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Abstract

We prove that symmetric Meixner distributions, whose probability densities are
proportional to [I'(t+ix)[?, are freely infinitely divisible for 0 < ¢ < 1. The case t = 5

corresponds to the law of Lévy’s stochastic area whose probability density is m
1

m y is freely

A logistic distribution, whose probability density is proportional to
infinitely divisible too.
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1 Introduction

The free convolution pu H v of probability measures p and v on R is the distribution of
X +Y, where X and Y are free self-adjoint random variables respectively following the
distributions p and v. A probability measure v on R is said to be freely infinitely divisible
if, for any n € {1,2,3,---}, there exists v, such that

v=v,H---Hy,.
—_———

n times

This concept was introduced in [V86] and its basic characterization was established in
[BV93]. The most important freely infinitely divisible distributions are Wigner’s semicircle
law and the free Poisson law.
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Recent work has increased examples of probability measures which are infinitely divisible
in both senses, classical and free: the Gaussian distribution [BBLS11], chi-square distribu-
tion \/%e_xl[ovoo)(az) dx [AHS], positive Boolean stable law with stability index « € (0, %]
[AHD] and Student distribution B L,l) (Hig)n Ig(z)dx for n = 1,2,3,--- [H]|. It is not yet

2° 2
clear whether a general theory of the intersection of free and classical infinite divisibility
exists. We will add two more examples, Meixner distributions and the logistic distribution,
which may contribute to a solution.

We will prove that symmetric Meixner distributions

t

= r z)|? R
pi(dx) 27rF(2t)‘ (t +ix)|"dx, x€

are freely infinitely divisible for 0 < ¢ < %, where I'(z) is the gamma function defined by:

I'(z) = / t=te7tdt, z>0.
0

The gamma function satisfies the functional relation I'(z + 1) = 2I'(2), which extends I' to

a meromorphic function in C with poles at z = 0, —1, -2, -3, ... [AS70, Chapter 6]. The

measures p; are probability distributions of a Lévy process, called a Meixner process [ST98],

since the characteristic function of p; is given by

Ai(2) = (ﬁ) (1)

Hence p; is classically infinitely divisible for any ¢ > 0. The measure p; orthogonalizes
Meixner-Pollaczek polynomials {Pr(f) (x)}22, which satisfy the recurrence relation [KLS10]

2t —1
ePO() = P ) + "D 0 )z,
with initial conditions Po(t) (x) =1, Pl(t) (x) = =x.
Ift= %, the measure p;/, coincides with
wi(dz) = dz, xeR,

cosh(mx)
which is the law of Lévy’s stochastic ared

1 1
3 | (ian: - pan),

where (B}, B?) is a standard two-dimensional Brownian motion [L51]. The moments m,, of

1
the rescaled measure ————————— dx are Fuler numbers (with positive signs):
2 cosh(mz/2)

(mo, ma, ma, mg, ms, -+ ) = (1,1,5,61,1385,50521, - -+ ), mMaonss =0, n > 0.

IThis measure is also called the hyperbolic secant distribution.



See [AS70, Chapter 23] for Euler numbers.
The logistic distribution

po(dx) = dr, = eR,

2 cosh?(7)

is know to be classically infinitely divisible [B92], and we are going to prove that it is
freely infinitely divisible too. This measure orthogonalizes continuous Hahn polynomials
{P. ()}, which satisfy the recurrence relation [KLS10]

7’1,4

rPy(z) = Poyi(x) + 4(dn2 — 1)

Pnfl(.’lf), n Z 17
with initial conditions Py(z) =1, Pi(z) = .

The moments m/, of the rescaled measure ) dz are

T
4 cosh?(mz/2

1 7 31 127

/ / / / / . — - T / :0 >0
(m07m27m47m67m87 ) ( 737157217 157 )7 m2n+1 , = U,

which can be written as m,, = [(2 — 2")B,,| in terms of Bernoulli numbers B,, [AS70].

2 Preliminaries

Let C* and C~ be the upper half-plane and the lower half-plane respectively. Basic tools
for proving free infinite divisibility of a probability measure p are the Cauchy transform

zZ—XT

Gu(2) ::/R ! u(dx), ze€C*

and its reciprocal F,(z) := =4—. Let ', s be a truncated cone
H Gu(z) )

Loyv:={2€C":Imz> M, |[Rez| < almz}, o, M >0.

The reciprocal Cauchy transform maps C* to C* analytically, and it satisfies Im F),(z) >
Im 2 for z € C*. For any 0 < € < v and p, there exist M > 0 and a unique univalent inverse
map F, ' from Uo_. 112)a into C* such that F,(Taar) D Tae (14e)m and F 0 F7' =1d in
Loeeiteym [BV93].

Free convolution and free infinite divisibility can be characterized by the Voiculescu
transform of u defined by

u(2) = F;l(z) -z (2.1)

in a domain of the form I's ;.

Theorem 2.1 ([BV93]). (1) The free convolution pBv is a unique probability measure such
that

G (2) = ¢u(2) + ¢u(2)

in a common domain of the form I'g p.



(2) A probability measure j1 on R is freely infinitely divisible if and only if —¢,, analytically
extends to a Pick function, i.e. an analytic function which maps C* into CT UR.

In terms of analytic properties of F~ 1 a useful subclass of freely infinitely divisible
distributions is introduced.

Definition 2.2. A probability measure y is said to be in the class UZ if F; 1 defined in
a domain of the form I's; analytically extends to a univalent map in C*. Equivalently,
i € UT if and only if there exists a simply connected open set CT C © € C such that

(i) F, analytically extends to a univalent map in €2,
(ii) F.(©2) > C*.
This equivalence is proved just by applying Riemann mapping theorem.

Remark 2.3. In [AHa] we required F), to be univalent in C* in the definition of 1 € UZ,
but this automatically follows. If F, ' is analytic in C*, then F' o F,(2) = z for z € C*
by Identity Theorem, so that F), is univalent in C*.

Lemma 2.4 (J[AHal). (1) If u € UZ, then p is freely infinitely divisible.
(2) The class UL is closed with respect to the weak convergence.

(3) The class UL is not closed under free convolution, i.e. p,v € UL does not imply pBv €
UrL.

This class was essentially introduced in [BBLS11] to show that the normal law is freely

infinitely divisible, and this class has been successfully applied to several probability mea-
sures [ABBL10, [ABl [AHal [AHDL [H]. Examples are presented below, mostly taken from the
aforementioned references.

Example 2.5. The following probability measures belong to UZ.

(1) Wigner’s semicircle law

1 1
w(dx) = 2—\/4 — 22 1oy (zx)dr, Fy'(z) =2+ -
T z
(2) The free Poisson law (or Marchenko-Pastur law)
1 [4—x z
= — 1 Fil - .
m(dx) 5 — Lo (x)dx, F_(z)=z+ p
(3) The Cauchy distribution
() =~ la(a) o, FoM() =2
c x_7r(1+:1:2) r(x)dr, F; (z)=z—1i.



(4) [AHa] The beta distribution

A = S8 (S5 Ty ) = T

Q=

for % <la] < 1. 6% is equal to m up to scaling.

(5) [BBLS11] The Gaussian distribution

1 o2
dr) = —e™ 2 1g(z) dx.
(6) [ABBL10] The ¢-Gaussian distribution
_ —q . 1 n n 2i0(z) |2
dz) = sin 6(x 1— 1—4q" 1 5 , 1(x)dx
() = Lm0 [[0 - =Py 0

for ¢ € [0,1), where 0(z) is the solution of z = ﬁ cosf, 6 € [0,7]. When ¢ — 1, g,
converges weakly to g, and gg coincides with w. For ¢ € (0,1), the density function of
g, can be written as [LM95]

where ©4(z,7) =2 Z(—l)"(ei”)("Jr%)Q sin(2n + 1)7z is a Jacobi theta function.
n=0

(7) [AB|] The ultraspherical distribution

1

n(dr) =
tn (de) 16"B(n+ 3,n+ 3)

(4— 2" 21 og(zx)de, n=1,2,34,

where B(p, q) is the beta function. The semicircle law w appears in the case n = 1 and
the normal law g in the limit n — oo if u,, are suitably scaled.

(8) [H] The Student distribution

1 1

) = B T T )

~lg(r)dz, n=1,2,3,--.

t; coincides with c, and if suitably scaled, t,, weakly converge to g as n — oc.

(9) [AHD] The Boolean stable law

sin(mpar) ! -
x
db? T 2%+ 2z cos(mpa) + 17 ’
de | sin(n(1 - p)a) El 0
x
s |z]2* + 2|z|* cos(m(1 — p)a) + 17 ’

for0<a<i pel01].



If;<a<Zand2-1 <p <11 the Boolean stable law bf, (defined as above too) is
still freely infinitely divisible, but not in the class YZ [AHD]. However, most of the known
freely infinitely divisible distributions belong to UZ as presented above.

In order to prove u € UZ, the following sufficient condition is useful.

Proposition 2.6. A probability measure i on R is in UL if there exists a simple, continuous
curve 7 = ((t))er C C~ with the following properties:

(A) Jim [3(6)] = lim_|5(5)] = oo;

(B) Fu(y) cC;

(C) F, estends to an analytic function in D(y) and to a continuous function on D(vy),
where D(v) denotes the simply connected open set containing C* with boundary ~y;

(D) F.(2) =z + o(z) uniformly as z — oo, z € D(v).

Proof. For R > |y(0)|, let t; := sup{t < 0 : |7(t)] > R} € (—00,0) and ¢y := inf{t > 0 :
|v(t)| > R} € (0,00). The circle {z € C: |z| = R} is divided into two arcs by y(t1), v(t2),
and let A be the arc which contains {z € C* : |z| = R}. Consider a simple closed curve vz
consisting of the arcs (y(t))ieq, 1,) and A. From (D)), we can take R > 0 large enough so that
|Fu(2) — 2| < 5|z| for z € D(v), |z| > R. From the assumption (B)), F,, maps the simple
closed curve g to a curve surrounding each point of {z € C* : |2| < %R} exactly once, and
so the univalent map F, ' can be defined in {z € C* : |2| < 1R} as the left inverse map
of F,|p(ys) which maps numbers with large positive imaginary parts to numbers with large
positive imaginary parts. Here D(~g) is the bounded Jordan domain surrounded by vg.
Letting R — 0o, we conclude by analytic continuation that F- L exists in C* as a univalent
map. 0




Remark 2.7. Note that the map F),|p(y,) may not be univalent in whole of D(yg). The
fact that each point of {z € C* : |z| < 1R} has rotation number 1 implies that there exists
a subset Sg (which is in fact open and simply connected) of D(yg) such that F), is univalent
in Sp and that F,(Sg) = {z € C" : |2| < 3R}.

3 Proof for Meixner distributions

We present some properties of Meixner distributions.
(1) p; is a probability measure for ¢ > 0 because

00 2
/\F(t+ia:)\2da::/ / siTrleTs ds da::/ /et“euei”du
R R |Jo R |JR

— 27T/ e2tu72e“ du = 21 /OO (f)Qt efsﬁ — 27TF<2t)
R 0o \2 s 4t

where Plancherel’s theorem was used in the third equality.

2

dx

(2) p1/2 coincides with p; thanks to the formula I'(1 — 2)['(2) = 7

sin(mz)

(3) By the residue theorem, G; := G, has the series expansion

> "Fn+2t) 1
Gi(z) 2t Z ettt n)

n=0
which is convergent for 0 < ¢ < 1/2.

(4) For any compact set I C R, there is M > 0 such that
ID(t 4 z))T(t — 2i)| < Me ™ z? 2= a+yi, 2| > 1, t,yel.
This estimate follows from Stirling’s formula.

(5) The density function of p; is symmetric, and moreover strictly decreasing on [0, c0) as
the following calculation shows. We have -L|['(¢ + zi)[* = —2|T(¢ + i) Im (¢ + )

by using the digamma function i (z) = d% log'(z). It is known that i(z2) = —y —
> oo (75 — 751), where v is Euler’s constant, and so Im ¢ (t-+x1) = " ez > 0
for x > 0.

We do not use the series expansion of Gy(z); instead the following recursive relation is useful.

Proposition 3.1. [t holds that

1 1t 1
Gt<2—tl):;+%Gt+% <Z+<§—t>l), Imz>t, t > 0. (31)

Iterative use of this relation extends Gy to a meromorphic function in C with poles at —(t +
n)i,n=0,1,2---.



Proof. Assume t > 1. Because I'(t + iz)['(t — iz) does not have a pole in {z € C : —
Im z < 0} and vanishes rapidly as Rez — oo (see the above property (@),

1 4t 1
— =)= r I(t—i
Gy (z 2) 27TF<2t)/RZ @+ D) (t +ix)I'(t —ix) do
4t 1 1 1 1
= r —+ix | Tt —=—1i I —.
27TF<2t)/RZ—J} (t—|—2+m) (t 5 z:c) dx, mz>2

By using the basic relation 2I'(z) = I'(z 4+ 1), we obtain

Gt<z_1): 4 /F(t+2+zx)F(t+2 m:)dx
R

2 2r(2t) (z—x)(t — 1 —ix)

4t / 1 1 1 r t+1+'
- — — + iz
2nT(2t) Jp 2+ (6 — 3)i \t — 3 — iz iz —ix 2

= i . il / L r <t+ 1 +z’x) : dx
z+(t—1)i 27rF(2t+1) RZ—T 2
1 \F (t+ 3 +m:)|2
(z+ (t— 3)i) 27TF2t —

IA

2

dx

1T

1
In the last integral, we can again apply the formula 2I'(z) = I'(z + 1), and moreover we
deform the contour R to R + lA:

L(t+3+ 2 4t 1 1
/‘ m:)| dr = /F t+-—+iz | (t—=—1iz )| dzx
27rr 2t) t———m 2nT(2t) Jg 2 2

_ TI%Z%) /R T (t+iz) T (t — iz) do

= 1.

The above calculations amount to G (z — ! T z+(:il)iGt+%(z)’ which holds for
2

%) - z+(t7% i

any t > 0 since G4(z) depends on ¢ > 0 real analytically. The desired relation (3.1]) follows
from the simple replacement of z by z+ (% —t)i. The right hand side of (B8.I]) is meromorphic
in{zeC:Imz>t-— %} with pole at 0, so that GG; extends to a meromorphic function in
{z€C:Imz>t— 1} Next we can write G,,1 in terms of Gy;1, and so iteratively G; can
be written in terms of Gyy» for any n € N. This procedure extends G; to a meromorphic

function in C with poles at —(t +n)i, n =0,1,2,---. O

Lemma 3.2. If a probability measure p has a density p(z) such that p(xz) = p(—x), p'(x) <0
for a.e. x >0 and lim,_,., p(x) logx = 0, then it holds that Re G, (x + yi) > 0 for z,y > 0.

Proof. The claim follows from the computation

Re G, (z + yi) = /R ﬁp(u) du——+ / (% log ((x — u)* + y2)) p(w) du

=5 [ 108 (@ =0+ 97) ()
— %/Ooo log <M) (—p' (u))du >0, x,y>0.

(z —u)® +y?

8



The property p’(—u) = —p'(u) was used at the final equality. O
Theorem 3.3. The Meixner distribution p; is in UL for 0 <t < %

Proof. We may assume that 0 < t < % since the set UZ is closed with respect to the weak
convergence. We will check conditions (A)—(D)) for Fi(z) := ﬁ(z) and v, == {z —ti : * € R}.
(Al) is trivial. To prove (Bl), we use Proposition Bt

Im Gy (x — ti) = ;ReGH% (:c—l— (% — t) z) :
Since L|I'(t + 4 + 2i)|> < 0 for z > 0, we can apply Lemma to the measure p, 1, to
assert that ReGH% (z+ (53 —1t)i) > 0 for z > 0. Hence InG, (z — ti) > 0 for z > 0 and
also for x < 0 by symmetry. Hence condition (Bl holds since —ti is a pole of G;.

From Proposition B.I, G; is a meromorphic function and so is F;. If GG; had a zero in
D(~;), there would be a point zy € CT UR \ {0} such that Gy(zp — ti) = 0. This implies
L+ tiGy 1 (20 + (3 —t)i) = 0 and so G20+ (5 —t)i) = £ € C'. This is a contradiction
because G, +1 maps C* into C~. Thus condition ([C) is proved.

Condition (D)) can be checked as follows. Let p;(z) be the density function of p;. In the
integral [, = p;(dzx), one is allowed to replace the contour R by C; := {z — % : —oc0 <

t
2
r< - u{-Zi+de?:0<h<TIU{z— i ¥ <z <ook:

1 1
dx) = dw.
|t = [ Sonwan

Clearly 1 = [; pi(v)dr = [, pi(w)dw, so we have 1 — 2Gy(2) = [, —Lwpy(w) dw. If
z tends to oo satisfying z € D(7,), then 1 — 2G,(z) tends to 0 by Lebesgue convergence

theorem. This implies ’%’ — 0, the conclusion. O

Remark 3.4. The proof uses the inequality that Re Gt+%(x + yi) > 0 for z,y > 0. If this
inequality holds even for negative y, then we can prove the free infinite divisibility of p; for
t > 1 too.

2

Remark 3.5. The free cumulant sequence (r, (1)), of a probability measure p with finite
moments of all orders can be defined as the coefficients of series expansion of F,*(z) — z:

F;l(z) L= Z Tn(:ul)’

Zn-

n=1

see [NSO6, Remark 16.18]. The free infinite divisibility of p; (0 < ¢ < 3) implies that the
corresponding free cumulant sequence is conditionally nonnegative definite, i.e. the N x N
MAatrix (Fmin(pe)) 0 o1 18 nonnegative definite for any N > 1; see Theorem 13.16 of [N SO6JE

Ift= %, the free cumulants up to the 10th order are given by

(7’2(”2), T4<,u1)7 T6(,u1)7 o ) = (17 37 387 9477 373947 T ')7 T2n+1<,u1) = 07 n Z 0.

This sequence can be found in [OEIS].

2If a measure p has a compact support, the free infinite divisibility is equivalent to the conditional
nonnegative definiteness of free cumulants. This equivalence can be extended to a measure with finite
moments of all orders when the moment problem is determinate.



4 Proof for the logistic distribution

The free infinite divisibility of the logistic distribution ps is proved with direct computation
of the Cauchy transform. From residue theorem, it turns out that

1

- (z 4 (n— %)1)2

2¢(y +n— 1) Z 2?2 — y+n——)2
(o (y+n =) (y+n—3)

K

GM2 (Z) =

3
I

(4.1)

z=x+yicCT.

WE

n =1

Now we take 712 := {z — £ : # € R}. The imaginary part of G,, on 71/, can be written as

i = 22 —n?

Fortunately, g can be written by elementary functions.

1/(1 ’
Lemma 4.1. The function g is given by g(z) = (ﬁ " <m) ) |
e

2
=L —Z24+0(2*) asx — 0, and so (ﬁ) =45 +0(1),

smh(ﬂm) T

Proof. 1t is known that
2 2
xz — 0. The poles of (m) are at * = ni (n € Z) and the function (ﬁ) —

> W does not have a singular point. This function is bounded by a constant on C

and so equal to a constant, which is actually zero as is known from the limit + — oo. Hence

<sinh7TW)2: i @ —lm +Z( (@ — i) (x+1m')2)

n=—oo
Fe0Y
x2+n2 27

leading to the conclusion. O

We easily find that g(z) > 0 for z # 0 thanks to Lemma E.I] and the function F),

vanishes at —3 since it is a pole of G,,. Hence condition (B)) is satisfied.

The following properties can be proved from (4.1):
(i) ReGyy(z +yi) >0 forz > 0and y > —3;
(ii) Im G, (yi) <0 for y > —3.

So G, does not have a zero in D(%/g) and so F), is analytic in D(7v;/2), continuous on

D(’Yl/g). Consequently 712 = {z — 5 : v € R} satisfies condition (C]).
Condition (D)) is proved similarly to the case of p;.
Open problems. The authors have not been able to solve the following questions.

10



(a) Free infinite divisibility for Meixner distributions p; in the case ¢ > 5 and for non

symmetric Meixner distributions.

1
2

(b) Free infinite divisibility for the measure with density %( L) forr > 0,7 #1,2.
272

cosh 7z

(c¢) Characterization of the class UZ in terms of free Lévy measures.

(d) Combinatorial meaning of the free cumulant sequence of p;, in particular of p; s.
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