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SHORT NOTE ON THE CONVOLUTION OF BINOMIAL
COEFFICIENTS

RUI DUARTE AND ANTONIO GUEDES DE OLIVEIRA

ABSTRACT. We know [I] that, for every non-negative integer numbers n,4,j and for
every real number /,
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which is well-known to be 4™. We extend this result by proving that, indeed,
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for every integer a and for every real k, and present new expressions for this value.

. [e.e] . . .
We consider the sequence {(“n")}nio, where a is any integer number, negative, zero

or positive, and take the convolution of this sequence with itself, defined by F,(n) =
Pivj=n (7) ()

When a = 2, the former is sequence A000984 of [2], the central binomial coefficients,
and the latter is sequence A000302 of [2], the powers of 4. In fact (cf. [I]), this can be
proved directly using ([II), and then the inclusion-exclusion principle. Note that

(3) 2 Py(n) = 22+ = 2&“ <2nl+ 1) - Qi (Q”ZL 1).
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For another identity, define as usual [n] = {1,...,n} for any natural number n, and
consider the collection of the subsets of [2n] with more than n elements with the same
(n + 1)-th element, say p. Note that p = n + 1+ for some i = 0,...,n — 1 and that
there are (":’) 2n~=1 subsets in the collection. It follows that the number of all subsets
of [2n] is

(4) Py(n) = 22" = 2 ngol gn-i-1 (” j ") + (2:) — io on-i (” j Z)

We generalize these identities, namely (), (B)) and (). When a = 3 and a = 4, we
have sequences A006256 and A078995 of [2], and no such simple formulas for P3(n) and
Py(n) are known as in case a = 2. For these sequences, we obtain, for every real ¢,
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More generally we obtain the following theorem.
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Theorem 1. For every non-negative integer numbers i, j and n, and for every real
numbers k and ¢,
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where we take 00 = 1.
For the proof of this theorem we need some technical results.

Lemma 2. Let, for any real ¢ and integers a and n such that n > 0,

Then =0

ZZ"; (Z) Sat(p) = Sat1e4n(n).
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where we use Vandermonde’s convolution in the third equality. O

Lemma 3. With the notation of the previous lemma,
Sap(n) = (a—1)".

Proof. First note that we may assume that ¢ is a natural number, since S,,(n) is a
polynomial in ¢, and thus is constant. Now, suppose that S, ;(p) = z? for some numbers
a, ¢, p and z. Then, from Lemma 2 it follows that S,11¢1n(n) = (1 + 2)". Hence, all we
must prove is that S, ,(n) =0 when a = 1 and ¢ € IN.

For this purpose, define A = Ay as the set of n-subsets of the set [¢(] = {1,2,...,¢}
and, for every non-empty subset 7' of [(], Ar = {A € A| ANT = @}. Now, the result
follows immediately from the inclusion-exclusion principle applied to this family. O
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Lemma 4. Let s and t be positive integers. Then

(7))

Proof. Given a subset S of [n| with k elements and p € [n] \ S, let Bef,(S) =S N [p—1]
and Aft,(S)={ten—p||t+pe S}

Now, let A be a subset of [s+t+ 1] with j elements and p(A) be the s — j + 1 smallest
element of [s + ¢ + 1] which is not in A. In other words, #{z € A |z < p(A)} = j — i
and #{z € A| x> p(A)} =i. One can easily see that the mapping

© Pj([S +1+ 1]) — O<U<,,Pj7i<[8 — Z]) X ’PZ([t + Z])
<i<j

A = (Befya) (A), Aftya) (A))
is a bijection, with inverse given by ¥(B,C) = BU {c+ #C | ¢ € C}, and the union is
disjoint. 0
Proof of Theorem[l. Let & =3_, (aH.k*Z) (aj.”) = Ziﬂzn(—l)i(z*klf.(“*l)i) (G”H*“i),

i J ? J
with & = k + 1. Then, by Vandermonde’s convolution,

s - Y [(_Ui(é—k’—i(a—l)i) 5 (an;—k’) (e—i—m)]
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Now, (B) follows immediately from Lemma B and (6)) from Lemma [l O

We end this article with a new result that, when we represent by ((Z)) the number

("JFZ*l) of k-multisets of elements of an n-set, can be formulated in the following elegant

terms.

Theorem 5. For every real ¢ and integers a,n, 1,7 such that n,i,5 > 0,
S — ai 0w
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Proof. By Pascal’s rule,

S (1) (f —1 —i(a — 1)¢) (E —jaz) _ z":(_l)i (f - ((;2_ 1)i) (en—_a;)
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B g(_l)i (e - (aZ: 11)2' — 1) (en—_aiz')

= a,Z(n) + Sa,f—a(n - 1)

Problem 6. Give a full combinatorial proof of Theorem [3.
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