−
n−1
∑

m=k+1

B∆(n,m)B∆(m, k)

)

, n > k.

Then using the formula (5) again for the equation B(x) = A(A(x)), we obtain the
composita A∆(n, k).

Let us consider this approach in the following example.

Example 9. Suppose we have the following iterative functional equation

A(A(A(A(x)))) = x+ 16x2.

9



According to [10], the composita of F (x) = x+ 16x2 is equal to

F∆(n, k) =

(

k

n− k

)

16n−k.

For the generating function B(x) such that B(B(x)) = x+ 16x2 the composita is equal to

B∆(n, k) =







1, n = k;

1
2

[

(

k

n−k

)

16n−k −
n−1
∑

i=k+1

B∆ (i, k) B∆ (n, i)

]

, n > k.

Since B(x) = A(A(x)), we obtain the composita of A(x)

A∆(n, k) =







1, n = k;

1
2

[

B∆(n, k)−
n−1
∑

i=k+1

A∆ (i, k) A∆ (n, i)

]

, n > k.

Therefore, using the formula (2), the expression for coefficients of A(x) =
∑

n>0 a(n)x
n is

a(n) = A∆(n, 1).

The first elements of the obtained generating function A(x) are shown below

x+ 4x2 − 48x3 + 960x4 − 23296x5 + 616448x6 − 16830464x7 + · · ·

For details, see A141119 in [14].

Generalize the above proposed approach for the iterative functional equation A2n(x) =
F (x).

1. Make substitution B(x) = A(2n−1)(x) and solve B(B(x)) = F (x). Then we obtain
B∆(n, k).

2. Next make substitution C(x) = B(2n−2)(x) and solve C(C(x)) = B(x) with respect to
C(x). Then we obtain C∆(n, k).

3. Making the analogic substitution until n = 1, we obtain the desired solution of A(x).
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