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Abstract

We prove that symmetric Meixner distributions, whose probability densities are
proportional to |Γ(t+ ix)|2, are freely infinitely divisible for 0 < t ≤ 1

2 . The case t =
1
2

corresponds to the law of Lévy’s stochastic area whose probability density is 1
cosh(πx) .

A logistic distribution, whose probability density is proportional to 1
cosh2(πx)

, is freely

infinitely divisible too.
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1 Introduction

The free convolution µ ⊞ ν of probability measures µ and ν on R is the distribution of
X + Y , where X and Y are free self-adjoint random variables respectively following the
distributions µ and ν. A probability measure ν on R is said to be freely infinitely divisible

if, for any n ∈ {1, 2, 3, · · · }, there exists νn such that

ν = νn ⊞ · · ·⊞ νn.︸ ︷︷ ︸
n times

This concept was introduced in [V86] and its basic characterization was established in
[BV93]. The most important freely infinitely divisible distributions are Wigner’s semicircle
law and the free Poisson law.
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Recent work has increased examples of probability measures which are infinitely divisible
in both senses, classical and free: the Gaussian distribution [BBLS11], chi-square distribu-
tion 1√

πx
e−x1[0,∞)(x) dx [AHS], positive Boolean stable law with stability index α ∈ (0, 1

2
]

[AHb] and Student distribution 1
B( 1

2
,n− 1

2
)

1
(1+x2)n

1R(x) dx for n = 1, 2, 3, · · · [H]. It is not yet

clear whether a general theory of the intersection of free and classical infinite divisibility
exists. We will add two more examples, Meixner distributions and the logistic distribution,
which may contribute to a solution.

We will prove that symmetric Meixner distributions

ρt(dx) :=
4t

2πΓ(2t)
|Γ(t+ ix)|2 dx, x ∈ R

are freely infinitely divisible for 0 < t ≤ 1
2
, where Γ(z) is the gamma function defined by:

Γ(z) =

∫ ∞

0

tz−1e−t dt, z > 0.

The gamma function satisfies the functional relation Γ(z + 1) = zΓ(z), which extends Γ to
a meromorphic function in C with poles at z = 0,−1,−2,−3, . . . [AS70, Chapter 6]. The
measures ρt are probability distributions of a Lévy process, called a Meixner process [ST98],
since the characteristic function of ρt is given by

ρ̂t(z) =

(
1

cosh( z
2
)

)2t

. (1.1)

Hence ρt is classically infinitely divisible for any t > 0. The measure ρt orthogonalizes
Meixner-Pollaczek polynomials {P (t)

n (x)}∞n=0 which satisfy the recurrence relation [KLS10]

xP (t)
n (x) = P

(t)
n+1(x) +

n(n + 2t− 1)

4
P

(t)
n−1(x), n ≥ 1,

with initial conditions P
(t)
0 (x) = 1, P

(t)
1 (x) = x.

If t = 1
2
, the measure ρ1/2 coincides with

µ1(dx) =
1

cosh(πx)
dx, x ∈ R,

which is the law of Lévy’s stochastic area1

1

2

∫ 1

0

(B1
t dB

2
t − B2

t dB
1
t ),

where (B1
t , B

2
t ) is a standard two-dimensional Brownian motion [L51]. The moments mn of

the rescaled measure
1

2 cosh(πx/2)
dx are Euler numbers (with positive signs):

(m0, m2, m4, m6, m8, · · · ) = (1, 1, 5, 61, 1385, 50521, · · ·), m2n+1 = 0, n ≥ 0.

1This measure is also called the hyperbolic secant distribution.
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See [AS70, Chapter 23] for Euler numbers.
The logistic distribution

µ2(dx) =
π

2 cosh2(πx)
dx, x ∈ R,

is know to be classically infinitely divisible [B92], and we are going to prove that it is
freely infinitely divisible too. This measure orthogonalizes continuous Hahn polynomials

{Pn(x)}∞n=0 which satisfy the recurrence relation [KLS10]

xPn(x) = Pn+1(x) +
n4

4(4n2 − 1)
Pn−1(x), n ≥ 1,

with initial conditions P0(x) = 1, P1(x) = x.
The moments m′

n of the rescaled measure π
4 cosh2(πx/2)

dx are

(m′
0, m

′
2, m

′
4, m

′
6, m

′
8, · · · ) =

(
1,

1

3
,

7

15
,

31

21
,
127

15
, · · ·

)
, m′

2n+1 = 0, n ≥ 0,

which can be written as m′
n = |(2 − 2n)Bn| in terms of Bernoulli numbers Bn [AS70].

2 Preliminaries

Let C+ and C− be the upper half-plane and the lower half-plane respectively. Basic tools
for proving free infinite divisibility of a probability measure µ are the Cauchy transform

Gµ(z) :=

∫

R

1

z − x
µ(dx), z ∈ C

+

and its reciprocal Fµ(z) := 1
Gµ(z)

. Let Γα,M be a truncated cone

Γα,M := {z ∈ C
+ : Im z > M, |Re z| < αIm z}, α,M > 0.

The reciprocal Cauchy transform maps C
+ to C

+ analytically, and it satisfies ImFµ(z) ≥
Im z for z ∈ C+. For any 0 < ε < α and µ, there exist M > 0 and a unique univalent inverse
map F−1

µ from Γα−ε,(1+ε)M into C+ such that Fµ(Γα,M) ⊃ Γα−ε,(1+ε)M and Fµ ◦ F−1
µ = Id in

Γα−ε,(1+ε)M [BV93].
Free convolution and free infinite divisibility can be characterized by the Voiculescu

transform of µ defined by
φµ(z) := F−1

µ (z) − z (2.1)

in a domain of the form Γβ,L.

Theorem 2.1 ([BV93]). (1) The free convolution µ⊞ν is a unique probability measure such

that

φµ⊞ν(z) = φµ(z) + φν(z)

in a common domain of the form Γβ,L.
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(2) A probability measure µ on R is freely infinitely divisible if and only if −φµ analytically

extends to a Pick function, i.e. an analytic function which maps C+ into C+ ∪ R.

In terms of analytic properties of F−1
µ , a useful subclass of freely infinitely divisible

distributions is introduced.

Definition 2.2. A probability measure µ is said to be in the class UI if F−1
µ defined in

a domain of the form Γβ,L analytically extends to a univalent map in C+. Equivalently,
µ ∈ UI if and only if there exists a simply connected open set C+ ⊂ Ω ⊂ C such that

(i) Fµ analytically extends to a univalent map in Ω,

(ii) Fµ(Ω) ⊃ C+.

This equivalence is proved just by applying Riemann mapping theorem.

Remark 2.3. In [AHa] we required Fµ to be univalent in C+ in the definition of µ ∈ UI,
but this automatically follows. If F−1

µ is analytic in C+, then F−1
µ ◦ Fµ(z) = z for z ∈ C+

by Identity Theorem, so that Fµ is univalent in C+.

Lemma 2.4 ([AHa]). (1) If µ ∈ UI, then µ is freely infinitely divisible.

(2) The class UI is closed with respect to the weak convergence.

(3) The class UI is not closed under free convolution, i.e. µ, ν ∈ UI does not imply µ⊞ν ∈
UI.

This class was essentially introduced in [BBLS11] to show that the normal law is freely
infinitely divisible, and this class has been successfully applied to several probability mea-
sures [ABBL10, AB, AHa, AHb, H]. Examples are presented below, mostly taken from the
aforementioned references.

Example 2.5. The following probability measures belong to UI.

(1) Wigner’s semicircle law

w(dx) =
1

2π

√
4 − x2 1[−2,2](x) dx, F−1

w
(z) = z +

1

z
.

(2) The free Poisson law (or Marchenko-Pastur law)

m(dx) =
1

2π

√
4 − x

x
1(0,4](x) dx, F−1

m
(z) = z +

z

z − 1
.

(3) The Cauchy distribution

c(dx) =
1

π(1 + x2)
1R(x) dx, F−1

c
(z) = z − i.
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(4) [AHa] The beta distribution

βa(dx) =
sin(πa)

πa

(
1 − x

x

)a

1(0,1)(x) dx, F−1
βa

(z) =
1

1 − (1 − a
z
)

1

a

for 1
2
≤ |a| < 1. β 1

2

is equal to m up to scaling.

(5) [BBLS11] The Gaussian distribution

g(dx) =
1√
2π
e−

x2

2 1R(x) dx.

(6) [ABBL10] The q-Gaussian distribution

gq(dx) =

√
1 − q

π
sin θ(x)

∞∏

n=1

(1 − qn)|1 − qne2iθ(x)|2 1[

− 2
√

1−q
, 2
√

1−q

](x) dx

for q ∈ [0, 1), where θ(x) is the solution of x = 2√
1−q

cos θ, θ ∈ [0, π]. When q → 1, gq

converges weakly to g, and g0 coincides with w. For q ∈ (0, 1), the density function of
gq can be written as [LM95]

1

2π
q−

1

8 (1 − q)
1

2 Θ1

(
θ(x)

π
,

1

2πi
log q

)
,

where Θ1(z, τ) := 2

∞∑

n=0

(−1)n(eiπτ )(n+
1

2
)2 sin(2n+ 1)πz is a Jacobi theta function.

(7) [AB] The ultraspherical distribution

un(dx) =
1

16nB(n + 1
2
, n+ 1

2
)
(4 − x2)n−

1

2 1[−2,2](x) dx, n = 1, 2, 3, 4, · · · ,

where B(p, q) is the beta function. The semicircle law w appears in the case n = 1 and
the normal law g in the limit n→ ∞ if un are suitably scaled.

(8) [H] The Student distribution

tn(dx) =
1

B(1
2
, n− 1

2
)

1

(1 + x2)n
1R(x) dx, n = 1, 2, 3, · · · .

t1 coincides with c, and if suitably scaled, tn weakly converge to g as n→ ∞.

(9) [AHb] The Boolean stable law

dbρ
α

dx
=





sin(πρα)

π

xα−1

x2α + 2xα cos(πρα) + 1
, x > 0,

sin(π(1 − ρ)α)

π

|x|α−1

|x|2α + 2|x|α cos(π(1 − ρ)α) + 1
, x < 0,

for 0 < α ≤ 1
2
, ρ ∈ [0, 1].
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If 1
2
≤ α ≤ 2

3
and 2 − 1

α
≤ ρ ≤ 1

α
− 1, the Boolean stable law bρ

α (defined as above too) is
still freely infinitely divisible, but not in the class UI [AHb]. However, most of the known
freely infinitely divisible distributions belong to UI as presented above.

In order to prove µ ∈ UI, the following sufficient condition is useful.

Proposition 2.6. A probability measure µ on R is in UI if there exists a simple, continuous

curve γ = (γ(t))t∈R ⊂ C− with the following properties:

(A) lim
t→∞

|γ(t)| = lim
t→−∞

|γ(t)| = ∞;

(B) Fµ(γ) ⊂ C−;

(C) Fµ extends to an analytic function in D(γ) and to a continuous function on D(γ),
where D(γ) denotes the simply connected open set containing C+ with boundary γ;

(D) Fµ(z) = z + o(z) uniformly as z → ∞, z ∈ D(γ).

Proof. For R > |γ(0)|, let t1 := sup{t < 0 : |γ(t)| ≥ R} ∈ (−∞, 0) and t2 := inf{t > 0 :
|γ(t)| ≥ R} ∈ (0,∞). The circle {z ∈ C : |z| = R} is divided into two arcs by γ(t1), γ(t2),
and let A be the arc which contains {z ∈ C+ : |z| = R}. Consider a simple closed curve γR
consisting of the arcs (γ(t))t∈[t1,t2] and A. From (D), we can take R > 0 large enough so that
|Fµ(z) − z| ≤ 1

2
|z| for z ∈ D(γ), |z| > R. From the assumption (B), Fµ maps the simple

closed curve γR to a curve surrounding each point of {z ∈ C
+ : |z| < 1

2
R} exactly once, and

so the univalent map F−1
µ can be defined in {z ∈ C+ : |z| < 1

2
R} as the left inverse map

of Fµ|D(γR) which maps numbers with large positive imaginary parts to numbers with large
positive imaginary parts. Here D(γR) is the bounded Jordan domain surrounded by γR.
Letting R → ∞, we conclude by analytic continuation that F−1

µ exists in C+ as a univalent
map.

γ

γ(t )
γ(t )

γ(0)

0

1

2

R

D(γ )
R
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Remark 2.7. Note that the map Fµ|D(γR) may not be univalent in whole of D(γR). The
fact that each point of {z ∈ C+ : |z| < 1

2
R} has rotation number 1 implies that there exists

a subset SR (which is in fact open and simply connected) of D(γR) such that Fµ is univalent
in SR and that Fµ(SR) = {z ∈ C+ : |z| < 1

2
R}.

3 Proof for Meixner distributions

We present some properties of Meixner distributions.

(1) ρt is a probability measure for t > 0 because

∫

R

|Γ(t+ ix)|2 dx =

∫

R

∣∣∣∣
∫ ∞

0

st+ix−1e−s ds

∣∣∣∣
2

dx =

∫

R

∣∣∣∣
∫

R

etu−eueixu du

∣∣∣∣
2

dx

= 2π

∫

R

e2tu−2eu du = 2π

∫ ∞

0

(s
2

)2t
e−sds

s
=

2πΓ(2t)

4t
,

where Plancherel’s theorem was used in the third equality.

(2) ρ1/2 coincides with µ1 thanks to the formula Γ(1 − z)Γ(z) = π
sin(πz)

.

(3) By the residue theorem, Gt := Gρt has the series expansion

Gt(z) =
4t

Γ(2t)

∞∑

n=0

(−1)nΓ(n + 2t)

n!
· 1

z + i(t + n)
,

which is convergent for 0 < t ≤ 1/2.

(4) For any compact set I ⊂ R, there is M > 0 such that

|Γ(t+ zi)Γ(t− zi)| ≤Me−π|x||x|2t−1, z = x+ yi, |x| ≥ 1, t, y ∈ I.

This estimate follows from Stirling’s formula.

(5) The density function of ρt is symmetric, and moreover strictly decreasing on [0,∞) as
the following calculation shows. We have d

dx
|Γ(t + xi)|2 = −2|Γ(t + xi)|2Imψ(t + xi)

by using the digamma function ψ(z) = d
dz

log Γ(z). It is known that ψ(z) = −γ −∑∞
n=0

(
1

z+n
− 1

n+1

)
, where γ is Euler’s constant, and so Imψ(t+xi) =

∑∞
n=0

x
(t+n)2+x2 > 0

for x > 0.

We do not use the series expansion of Gt(z); instead the following recursive relation is useful.

Proposition 3.1. It holds that

Gt (z − ti) =
1

z
+
it

z
Gt+ 1

2

(
z +

(
1

2
− t

)
i

)
, Im z > t, t > 0. (3.1)

Iterative use of this relation extends Gt to a meromorphic function in C with poles at −(t+
n)i, n = 0, 1, 2, · · · .
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Proof. Assume t > 1
2
. Because Γ(t + iz)Γ(t − iz) does not have a pole in {z ∈ C : −1

2
≤

Im z ≤ 0} and vanishes rapidly as Re z → ∞ (see the above property (4)),

Gt

(
z − i

2

)
=

4t

2πΓ(2t)

∫

R

1

z − (x + i
2
)
Γ(t+ ix)Γ(t− ix) dx

=
4t

2πΓ(2t)

∫

R

1

z − x
Γ

(
t +

1

2
+ ix

)
Γ

(
t− 1

2
− ix

)
dx, Im z >

1

2
.

By using the basic relation zΓ(z) = Γ(z + 1), we obtain

Gt

(
z − i

2

)
=

4t

2πΓ(2t)

∫

R

Γ
(
t+ 1

2
+ ix

)
Γ
(
t+ 1

2
− ix

)

(z − x)(t− 1
2
− ix)

dx

=
4t

2πΓ(2t)

∫

R

1

z + (t− 1
2
)i

(
1

t− 1
2
− ix

− 1

iz − ix

)∣∣∣∣Γ
(
t+

1

2
+ ix

)∣∣∣∣
2

dx

=
ti

z + (t− 1
2
)i

· 4t+ 1

2

2πΓ(2t+ 1)

∫

R

1

z − x

∣∣∣∣Γ
(
t +

1

2
+ ix

)∣∣∣∣
2

dx

+
1

(z + (t− 1
2
)i)

· 4t

2πΓ(2t)

∫

R

|Γ
(
t+ 1

2
+ ix

)
|2

t− 1
2
− ix

dx.

In the last integral, we can again apply the formula zΓ(z) = Γ(z + 1), and moreover we
deform the contour R to R + i

2
:

4t

2πΓ(2t)

∫

R

|Γ
(
t + 1

2
+ ix

)
|2

t− 1
2
− ix

dx =
4t

2πΓ(2t)

∫

R

Γ

(
t+

1

2
+ ix

)
Γ

(
t− 1

2
− ix

)
dx

=
4t

2πΓ(2t)

∫

R

Γ (t+ ix) Γ (t− ix) dx

= 1.

The above calculations amount to Gt

(
z − i

2

)
= 1

z+(t− 1

2
)i

+ it
z+(t− 1

2
)i
Gt+ 1

2

(z), which holds for

any t > 0 since Gt(z) depends on t > 0 real analytically. The desired relation (3.1) follows
from the simple replacement of z by z+(1

2
−t)i. The right hand side of (3.1) is meromorphic

in {z ∈ C : Im z > t− 1
2
} with pole at 0, so that Gt extends to a meromorphic function in

{z ∈ C : Im z > t− 1
2
}. Next we can write Gt+ 1

2

in terms of Gt+1, and so iteratively Gt can
be written in terms of Gt+n

2
for any n ∈ N. This procedure extends Gt to a meromorphic

function in C with poles at −(t + n)i, n = 0, 1, 2, · · · .
Lemma 3.2. If a probability measure µ has a density p(x) such that p(x) = p(−x), p′(x) ≤ 0
for a.e. x > 0 and limx→∞ p(x) log x = 0, then it holds that ReGµ(x+ yi) > 0 for x, y > 0.

Proof. The claim follows from the computation

ReGµ(x + yi) =

∫

R

x− u

(x− u)2 + y2
p(u) du = −1

2

∫

R

(
∂

∂u
log
(
(x− u)2 + y2

))
p(u) du

=
1

2

∫

R

log
(
(x− u)2 + y2

)
p′(u) du

=
1

2

∫ ∞

0

log

(
(x + u)2 + y2

(x− u)2 + y2

)
(−p′(u)) du > 0, x, y > 0.
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The property p′(−u) = −p′(u) was used at the final equality.

Theorem 3.3. The Meixner distribution ρt is in UI for 0 < t ≤ 1
2
.

Proof. We may assume that 0 < t < 1
2

since the set UI is closed with respect to the weak
convergence. We will check conditions (A)–(D) for Ft(z) := 1

Gt(z)
and γt := {x− ti : x ∈ R}.

(A) is trivial. To prove (B), we use Proposition 3.1:

ImGt (x− ti) =
t

x
ReGt+ 1

2

(
x+

(
1

2
− t

)
i

)
.

Since d
dx
|Γ(t + 1

2
+ xi)|2 < 0 for x > 0, we can apply Lemma 3.2 to the measure ρt+ 1

2

, to

assert that ReGt+ 1

2

(
x +

(
1
2
− t
)
i
)
> 0 for x > 0. Hence ImGt (x− ti) > 0 for x > 0 and

also for x < 0 by symmetry. Hence condition (B) holds since −ti is a pole of Gt.
From Proposition 3.1, Gt is a meromorphic function and so is Ft. If Gt had a zero in

D(γt), there would be a point z0 ∈ C+ ∪ R \ {0} such that Gt(z0 − ti) = 0. This implies
1 + tiGt+ 1

2

(z0 + (1
2
− t)i) = 0 and so Gt+ 1

2

(z0 + (1
2
− t)i) = i

t
∈ C+. This is a contradiction

because Gt+ 1

2

maps C+ into C−. Thus condition (C) is proved.

Condition (D) can be checked as follows. Let pt(x) be the density function of ρt. In the
integral

∫
R

1
z−x

ρt(dx), one is allowed to replace the contour R by Ct := {x − 3t
2
i : −∞ <

x < −3t
2
} ∪ {−3t

2
i + 3t

2
eiθ : 0 ≤ θ ≤ π} ∪ {x− 3t

2
i : 3t

2
< x <∞}:

∫

R

1

z − x
ρt(dx) =

∫

Ct

1

z − w
pt(w) dw.

Clearly 1 =
∫
R
pt(x) dx =

∫
Ct
pt(w) dw, so we have 1 − zGt(z) =

∫
Ct

1
w−z

wpt(w) dw. If
z tends to ∞ satisfying z ∈ D(γt), then 1 − zGt(z) tends to 0 by Lebesgue convergence

theorem. This implies
∣∣∣Ft(z)−z

z

∣∣∣→ 0, the conclusion.

Remark 3.4. The proof uses the inequality that ReGt+ 1

2

(x + yi) > 0 for x, y > 0. If this
inequality holds even for negative y, then we can prove the free infinite divisibility of ρt for
t > 1

2
too.

Remark 3.5. The free cumulant sequence (rn(µ))∞n=1 of a probability measure µ with finite
moments of all orders can be defined as the coefficients of series expansion of F−1

µ (z) − z:

F−1
µ (z) − z =

∞∑

n=1

rn(µ)

zn−1
,

see [NS06, Remark 16.18]. The free infinite divisibility of ρt (0 < t ≤ 1
2
) implies that the

corresponding free cumulant sequence is conditionally nonnegative definite, i.e. the N ×N
matrix (rm+n(ρt))

N
m,n=1 is nonnegative definite for any N ≥ 1; see Theorem 13.16 of [NS06].2

If t = 1
2
, the free cumulants up to the 10th order are given by

(r2(µ2), r4(µ1), r6(µ1), · · · ) = (1, 3, 38, 947, 37394, · · · ), r2n+1(µ1) = 0, n ≥ 0.

This sequence can be found in [OEIS].

2If a measure µ has a compact support, the free infinite divisibility is equivalent to the conditional
nonnegative definiteness of free cumulants. This equivalence can be extended to a measure with finite
moments of all orders when the moment problem is determinate.
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4 Proof for the logistic distribution

The free infinite divisibility of the logistic distribution µ2 is proved with direct computation
of the Cauchy transform. From residue theorem, it turns out that

Gµ2
(z) =

∞∑

n=1

i

(z + (n− 1
2
)i)2

=
∞∑

n=1

2x(y + n− 1
2
)

[x2 + (y + n− 1
2
)2]2

+ i
∞∑

n=1

x2 − (y + n− 1
2
)2

[x2 + (y + n− 1
2
)2]2

, z = x + yi ∈ C
+.

(4.1)

Now we take γ1/2 := {x− i
2

: x ∈ R}. The imaginary part of Gµ2
on γ1/2 can be written as

g(x) := ImGµ2

(
x− i

2

)
=

∞∑

n=0

x2 − n2

(x2 + n2)2
.

Fortunately, g can be written by elementary functions.

Lemma 4.1. The function g is given by g(x) =
1

2

(
1

x2
+

(
π

sinh(πx)

)2
)
.

Proof. It is known that 1
sinh(πx)

= 1
πx

− π
6
x+O(x3) as x→ 0, and so

(
π

sinh(πx)

)2
= 1

x2 +O(1),

x → 0. The poles of
(

π
sinh(πx)

)2
are at x = ni (n ∈ Z) and the function

(
π

sinh(πx)

)2
−

∑∞
n=−∞

1
(x−ni)2

does not have a singular point. This function is bounded by a constant on C

and so equal to a constant, which is actually zero as is known from the limit x → ∞. Hence

(
π

sinh(πx)

)2

=

∞∑

n=−∞

1

(x− ni)2
=

1

x2
+

∞∑

n=1

(
1

(x− ni)2
+

1

(x+ ni)2

)

=
1

x2
+ 2

∞∑

n=1

x2 − n2

(x2 + n2)2
,

leading to the conclusion.

We easily find that g(x) > 0 for x 6= 0 thanks to Lemma 4.1, and the function Fµ2

vanishes at − i
2

since it is a pole of Gµ2
. Hence condition (B) is satisfied.

The following properties can be proved from (4.1):

(i) ReGµ2
(x + yi) > 0 for x > 0 and y ≥ −1

2
;

(ii) ImGµ2
(yi) < 0 for y > −1

2
.

So Gµ2
does not have a zero in D(γ1/2) and so Fµ2

is analytic in D(γ1/2), continuous on

D(γ1/2). Consequently γ1/2 = {x− i
2

: x ∈ R} satisfies condition (C).
Condition (D) is proved similarly to the case of ρt.
Open problems. The authors have not been able to solve the following questions.
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(a) Free infinite divisibility for Meixner distributions ρt in the case t > 1
2

and for non
symmetric Meixner distributions.

(b) Free infinite divisibility for the measure with density 2π
2rB( r

2
, r
2
)
( 1
coshπx

)r for r > 0, r 6= 1, 2.

(c) Characterization of the class UI in terms of free Lévy measures.

(d) Combinatorial meaning of the free cumulant sequence of ρt, in particular of ρ1/2.
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References

[AS70] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington,
1970.

[ABBL10] M. Anshelevich, S.T. Belinschi, M. Bożejko and F. Lehner, Free infinite divisi-
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