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SHORT NOTE ON THE CONVOLUTION OF BINOMIAL

COEFFICIENTS

RUI DUARTE AND ANTÓNIO GUEDES DE OLIVEIRA

Abstract. We know [1] that, for every non-negative integer numbers n, i, j and for
every real number ℓ,

∑

i+j=n

(

2 i− ℓ

i

)(

2 j + ℓ

j

)

=
∑

i+j=n

(

2 i

i

)(

2 j

j

)

,(1)

which is well-known to be 4n. We extend this result by proving that, indeed,

∑

i+j=n

(

a i+ k − ℓ

i

)(

a j + ℓ

j

)

=
∑

i+j=n

(

a i+ k

i

)(

a j

j

)

(2)

for every integer a and for every real k, and present new expressions for this value.

We consider the sequence
{(

an

n

)}∞

n=0
, where a is any integer number, negative, zero

or positive, and take the convolution of this sequence with itself, defined by Pa(n) =
∑

i+j=n

(

a i

i

)(

a j

j

)

.

When a = 2, the former is sequence A000984 of [2], the central binomial coefficients,
and the latter is sequence A000302 of [2], the powers of 4. In fact (cf. [1]), this can be
proved directly using (1), and then the inclusion-exclusion principle. Note that

(3) 2P2(n) = 22n+1 =

2n+1
∑

i=0

(

2n+ 1

i

)

= 2

n
∑

i=0

(

2n+ 1

i

)

.

For another identity, define as usual [n] = {1, . . . , n} for any natural number n, and
consider the collection of the subsets of [2n] with more than n elements with the same
(n + 1)-th element, say p. Note that p = n + 1 + i for some i = 0, . . . , n − 1 and that
there are

(

n+i

n

)

2n−i−1 subsets in the collection. It follows that the number of all subsets
of [2n] is

(4) P2(n) = 22n = 2

n−1
∑

i=0

2n−i−1

(

n+ i

i

)

+

(

2n

n

)

=

n
∑

i=0

2n−i

(

n+ i

i

)

.

We generalize these identities, namely (1), (3) and (4). When a = 3 and a = 4, we
have sequences A006256 and A078995 of [2], and no such simple formulas for P3(n) and
P4(n) are known as in case a = 2. For these sequences, we obtain, for every real ℓ,

∑

i+j=n

(

3i

i

)(

3j

j

)

=
∑

i+j=n

2i
(

3n+ 1

j

)

=
∑

i+j=n

3i
(

2n+ j

j

)

=
∑

i+j=n

(

3i− ℓ

i

)(

3j + ℓ

j

)

∑

i+j=n

(

4i

i

)(

4j

j

)

=
∑

i+j=n

3i
(

4n+ 1

j

)

=
∑

i+j=n

4i
(

3n+ j

j

)

=
∑

i+j=n

(

4i− ℓ

i

)(

4j + ℓ

j

)

More generally we obtain the following theorem.
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Theorem 1. For every non-negative integer numbers i, j and n, and for every real

numbers k and ℓ,

∑

i+j=n

(

a i+ k − ℓ

i

)(

a j + ℓ

j

)

=
∑

i+j=n

(

a i+ k

i

)(

a j

j

)

=

n
∑

i=0

(a− 1)n−i

(

a n+ k + 1

i

)

(5)

=

n
∑

i=0

an−i

(

(a− 1)n+ k + i

i

)

(6)

where we take 00 = 1.

For the proof of this theorem we need some technical results.

Lemma 2. Let, for any real ℓ and integers a and n such that n ≥ 0,

Sa,ℓ(n) =
n

∑

i=0

(−1)i
(

ℓ− (a− 1)i

i

)(

ℓ− a i

n− i

)

Then

n
∑

i=0

(

n

p

)

Sa,ℓ(p) = Sa+1,ℓ+n(n).

Proof.

n
∑

i=0

(

n

p

)

Sa,ℓ(p) =
n

∑

i=0

[

(−1)i
(

ℓ− (a− 1)i

i

) n
∑

p=i

(

ℓ− a i

p− i

)(

n

p

)

]

=
n

∑

i=0

[

(−1)i
(

ℓ− (a− 1)i

i

) n
∑

p=i

(

ℓ− a i

ℓ− (a− 1)i− p

)(

n

p

)

]

=

n
∑

i=0

(−1)i
(

ℓ− (a− 1)i

i

)(

ℓ+ n− a i

ℓ− (a− 1) i

)

=
n

∑

i=0

(−1)i
(

(ℓ+ n)− a i

i , n− i , ℓ− ai

)

=
n

∑

i=0

(−1)i
(

(ℓ+ n)− a i

i

)(

(ℓ+ n)− (a + 1) i

n− i

)

where we use Vandermonde’s convolution in the third equality. �

Lemma 3. With the notation of the previous lemma,

Sa,ℓ(n) = (a− 1)n.

Proof. First note that we may assume that ℓ is a natural number, since Sa,ℓ(n) is a
polynomial in ℓ, and thus is constant. Now, suppose that Sa,ℓ(p) = xp for some numbers
a, ℓ, p and x. Then, from Lemma 2 it follows that Sa+1,ℓ+n(n) = (1 + x)n. Hence, all we
must prove is that Sa,ℓ(n) = 0 when a = 1 and ℓ ∈ N.

For this purpose, define A = A∅ as the set of n-subsets of the set [ℓ] = {1, 2, . . . , ℓ}
and, for every non-empty subset T of [ℓ], AT =

{

A ∈ A | A ∩ T = ∅

}

. Now, the result
follows immediately from the inclusion-exclusion principle applied to this family. �
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Lemma 4. Let s and t be positive integers. Then
(

s+ t+ 1

j

)

=

j
∑

i=0

(

s− i

s− j

)(

t+ i

i

)

.

Proof. Given a subset S of [n] with k elements and p ∈ [n] \ S, let Befp(S) = S ∩ [p− 1]
and Aftp(S) = {t ∈ [n− p] | t+ p ∈ S}.

Now, let A be a subset of [s+ t+1] with j elements and p(A) be the s− j+1 smallest
element of [s + t + 1] which is not in A. In other words, #{x ∈ A | x < p(A)} = j − i

and #{x ∈ A | x > p(A)} = i. One can easily see that the mapping

ϕ : Pj([s+ t + 1]) →
⋃

0≤i≤j

Pj−i([s− i])× Pi([t + i])

A 7→ (Befp(A)(A),Aftp(A)(A))

is a bijection, with inverse given by ψ(B,C) = B ∪ {c +#C | c ∈ C}, and the union is
disjoint. �

Proof of Theorem 1. LetS =
∑

i+j=n

(

a i+k−ℓ

i

)(

a j+ℓ

j

)

=
∑

i+j=n(−1)i
(

ℓ−k′−(a−1)i
i

)(

an+ℓ−a i

j

)

,

with k′ = k + 1. Then, by Vandermonde’s convolution,

S =
∑

i+j=n

[

(−1)i
(

ℓ− k′ − (a− 1)i

i

)

∑

p+m=j

(

a n+ k′

p

)(

ℓ− k′ − a i

m

)

]

=
n

∑

p=0

[

(

a n+ k′

p

)

∑

i+m=n−p

(−1)i
(

ℓ− k′ − (a− 1)i

i

)(

ℓ− k′ − a i

m

)

]

Now, (5) follows immediately from Lemma 3 and (6) from Lemma 4. �

We end this article with a new result that, when we represent by
((

n

k

))

the number
(

n+k−1
k

)

of k-multisets of elements of an n-set, can be formulated in the following elegant
terms.

Theorem 5. For every real ℓ and integers a, n, i, j such that n, i, j ≥ 0,
∑

i+j=n

(−1)i
((

ℓ− a i

i

))(

ℓ− a i

j

)

= a(a− 1)n−1.

Proof. By Pascal’s rule,

∑

i+j=n

(−1)i
(

ℓ− 1− (a− 1)i

i

)(

ℓ− a i

j

)

=

n
∑

i=0

(−1)i
(

ℓ− (a− 1)i

i

)(

ℓ− a i

n− i

)

−
n

∑

i=1

(−1)i
(

ℓ− (a− 1)i− 1

i− 1

)(

ℓ− a i

n− i

)

=Sa,ℓ(n) + Sa,ℓ−a(n− 1)

�

Problem 6. Give a full combinatorial proof of Theorem 5.
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