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Abstract

A Gelfand model for a semisimple algebra A over an algebraically closed field K is a linear rep-
resentation that contains each irreducible representation of A with multiplicity exactly one. We
give a method of constructing these models that works uniformly for a large class of semisim-
ple, combinatorial diagram algebras including the partition, Brauer, rook monoid, rook-Brauer,
Temperley-Lieb, Motzkin, and planar rook monoid algebras. In each case, the model representa-
tion is given by diagrams acting via “signed conjugation” on the linear span of their horizontally
symmetric diagrams. This representation is a generalization of the Saxl model for the symmet-
ric group. Our method is to use the Jones basic construction to lift the Saxl model from the
symmetric group to each diagram algebra. In the case of the planar diagram algebras, our
construction exactly produces the irreducible representations of the algebra.

Keywords: Gelfand model; multiplicity-free representation; symmetric group; partition algebra;
Brauer algebra; Temperley-Lieb algebra; Motzkin algebra; rook monoid.

Introduction

A famous consequence of Robinson-Schensted-Knuth (RSK) insertion is that the set of standard
Young tableaux with k boxes is in bijection with the set of involutions in the symmetric group Sk
(the permutations σ ∈ Sk with σ2 = 1). Since the standard Young tableaux index the bases for the
irreducible Sk modules, it follows that the sum of the dimensions of the irreducible Sk modules equals
the number of involutions in Sk. This suggests the possibility of a representation of the symmetric
group on the linear span of its involutions which decomposes into irreducible Sk modules each
with multiplicity 1. Saxl [Sxl] and Kljačko [Klj] have constructed such a module under which the
symmetric group acts on its involutions by a twisted, or signed, conjugation (2.5). A combinatorial
construction of an analogous module was studied recently by Adin, Postnikov, and Roichman [APR]
and extended to the rook monoid and related semigroups in [KM]. A representation for which each
irreducible appears with multiplicity one is called a Gelfand model (or, simply, a model), because
of the work in [BGG] on models for complex Lie groups.

In [HL] the RSK algorithm is extended to work for a large class of well-known, combinatorial
diagram algebras which are subalgebras of the the partition algebra. A consequence [HL, (5.5)]
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of this algorithm is that the sum of the degrees of the irreducible representations of each of these
algebras equals the number of horizontally symmetric basis diagrams in the algebra. This suggests
the existence of a model representation of each of these algebras on the span of its symmetric
diagrams, and the main result of this paper is to produce such a model.

Let K be an algebraically closed field, and let Ak denote one of the following unital, associative
K-algebras: the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, or planar
rook monoid algebra. Then Ak has a basis of diagrams and a multiplication given by diagram
concatenation. The algebra Ak depends on a parameter x ∈ K and is semisimple when char(K) = 0
or under special conditions on char(K) > 0 and for all but a finite number of choices of x ∈ K.
When Ak is semisimple, its irreducible modules are indexed by a set ΛAk

, and for λ ∈ ΛAk
, we let

Aλ
k denote the irreducible Ak-module labeled by λ. We construct, in a uniform way, an Ak-module

MAk
which decomposes as MAk

∼=
⊕

λ∈ΛAk
Aλ
k .

Our model representation is constructed as follows. For a basis diagram d, let dT be its reflection
across its horizontal axis and say that a diagram t is symmetric if tT = t. A basis diagram d acts
on a symmetric diagram t by “signed conjugation”: d · t = S(d, t) dtdT , where S(d, t) is the sign on
the permutation of the fixed blocks of t induced by conjugation by d (see Example 3.23 for details).
In each example, our basis diagrams are assigned a rank, which is the number of blocks in the
diagram that propagate from the top row to the bottom row. We let Mr

Ak
be the linear span of the

symmetric diagrams of rank r and our model is the direct sum MAk
= ⊕k

r=0M
r
Ak
.

The diagram algebras in this paper naturally form a tower A0 ⊆ A1 ⊆ · · · ⊆ Ak. Each algebra
contains a Jones basic construction ideal Jk−1 ⊆ Ak such that Ak

∼= Jk−1 ⊕ Ck, where Ck
∼= KSk

for nonplanar diagram algebras and Ck
∼= K1k for planar diagram algebras. The ideal Jk−1 is in

Schur-Weyl duality with one of Ak−1 or Ak−2 (depending on the specific diagram algebra), and we
are able to take models for each Cr, 0 ≤ r ≤ k, and lift them to a model for Ak.

For the planar diagram algebras — the Temperley-Lieb, Motzkin, and planar rook monoid
algebras — the algebra C ∼= K1k is trivial and the model is trivial. It follows that Mr

Ak
is irreducible

and that signed conjugation produces a complete set of irreducible modules for the planar algebras.
For the nonplanar diagram algebras, the algebra is C ∼= KSk, and we use the Saxl model for Sk.
In this case Mr

Ak
is further graded as Mr

Ak
= ⊕fM

r,f
Ak

, where M
r,f
Ak

is the linear span of symmetric

diagrams of rank r having f “fixed blocks,” and M
r,f
Ak

decomposes into irreducibles labeled by
partitions having f odd parts.

Besides being natural constructions, these representations are useful in several ways: (1) In
a model representation, isotypic components are irreducible components, so projection operators
map directly onto irreducible modules without being mixed up among multiple isomorphic copies
of the same module. (2) A key feature of our model is that we give the explicit action of each basis

element of Ak on the basis of Mr,f
Ak

. For small values of k, and for all values of k in the planar
case, these representations are irreducible or have few irreducible components. Thus, in practice,
the model provides a natural and easy way to compute the explicit action of basis diagrams on
irreducible representations. Indeed, it is through this construction that the irreducible modules for
the Motzkin [BH], the rook-Brauer [dH], and the planar rook monoid [FHH] were discovered. (3)
Gelfand models are useful in the study of Markov chains on related combinatorial objects; see, for
example, Chapter 3F of [Di] and the references therein, as well as [DH], [RSW].

Finally, the enumeration of symmetric diagrams in these algebras according to rank and number
of fixed blocks gives rise to well-known, interesting integer sequences. These combinatorics are
analyzed in Section 4, where we work out the details of the model representation for each algebra.

Acknowledgements. We thank Arun Ram for suggesting that we look for model representations
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of these algebras after seeing the dimension results in [HL]. We also thank Michael Decker [Dec],
whose honors project, under the direction T. Halverson, examined the model characters of the
symmetric group and the partition algebra. It was during this collaboration that we constructed
the combinatorial Saxl model for the symmetric group and conjectured the general construction of
Gelfand models for diagram algebras. Upon the completion and submission of this manuscript, we
learned of the preprint by V. Mazourchuk [Mz], who uses different methods to derive an analogous
model to the one in this paper (see the comments in Section 2.3). We also thank the anonymous
referees for several helpful recommendations.

1 The Partition Algebra and its Diagram Subalgebras

In this section, we describe the partition algebra Pk(x) over K with a parameter x ∈ K and realize
the other diagram algebras of interest in this paper as subalgebras of Pk(x). The main results of
this paper require that K be chosen so that Pk(n) is semisimple. For example one may choose K

such that char(K) = 0.

1.1 The partition monoid Pk

For k ∈ Z>0, let Pk denote the set of set partitions of {1, 2, . . . , k, 1′, 2′, . . . , k′}. We represent a
set partition d ∈ Pk by a diagram with vertices in the top row labeled 1, . . . , k and vertices in
the bottom row labeled 1′, . . . , k′. Assign edges in this diagram so that the connected components
equal the underlying set partition d. For example, the following is a diagram d ∈ P12,

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

7

7′

8

8′

9

9′

10

10′

11

11′

12

12′

=

{

{1, 3, 4′, 6′}, {2}, {4, 7}, {5, 1′ , 5′}, {6, 9′}, {8, 7′},
{9, 10, 12′}, {11}, {12, 10′}, {2′, 3′}, {8′, 11′}

}

.

We refer to the parts of a set partition as blocks, so that the above diagram has 11 blocks. The
diagram of d is not unique, since it only depends on the underlying connected components. We
make the following convention: if a block contains vertices from both the top row and bottom row,
then we always connect the leftmost vertex in the top row of a block with the leftmost vertex in the
bottom row of the block by a single vertical edge.

We multiply two set partition diagrams d1, d2 ∈ Pk as follows. Place d1 above d2 and identify
each vertex j′ in the bottom row of d1 with the corresponding vertex j in the top row of d2. Remove
any connected components that live entirely in the middle row and let d1 ◦d2 ∈ Pk be the resulting
diagram. For example, if

d1 = and d2 =

then

d1 ◦ d2 = = .
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Diagram multiplication is associative and makes Pk a monoid with identity 1k =
· · ·
· · · .

1.2 The partition algebra Pk(x)

Now let x ∈ K, define P0(x) = K, and for k ≥ 1, let Pk(x) be the K-vector space with basis Pk. If
d1, d2 ∈ Pk, let κ(d1, d2) denote the number of connected components that are removed from the
middle row in computing d1 ◦ d2, and define

d1d2 = xκ(d1,d2) d1 ◦ d2. (1.1)

In the multiplication example of the previous section κ(d1, d2) = 1 and d1d2 = x(d1 ◦ d2). This
product makes Pk(x) an associative algebra with identity 1k.

We say that a block B in a set partition diagram d ∈ Pk is a propagating block if B contains
vertices from both the top and bottom row of d; that is, both B∩{1, 2, . . . , k} and B∩{1′, 2′, . . . , k′}
are nonempty. The rank of d ∈ Pk (also called the propagating number) is

rank(d) =
(

the number of propagating blocks in d
)

. (1.2)

The rank satisfies
rank(d1d2) ≤ min(rank(d1), rank(d2)). (1.3)

For 0 ≤ r ≤ k, we let Jr ⊆ Pk(x) be the K-span of the diagrams of rank less than or equal to r. Then
Jr is a two-sided ideal in Pk(x), and we have a tower of ideals: J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jk = Pk(x).

The partition algebra was first defined independently by P.P. Martin [Ma] and V.F.R. Jones
[Jo2] as a higher-dimension generalization of the Temperley-Lieb algebra in statistical mechanics
(see also [HR2] for a survey of many results on the partition algebra).

1.3 Subalgebras

For each k ∈ Z>0, the following are subalgebras of the partition algebra Pk(x):

KSk = K-span{ d ∈ Pk | rank(d) = k},

Bk(x) = K-span{ d ∈ Pk | all blocks of d have size 2},

Rk = K-span

{

d ∈ Pk

∣

∣

∣

∣

all blocks of d have at most one vertex in {1, . . . k}
and at most one vertex in {1′, . . . k′}

}

,

RBk(x) = K-span{ d ∈ Pk | all blocks of d have size 1 or 2}.

Here, KSk is the group algebra of the symmetric group, Bk(x) is the Brauer algebra [Br], Rk is the
rook monoid algebra [So], and RBk(x) is the rook-Brauer algebra [dH], [MM].

A set partition is planar if it can be represented as a diagram without edge crossings inside of
the rectangle formed by its vertices. The planar partition algebra [Jo2] is

PPk(x) = K-span{ d ∈ Pk | d is planar }.

The following are the planar subalgebras of Pk(x):

K{1k} = KSk ∩ PPk(x), TLk(x) = Bk(x) ∩ PPk(x),
PRk = Rk ∩ PPk(x), Mk(x) = RBk(x) ∩ PPk(x).

Here, TLk(x) is the Temperley-Lieb algebra [TL], PRk is the planar rook monoid algebra [FHH], and
Mk(x) is the Motzkin algebra [BH]. The parameter x does not arise when multiplying symmetric
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group diagrams (as there are never middle blocks to be removed). The parameter is set to be x = 1
for the rook monoid algebra and the planar rook monoid algebra. Here are examples from each of
these subalgebras:

∈ PP10(x) ∈ S10

∈ B10(x) ∈ TL10(x)

∈ RB10(x) ∈ M10(x)

∈ R10 ∈ PR10

2 A Model Representation of the Symmetric Group

2.1 Saxl’s model characters of Sk

An involution t ∈ Sk is a permutation such that t2 = 1. In disjoint cycle notation, involutions consist
of 2-cycles and fixed points. Let Ik be the set of involutions in Sk and let I

f
k be the involutions in

Sk which fix precisely f points; that is,

ISk =
{

t ∈ Sn
∣

∣ t2 = 1
}

and I
f
Sk

=
{

t ∈ Sn
∣

∣ t2 = 1 and t has f fixed points
}

. (2.1)

For a fixed involution t ∈ I
f
k , let C(t) ⊆ Sn be the centralizer of t in Sk. Let Sk act on itself by

conjugation so that w · σ = wσw−1 for all w, σ ∈ Sk. Then C(t) and I
f
Sk

are the stabilizer and orbit

of t, respectively, so |Sk| = |C(t)| · |IfSk |.

If w ∈ C(t), then wtw−1 = t, so w fixes t but possibly permutes the fixed points of t. Let πf be
the linear character of C(t) such that πf (w) is the sign of the permutation of w on the fixed points
of t. Let odd(λ) denote the number of odd parts of the partition λ. Saxl [Sxl] (see also [Klj] or
[IRS]) proves the following decomposition of the induced character

ϕf
Sk

:= IndSn
C(t)(πf ) =

∑

λ⊢k

odd(λ)=f

χλ
Sk

and thus ϕSk :=

⌊k/2⌋
∑

ℓ=0

ϕk−2ℓ
Sk

=
∑

λ⊢k

χλ
Sk
. (2.2)

This generalizes the classic result (see [Th, Theorem IV] or [JK, 5.4.23]) for fixed-point-free per-
mutations, i.e., the case where f = 0. In this case, there are no fixed points and π0 is the trivial
character of C(t).

The number of involutions in Sk having f = k − 2ℓ fixed points and ℓ transpositions is

|IfSk | = |Ik−2ℓ
Sk

| =

(

k

2ℓ

)

(2ℓ− 1)!!, where (2ℓ− 1)!! = (2ℓ− 1)(2ℓ − 3) · · · 3 · 1. (2.3)

If we let sk = |ISk | =
∑⌊k/2⌋

ℓ=0 |Ik−2ℓ
Sk

| denote the total number of involutions in Sk, then sk is the
degree of ϕSk and is the sum of the dimensions of the irreducible Sk modules. The first few values
of sk are 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496. The sequence sk is [OEIS] A000085 and has

the well-known exponential generating function ex
2/2+x =

∑∞
k=0 sk

xk

k! .
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2.2 The model representation of Sk

We now construct the corresponding induced model representation. For t ∈ I
f
Sk
, let Mt = Kt be the

1-dimensional C(t)-module with character πf , so that c ∈ C(t) acts on t by c · t = S(c, t) ctc−1 =
S(c, t)t, where S(c, t) = πf (c) is the sign of the permutation induced by c on the fixed points of t.

The cosets of C(t) in Sk are in bijection with the Sk-orbits of t, which is the set of involutions IfSk .
Consider the induced module

IndSk
C(t)(Mt) ∼= KSk ⊗C(t) t, (2.4)

where the Sk action is given by x · (w ⊗C(t) t) = xw ⊗C(t) t, for all w, x ∈ Sk, and is extended

linearly to KSk ⊗C(t) Mt. Since Mt is 1-dimensional, dim(IndSk
C(t)(Mt)) = |Sk|/|C(t)| = |IfSk |. Let

{ws|s ∈ I
f
Sk
} be a set of distinct coset representatives of C(t) ∈ Sk such that wstw

−1
s = s. If w ∈ Sk

with w = wsc ∈ wsC(t), then since the tensor product is over C(t), we have w⊗C(t) t = wsc⊗C(t) t =

ws ⊗C(t) c · t = S(c, t)ws ⊗C(t) t. Thus, the vectors of the form ws ⊗C(t) t span IndSk
C(t)(Mt) and by

comparing dimensions {ws ⊗C(t) t | s ∈ I
f
Sk
} is a basis of IndSk

C(t)(Mt).

The induced module IndSk
C(t)(Mt) has a nice combinatorial construction. If w ∈ Sk and t ∈ I

f
Sk

then wtw−1 ∈ I
f
Sk

is an involution with the same number f of fixed points as t. However, the

relative position of the fixed points are permuted in the map t 7→ wtw−1. Define S(w, t) to be the
sign of the permutation induced on the fixed points of t under conjugation. That is,

S(w, t) = (−1)|{ 1≤i<j≤k | t(i)=i, t(j)=j, and w(i)>w(j) }|. (2.5)

For example, when the following involution is conjugated,

w =

t =
r g b

=
rgb

= wtw−1

w−1 =

the three fixed points (r, g, b) are permuted to (b, g, r) which is an induced permutation of sign −1.
Inside of the group algebra KSk define

M
f
Sk

= K-span
{

t | t ∈ I
f
Sk

}

, (2.6)

Define an action of w ∈ Sk on a basis element t ∈ I
f
Sk

by

w · t = S(w, t)wtw−1, (2.7)

which we refer to as signed conjugation. Let Sk act on M
f
Sk

by extending the action of (2.7) linearly.

Proposition 2.8. For f = k − 2ℓ with 0 ≤ ℓ ≤ ⌊k/2⌋, we have M
f
Sk

∼= IndSk
C(t)(Mt).

Proof. Let si = (i, i + 1) denote the simple transposition (given here in cycle notation) that ex-
changes i and i+ 1. Then s1, . . . , sk−1 generate Sk, and the length ℓ(w) of w ∈ Sk is the minimum
number of simple transpositions needed to write w as a product of simple transpositions. Consider
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the coset wC(t) in Sk and let wtw−1 = s. We claim that if w is of minimal length among all
permutations in wC(t), then under the map t 7→ wtw−1 = s the relative position of the the fixed
points of t is not changed. This can be readily verified from the diagram calculus: the length ℓ(w)
is the number of crossings in the permutation diagram of w, and thus the permutation of minimal
length that conjugates t to s does not exchange any of the fixed points of t. Now, for s ∈ I

f
Sk

let ws

be the unique minimal-length coset representative such that wstw
−1
s = s. Then { ws | s ∈ I

f
Sk

} is
a set of distinct coset representatives of C(t) ∈ Sk.

We now show that x ∈ Sk acts on the basis { ws ⊗C(t) t | s ∈ I
f
Sk

} of IndSk
C(t)(Mt) identically to

the way that x acts on the basis { s ∈ I
f
Sk

} of Mf
Sk
. We know that xws ∈ wrC(t) for some r ∈ I

f
Sk

so xws = wrc for c ∈ C(t), and thus

x · (ws ⊗C(t) t) = xws ⊗C(t) t = wrc⊗C(t) t = wr ⊗C(t) c · t = S(c, t)(wr ⊗C(t) t).

Now observe that x = wrcw
−1
s so

xsx−1 = (wrcw
−1
s )(wstw

−1
s )(wsc

−1w−1
r ) = wr(ctc

−1)w−1
r = wrtw

−1
r = r.

Furthermore, since wr does not change the relative order of the fixed points of t, the only place
where the relative order of the fixed points of t was changed was in the conjugation ctc−1 = t. Thus
S(x, s) = S(c, t) and so x · s = S(x, s)xsx−1.

Now, let K be chosen so that KSk is semisimple (for example, char(K) = 0), and define

MSk = K-span { t | t ∈ Ik} =

⌊n/2⌋
⊕

ℓ=0

Mk−2ℓ
Sk

. (2.9)

Let Λf
Sk

= {λ ⊢ k| odd(λ) = f}. Applying Proposition 2.8 to (2.9) and using (2.2) gives

Theorem 2.10. Under signed conjugation (3.23), MSk decomposes into irreducible Sk modules as

MSk =

⌊n/2⌋
⊕

ℓ=0

Mk−2ℓ
Sk

∼=

⌊n/2⌋
⊕

ℓ=0

⊕

λ∈Λk−2ℓ
Sk

Sλk =

k
⊕

f=0

⊕

λ∈Λf
Sk

Sλk =
⊕

λ⊢n

Sλk ,

where Λf
Sk

= ∅ if there are no partitions of k with f odd parts.

2.3 Comparison with other Gelfand models for Sk

Adin, Postnikov, and Roichman [APR] (and also [KM]) study a slightly different combinatorial
model for Sk, and it is the analog of this model that Mazorchuk derives for the diagram algebras
in [Mz]. The sign in [APR] is computed on the two cycles of t ∈ I

f
k as follows:

s(w, t) = (−1)|{ 1≤i<j≤k | t(i)=j, t(j)=i, and w(i)>w(j) }|. (2.11)

and the action of Sk on I
f
k is given as

w · t = s(w, t)wtw−1, for w ∈ Sk and t ∈ I
f
k .

We let M
f
k denote the corresponding Sk module, and let Mk = ⊕

⌊k/2⌋
ℓ=0 M

k−2ℓ
k . In [APR] it is proved

that Mk is a Gelfand model for Sk. Moreover, the action is given a q-extension in [APR] to a
Gelfand model for the Iwahori-Hecke algebra Hk(q) of Sk. In what follows we prove that the
Adin-Postnikov-Roichman model differs from the Saxl model by the sign representation.

7



Proposition 2.12. For each 0 ≤ f ≤ k such that k− f is even, we have M
f
Sk

∼= M
f
Sk

⊗ S
sign
k , where

S
sign
k is the sign representation of Sk.

Proof. Let t ∈ I
f
Sk

and let w ∈ Sk such that wtw−1 = t. That is, the t-t entry of the matrix of w is

nonzero (in both M
f
Sk

and M
f
Sk
) and thus contributes to the trace. Let F be the set of fixed points of

t and let t = (a1, b1)(a2, b2) · · · (aℓ, bℓ) be the decomposition of t into ℓ = (k− f)/2 disjoint 2-cycles
with ai < bi for each i. Thus the complement of F in {1, 2, . . . , k} is F̄ = {a1, b1, a2, b2, . . . , aℓ, bℓ}.

Since wtw−1 = t, we know that w permutes the fixed points F of t. Furthermore, w permutes
the transpositions among themselves and possibly transposes the endpoints of the transpositions.
We factor w according to these three actions. Let wa, wb, wπ ∈ Sk be defined as follows:

1. wb(c) = c if c ∈ F̄ and wb(d) = w(d) if d ∈ F ; thus, wb permutes the fixed points of t as in w
and fixes the others.

2. wa(d) = d if d ∈ F , wa(ai) = bi and wa(bi) = ai if w(ai) > w(bi), and wa(ai) = ai and
wa(bi) = bi if w(ai) < w(bi); thus wa transposes the endpoints of the transpositions in t if
they are transposed by w.

3. wπ(d) = d if d ∈ F and wπ(ai) = aπ(i) and wπ(bi) = bπ(i) where π is the permutation on the
transpositions induced by w.

It is easy to check, by examining the values of these permutations on each element of F ∪ F̄ =
{1, . . . , k}, that

w = wπwawb, and thus sign(w) = sign(wπ) sign(wa) sign(wb).

Furthermore, by the definition of wa, wb, S(w, t), and s(w, t) we have sign(wb) = S(w, t) and
sign(wa) = s(w, t). Finally, since wπ permutes the set of transpositions (ai, bi), keeping ai < bi, it
can be written as a product of pairs of transpositions of the form (ai, aj)(bi, bj). Thus, sign(wπ) = 1,
and we have sign(w) = S(w, t)s(w, t) or, equivalently, S(w, t) = s(w, t) sign(w), for each t such that

wtw−1 = t. It follows that the characters of w on M
f
Sk

and M
f
Sk

⊗ S
sign
k are equal and the modules

are isomorphic.

3 Gelfand Models from the Jones Basic Construction

In this section we show how to construct model representations for a tower of algebras (Ak)k≥0 that
is obtained by repeated Jones basic constructions ([GHJ], [Jo1], [GG]) from a tower of algebras
(Ck)k≥0 for which we already have a model representation. Each of the diagram algebras of interest
in this paper has such an inductive structure with Ck

∼= KSk, in the case of the nonplanar algebras,
and Ck

∼= K1, in the case of the planar algebras. We lift Saxl’s model for Sk in the first case and
the trivial model in the second.

3.1 The Jones basic construction

Let A0 ⊆ A1 ⊆ A2 ⊆ · · · be a tower of inclusions of finite-dimensional, semisimple algebras with 1
over the algebraically closed field K. Assume that there exist elements 0 6= ek ∈ Ak+1, and k′ < k,
which satisfy the following relations

(a) e2k = ek,

8



(b) eka = aek, for all a ∈ Ak′,

(c) Ak′
∼= Ak′ek ∼= ekAkek via the map a 7→ aek for all a ∈ Ak.

In the examples in this paper k′ = k − 1 or k′ = k − 2. Define the map εk : Ak → Ak′ , called the
conditional expectation, such that εk(b) is the unique element in Ak′ such that ekbek = εk(b)ek. Let
Akek be a module for AkekAk by multiplication on the left and a module for ekAkek by multiplication
on the right. Wenzl [Wz] proves the following (see also [HR1, Theorem 2.6], [Ha1, Prop. 5.1.3]),

Jk := AkekAk
∼= EndekAkek(Akek) and Ak′

∼= ekAkek ∼= EndAkekAk
(Akek). (3.1)

Since Jk = AkekAk
∼= EndekAkek(Akek) it is an ideal and a semisimple subalgebra (with unit ek).

Thus, there exists a subalgebra Ck ⊆ Ak such that

Ak = Jk ⊕ Ck and Ak/Jk ∼= Ck. (3.2)

Let ΛAk
index the irreducible Ak-modules. It follows (from double centralizer theory) that the

irreducible modules for Ak′ and Jk are indexed by the same set ΛAk′
. Thus by (3.2), we have

ΛAk
= ΛJk ⊔ ΛCk

= ΛAk′
⊔ ΛCk

. (3.3)

Applying (3.3) recursively gives ΛAk
= ΛC0 ⊔ ΛC1 ⊔ ΛC2 ⊔ · · · ⊔ ΛCk

, where for some values of i we
may have Ci = 0 and ΛCi

= ∅ (see the examples in Section 4).
If χ is any character of Ak, then by (3.2), χ is completely determined by its values on Jk and

Ck. If a ∈ Jk = AkekAk, then a = a1eka2 for a1, a2 ∈ Ak, and by the trace property of χ,

χ(a) = χ(a1eka2) = χ(a2a1ek) = χ(a2a1e
2
k) = χ(eka2a1ek) = χ(ε(a2a1)ek).

Thus, character values on Jk are completely determined by their values on aek for a ∈ Ak′, and

Characters of Ak are completely determined by their values on

b ∈ Ck and aek, for a ∈ Ak′ .
(3.4)

The following result is proved in [HR1] and [Ha1] for algebras Ak satisfying (a), (b), (c) above
with quotient Ck defined as in (3.2). If λ ∈ ΛAk

, then

χλ
Ak
(a) =











χλ
Ck
(a), if λ ∈ ΛCk

and a ∈ Ck,

0, if λ ∈ ΛCk
and a ∈ Jk,

χλ
Ak′

(a′), if λ ∈ ΛAk′
and a = a′ek with a′ ∈ Ak′ .

(3.5)

The character values, χλ
Ak
(a) for λ ∈ ΛAk′

and a ∈ Ck, are harder to compute but not needed here.
Now assume that we have a model representation MCr

of Cr, for each 0 ≤ r ≤ k, with corre-
sponding character ϕCk

. Thus,

MCr
∼=

⊕

λ∈ΛCr

Cλ
r and ϕCr

=
∑

λ∈ΛCr

χλ
Cr
, (3.6)

where {Cλ
r | λ ∈ ΛCr

} is the set of the irreducible Cr-modules with characters χλ
Cr
, λ ∈ ΛCr

. Suppose
further that we have constructed a module MAk

for Ak which decomposes into Ak-submodules

MAk
=

⊕k
r=0M

r
Ak

satisfying

9



(M1) Mr
Ak

and Ms
Ak

have no common irreducible constituents if r 6= s, and

(M2) The character ϕr
Ak

of Mr
Ak

satisfies

ϕr
Ak
(a) =















ϕCk
(a), if r = k and a ∈ Ck,

0, if r = k and a ∈ Jk,

ϕr
A′
k
(a′), if r < k and a = a′ek with a′ ∈ Ak−1.

(3.7)

Then the following theorem tells us that MAk
is a model for Ak.

Theorem 3.8. Let A0 ⊆ A1 ⊆ · · · ⊆ Ak be a tower of semisimple algebras obtained by Jones basic
constructions from C0 ⊆ C1 ⊆ · · · ⊆ Ck. If Mk =

⊕k
r=0M

r
Ak

is an Ak module satisfying (M1) and
(M2), then

Mr
Ak

=
⊕

λ∈ΛCr

Aλ
k , and thus MAk

=
k

⊕

r=0

Mr
Ak

=
⊕

λ∈ΛAk

Mλ
Ak
.

Proof. We prove this on the character level; namely, we show that ϕr
Ak

=
∑

λ∈ΛCr
χλ
Ak

and ϕAk
=

∑k
r=0 ϕ

r
Ak

=
∑

λ∈ΛAk
χλ
Ak

(the second statement follows immediately from the first). Our proof is

by induction on k, with k = 0 being trivial. Let k > 0 and first consider the situation where r = k.
Using (3.7), (3.6), and (3.5) we have

ϕk
Ak
(a) = ϕCk

(a) =
∑

λ∈ΛCk

χλ
Ck
(a) =

∑

λ∈ΛCk

χλ
Ak
(a), for all a ∈ Ck, and

ϕk
Ak
(a) = 0 =

∑

λ∈ΛCk

χλ
Ak
(a), for all a ∈ Jk.

Since characters of Ak are completely determined by their values on Ck and Jk, we have that
ϕk
Ak

=
∑

λ∈ΛCk
χλ
Ak

is the decomposition of ϕk
Ak

into irreducible characters.

Now let r < k. The previous paragraph and (M1) tell us that the decomposition of ϕr
Ak

into

irreducibles does not involve any χλ
Ak

with λ ∈ ΛCk
. Thus by (3.3) it is of the form

ϕr
Ak

=
∑

λ∈ΛA
k′

aλχ
λ
Ak
, for some aλ ∈ Z≥0. (3.9)

Let a = a′ek with a′ ∈ Ak′. For each λ ∈ ΛAk′
we have χλ

Ak
(a) = χλ

Ak′
(a′) by (3.5), and thus

ϕr
Ak
(a) = ϕr

Ak′
(a′) by (3.9). Furthermore, we can apply the inductive hypothesis since k′ < k,

ϕr
Ak
(a) = ϕr

Ak′
(a′) =

∑

λ∈ΛCr

χλ
Ak′

(a′) =
∑

λ∈ΛCr

χλ
Ak
(a).

Thus, aλ = 1 for λ ∈ ΛCr
and aλ = 0, otherwise, as desired.

3.2 Jones basic construction for subalgebras of the partition algebra

Let Ak be the partition algebra or one of its subalgebras described in Section 1.3 with x ∈ K chosen
such that Ak is semisimple. Let Ak be the basis of diagrams which span Ak. There is a natural
embedding Ak−1 ⊆ Ak, given by placing an identity edge to the right of any diagram d ∈ Ak−1, i.e.,
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d 7→ d . Let Jk ⊆ Ak be the ideal spanned by the diagrams of Ak having rank

less than k. Then,
Ak

∼= Jk ⊕ Ck, (3.10)

where Ck is the span of the diagrams of rank exactly equal to k. In the examples of this paper,

Ck
∼= KSk, when Ak is one of the nonplanar algebras Pk(x),Bk(x),RBk(x) or Rk,

Ck
∼= K1k, when Ak is one of the planar algebras TLk(x),Mk(x), or PRk.

(3.11)

Define an idempotent ek ∈ Jk by

ek = 1
x

1 2
· · ·

· · ·

k−1 k

, for Ak equal to Pk(x),RBk(x),Rk,Mk(x), or PRk,

ek = 1
x

1 2
· · ·

· · ·

k−1 k

, for Ak equal to Bk(x) or TLk(x).

(3.12)

Recall that in the special cases where Ak = Rk or Ak = PRk we have x = 1. It is easy to verify by
diagram multiplication that

Jk = AkekAk, for Ak equal to Pk(x),RBk(x),Rk,Mk(x), or PRk,
Jk−1 = Jk = AkekAk, for Ak equal to Bk(x) or TLk(x).

(3.13)

Define k′ = k − 1 or k′ = k − 2 so that

Ak′ =

{

Ak−1, if Ak equals Pk(x),RBk(x),Rk,Mk(x), or PRk,

Ak−2, if Ak equals Bk(x) or TLk(x).
(3.14)

In each of our examples it is well-known, and straight-forward to verify, that Ak satisfies
properties (a), (b), (c) of the basic construction in Section 3.1 using the idempotent ek. Thus,
ΛAk

= ΛJk−1
⊔ ΛCk

= ΛA′
k
⊔ ΛCk

, and by induction

ΛAk
=

⊔k
r=0 ΛCr

, for Ak equal to Pk(x),RBk(x),Rk,Mk(x), or PRk,

ΛAk
=

⊔⌊k/2⌋
ℓ=0 ΛCk−2ℓ

, for Ak equal to Bk(x) or TLk(x).
(3.15)

3.3 Symmetric diagrams and diagram conjugation

For any diagram d ∈ Ak, let dT ∈ Ak be the diagram obtained by reflecting d over its horizontal
axis. For example,

d1 = ⇒ dT1 = ,

d2 = ⇒ dT2 = .

Note that the map d → dT corresponds to exchanging i ↔ i′ for all i.
We say that a diagram d is symmetric if dT = d. In our example above, d2 is symmetric and d1

is not. If we let (i′)′ = i and let B′ = { b′ | b ∈ B } for a block B of a partition diagram d, then d is
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symmetric if it satisfies: B ∈ d if and only if B′ ∈ d. If d is a partition diagram, then we say that a
block B ∈ d is a fixed block if B′ = B. In our above examples, d1 has one fixed block, {5, 5′}, and
d2 has two fixed blocks, {8, 8′} and {6, 7, 10, 6′ , 7′, 10′}. Note that

(ab)T = bTaT and (dtdT )T = (dT )T tTdT = dtTdT ,

so t is symmetric if and only if dtdT is symmetric. We say that dtdT is the conjugate of t by d. See
Example 3.18. Observe that in Pk(x) the sizes of the blocks can change under conjugation.

Remark 3.16. The symmetric diagrams in the partition algebra are referred to as type-B set
partitions in [OEIS] A002872. They appear in [Mo] and are equivalent to the horizontally symmetric
2× n letter arrays H2,n in [Qu]. They are closely related to the type-B set partitions used in [Re],
except that in [Re] the partitions are restricted to have at most one fixed block.

Remark 3.17. If we restrict our diagrams to the symmetric group, then dT equals d−1, diagram
conjugation corresponds to usual group conjugation, symmetric diagrams are involutions, and fixed
blocks are fixed points.

Example 3.18. (a) Conjugation in the partition algebra Pk(x).

d =

s = =

dT =

(b) Conjugation in the Brauer algebra Bk(x):

d =

s =

dT =

=

(c) Conjugation in the Temperley-Lieb algebra TLk(x):

d =

s =

dT =

=

12
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3.4 A Gelfand model for Ak

For any of our diagram algebras Ak, let

I
r,f
Ak

= { d ∈ Ak | d is symmetric, rank(d) = r, and d has f fixed blocks },

IrAk
= { d ∈ Ak | d is symmetric, rank(d) = r },

IAk
= { d ∈ Ak | d is symmetric }.

(3.19)

For 0 ≤ f ≤ r ≤ k, define

M
r,f
Ak

= K-span{ d | d ∈ I
r,f
Ak

}, (3.20)

where M
r,f
Ak

= 0 if Ir,fAk
= ∅, and let

Mr
Ak

= K-span{ d | d ∈ IrAk
},

=

r
⊕

f=0

M
r,f
Ak

,
and

MAk
= K-span{ d | d ∈ IAk

},

=

k
⊕

r=0

Mr
Ak

=

k
⊕

r=0

r
⊕

f=0

M
r,f
Ak

.
(3.21)

If d ∈ Ak and t ∈ I
r,f
Ak

, then rank(d ◦ t ◦ dT ) ≤ rank(t). When rank(d ◦ t ◦ dT ) = rank(t), the
fixed blocks of t have been permuted, and we let S(d, t) be the sign of the permutation of the fixed

blocks of t. For d ∈ Ak and t ∈ I
r,f
Ak

, define

d · t =

{

xκ(d,t)S(d, t) d ◦ t ◦ dT , if rank(d ◦ t ◦ dT ) = rank(t),

0, if rank(d ◦ t ◦ dT ) < rank(t),
(3.22)

where κ(d, t) is the number of blocks (1.1) removed from the middle row in creating d ◦ t. We refer
to the above action as signed conjugation of t by d.

Example 3.23. (Signed Conjugation) In the following example, there is one block removed in d ◦ t
yielding a multiple of x. Furthermore, the three fixed blocks of t are permuted as (B1, B2, B3) 7→
(B3, B2, B1). Hence, the sign is S(d, t) = −1.

d =

t = = (−x)

dT =

.

Example 3.24. The signs in Example 3.18 are (a) x2, (b) −x3, and (c) x4, respectively.

Remark 3.25. Observe the following subtlety in the definition of this action: as a product in Ak

we have dtdT = x2κ(d,t)d◦ t◦dT , since each block removed from the middle row in d◦ t has a mirror
image in t ◦ dT ; however, we require d · t = xκ(d,t)S(d, t) d ◦ t ◦ dT in order to make this an algebra
action, as will be seen in the proof of Proposition 3.27.

Remark 3.26. When the action in (3.22) is restricted to the symmetric group, we exactly get the
action of Sk on involutions Ik defined in equation (2.7)

13



Proposition 3.27. The action defined in (3.22) makes M
r,f
Ak

an Ak-module.

Proof. We show that (d1d2) · t = d1 · (d2 · t). If rank(d◦ t◦d
T ) < rank(t), then by the associativity of

diagram multiplication we have (d1d2)·t = 0 = d1·(d2·t). So we assume that rank(d◦t◦dT ) = rank(t).

Let d1 ◦ d2 = d3 and let d2 ◦ t ◦ d
T
2 = s for some s ∈ I

r,f
Ak

. Then we have,

d1 · (d2 · t) = xκ(d2,t)S(d2, t)d1 · (d2 ◦ t ◦ d
T
2 )

= xκ(d1,s)xκ(d2,t)S(d1, s)S(d2, t)(d1 ◦ (d2 ◦ t ◦ d
T
2 ) ◦ d

T
1 )

= xκ(d1,s)xκ(d2,t)S(d1, s)S(d2, t)((d1d2) ◦ t ◦ (d1 ◦ d2)
T )

= xκ(d1,s)xκ(d2,t)S(d1, s)S(d2, t)(d3 ◦ t ◦ d
T
3 ).

On the other hand, (d1d2) · t = xκ(d1,d2)d3 · t = xκ(d1,d2)xκ(d3,t)S(d3, t)d3td
T
3 , so it suffices to show

that
S(d3, t) = S(d1, s)S(d2, t) and xκ(d1,d2)xκ(d3,t) = xκ(d1,s)xκ(d2,t).

From the diagram calculus, we have that κ(d1, d2) = κ(d1, s) and κ(d3, t) = κ(d2, t), so the second
equality follows immediately. The first equality corresponds to the composition of permutations of
fixed blocks, and the result follows from the symmetric group fact that the sign of a permutation
is multiplicative.

For d ∈ Ak, let τ(d) be the set partition of {1, . . . , k} given by restricting d to {1, . . . , k} and let
β(d) be the set partition of {1′, . . . , k′} given by restricting d to {1′, . . . , k′}. Thus if t is symmetric,

then i ↔ i′ is a bijection between τ(t) and β(t). For each t ∈ I
r,f
Ak

, let pt ∈ Ak be the unique diagram
such that

(a) τ(pt) = τ(t) and β(pt) = β(t)

(b) A block of t is propagating if and only if the corresponding block of pt is an identity block.

For example,

t =

pt =

Note that rank(pt) = rank(t). It follows from this construction that

ptt = tpt = xℓt, (3.28)

where ℓ is the number of non-propagating blocks of t. These diagrams are used in the proof of the
following proposition.

Proposition 3.29. If r 6= s, there is no submodule of Mr,f
Ak

isomorphic to a submodule of Ms,g
Ak

.

Proof. By Schur’s lemma, Mr,f
Ak

and M
s,g
Ak

have an isomorphic submodule if and only if there is a

nontrivial Ak-module homomorphism φ : Mr,f
Ak

→ M
s,g
Ak

. Assume r < s, without loss of generality,

and let t ∈ I
r,f
Ak

. Suppose φ : Mr,f
Ak

→ M
s,g
Ak

is a nontrivial Ak-module homomorphism. Then by

(3.28) and the fact that φ is an Ak-module homomorphism, φ(t) = φ
(

x−ℓptt
)

= x−ℓptφ(t). Now,
φ(t) is a linear combination of symmetric diagrams of rank s, but rank(pt) = rank(t) < s, and thus
by (3.22), pt acts as 0 on each diagram in the linear combination φ(t). Thus φ(t) = 0 for each t,
and there are no nontrivial Ak-module homomorphisms.
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Let ϕr,f
Ak

be the character of the Ak-module M
r,f
Ak

. Then ϕr
Ak

=
∑r

f=0 ϕ
r,f
Ak

is the character of

Mr
Ak

and ϕAk
=

∑k
r=0 ϕ

r
Ak

is the character of MAk
. Let ϕf

Ck
be the restriction of ϕk,f

Ak
from Ak to Ck.

Recall from (3.4) that it is sufficient to compute Ak characters on d ∈ Ck or d = aek with a ∈ Ak′.

Proposition 3.30. For each d ∈ Ak and 0 ≤ f ≤ r ≤ k, we have

ϕr,f
Ak

(d) =











ϕf
Ck
(d), if r = k and rank(d) = k,

0, if r = k and rank(d) < k,

ϕr,f
Ak′

(a), if r < k and d = aek with a ∈ Ak′.

Proof. If r = k and rank(d) < k, then by (3.22) d acts as 0 on every t ∈ I
k,f
Ak

and thus ϕk,f
Ak

(d) = 0.
If r = k and rank(d) = k, then d ∈ Ck. The restriction to diagrams of rank r = k is exactly the

action of Ck on I
k,f
Ak

= I
f
Ck
. When Ck = KSk this is the Saxl representation as observed in Remark

3.26. In the planar case, Ck = K1k, the only planar rank k diagram is 1k and we must have k = f .
Let r < k and d = aek = eka. Then t ∈ I

r,f
Ak

contributes to the trace of d only if d ◦ t ◦ dT =

t. Furthermore, d ◦ t ◦ dT = (eka) ◦ t ◦ (eka)
T = eka ◦ t ◦ aT eTk = eka ◦ t ◦ aT ek = a′ek with

a′ ∈ Ak′ . Thus t contributes to the trace only if t = t′ek for t′ ∈ I
r,f
A′
k

. Now, d · t = (aek) ·

(t′ek) = xκ(aek ,t
′ek)S(aek, t

′ek)(aek)◦(t
′ek)◦(aek)

T = xκ(aek ,t
′ek)S(aek, t

′ek)(a◦ t
′ ◦aT )(ek ◦ek ◦ek) =

xκ(aek ,t
′ek)S(aek, t

′ek)(a ◦ t
′ ◦aT )ek. Using the fact that both a and t′ commute with ek, we see that

xκ(aek ,t
′ek) = xκ(a,t

′) and S(aek, t
′ek) = S(a, t′). Therefore, t contributes to the trace if and only if

t = t′ek and, in this case, the t-t entry of the action of d on M
r,f
Ak

equals the t′-t′ entry of the action

of a on M
r,f
Ak′

. Thus ϕr,f
Ak

(d) = ϕr,f
Ak′

(a).

When Ak is nonplanar, we have Cr = KSr, and the Saxl model (Theorem 2.10) satisfies

MCr
=

r
⊕

f=0

M
f
Cr

∼=

r
⊕

f=0

⊕

λ∈Λf
Cr

Cλ
r
∼=

⊕

λ∈ΛCr

Cλ
r , with ΛCr

=
⊔r

f=0 Λ
f
Cr
, (3.31)

where Λf
Cr

is the set of partitions of r with f odd parts. Here Mf
Cr

= 0 and Λf
Cr

= ∅ if r− 2f is not
even. When Ak is planar, we have Cr = K1r. In this case, the model is trivial and satisfies (3.31)

with M
f
Cr

= 0, if f 6= r, and Mr
Cr

= MCr
= K1. We have Λf

Cr
= ∅, if r 6= f , and Λr

Cr
= Λr

Cr
= {(r)}.

By (3.3), the irreducible Ak modules are indexed by

ΛAk
=

k
⊔

r=0

ΛCr
=

k
⊔

r=0

r
⊔

f=0

Λf
Cr
, (3.32)

Applying Proposition 3.29 and Proposition 3.30 to Theorem 3.8 gives the following theorem.

Theorem 3.33. (Model Representation of Ak) For k ≥ 0, let Ak be any of the diagram algebras
defined in Section 1, with x chosen such that Ak is semisimple. Let {Aλ

k |λ ∈ ΛAk
} denote a complete

set of irreducible Ak-modules. Then for each 0 ≤ f ≤ r ≤ k, we have

(a) M
r,f
Ak

∼=
⊕

λ∈Λf
Cr

Aλ
k and Mr

Ak
=

r
⊕

f=0

M
r,f
Ak

∼=
⊕

λ∈ΛCr

Aλ
k,

(c) MAk
=

k
⊕

r=0

r
⊕

f=0

M
r,f
Ak

∼=
⊕

λ∈ΛAk

Aλ
k ,
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where Mr
Ak

= 0 and M
r,f
Ak

= 0 if there do not exist symmetric diagrams in Ak of rank r or of rank r
with f fixed points.

Corollary 3.34. If Ak is planar, then Mr
Ak

∼= A
(r)
k is irreducible, and thus MAk

=
⊕k

r=0M
r
Ak

is a
decomposition into irreducible Ak-modules.

4 Gelfand Models for Diagram Algebras

In this section we illustrate the combinatorics of our model representation for each diagram algebra.
We classify and count the symmetric diagrams of each type according to their rank and number of
fixed blocks. These form a basis for the model representation defined in Theorem 3.33. As above,
we need K to be chosen such that the diagram algebra is semisimple. For example, we may choose
char(K) = 0. In some cases, for example Rui’s criterion [Rui] on char(K) for the semisimplicity of
the Brauer algebra, it is known for which positive characteristics the algebra is semeisimple.

4.1 The partition algebra Pk(x)

The partition algebra Pk(x) is spanned by the set partitions Pk defined in Section 1.1 and has
dimension equal to the Bell number B(2k). For x ∈ K such that x 6∈ {0, 1, . . . , 2k − 1}, Pk(x) is
semismple (see [MS] or [HR2]) with irreducible modules indexed by partitions in the set

ΛPk
= { λ ⊢ r | 0 ≤ r ≤ k }. (4.1)

For each 0 ≤ ℓ ≤ ⌊r/2⌋ there exist symmetric partition algebra diagrams in I
r,f
Pk

of rank r with ℓ
blocks that are transposed (i.e., propagating, nonidentity blocks) and f = r− 2ℓ fixed blocks. The
number of these symmetric diagrams is

dimM
r,r−2ℓ
Pk

=
∣

∣

∣
I
r,r−2ℓ
Pk

∣

∣

∣
=

k
∑

b=r

S(k, b)

(

b

r

)(

r

2ℓ

)

(2ℓ− 1)!!, (4.2)

where S(k, b) is a Stirling number of the second kind. This sum is justified as follows: first partition
the top and bottom rows of a symmetric diagram identically into b blocks in S(k, b) ways. Then
choose r of these blocks to be propagating, and from those r blocks, choose 2ℓ of them to correspond
to transpositions and match them up in (2ℓ− 1)!! ways. The remaining r − 2ℓ blocks are fixed.

The model representation for Pk(x) satisfies,

M
r,f
Pk

=
⊕

λ⊢k
odd(λ)=f

Pλ
k and MPk

=

k
⊕

r=0

⌊r/2⌋
⊕

ℓ=0

M
r,r−2ℓ
Pk

=
⊕

λ∈ΛPk

Pλ
k . (4.3)

If we let pk = |IPk
| =

∑k
r=0

∑⌊r/2⌋
ℓ=0 |Ir,r−2ℓ

Pk
| = dimMPk

denote the total number of symmetric
diagrams in Pk(x), then pk is the sum of the degrees of the irreducible Pk(x)-modules (which can
be found in [Ma], [HR2], [Ha1]). The first few values of pk are 1, 2, 7, 31, 164, 999, 6841, 51790,
428131. The sequence pk is [OEIS] A002872, which equals the number of type-B set partitions (see

Remark 3.16), and has exponential generating function e(e
2x−3)/2+ex =

∑∞
k=0 pk

xk

k! . This generating
function is justified in [Mo] in formula 6(5′) (with p = 2 in the notation of [Mo]) and in [Qu] (with
pk = H2,k in the notation of [Qu]).
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4.2 The Brauer algebra Bk(x)

The Brauer algebra Bk(x) is spanned by the Brauer diagrams and has dimension dimBk(x) =
(2k − 1)!!. For x ∈ K such that x 6∈ {x ∈ Z | 4 − 2k ≤ x ≤ k − 2}, Bk(x) is semisimple (see [Rui])
with irreducible modules indexed by partitions in the set

ΛBk
= { λ ⊢ (k − 2r) | 0 ≤ r ≤ ⌊k/2⌋ }. (4.4)

Symmetric Brauer diagrams consist of ℓ transpositions, f fixed points, and c contractions (sym-
metric pairs of horizontal edges) with and f = k − 2c − 2ℓ. For example, the symmetric Brauer
diagram,

∈ B14(x)

has ℓ = 3 transpositions (1, 3), (2, 5), (6, 9), c = 3 contractions in positions {4, 7}, {8, 12}, {11, 14},
f = 2 fixed points in positions 10 and 13, and rank r = 8. Symmetric Brauer diagrams have rank
r = k−2c, for 0 ≤ c ≤ ⌊k/2⌋, and the number of symmetric diagrams of rank r with with f = r−2ℓ
fixed points equals

dimM
r,f
Bk

= dimM
r,r−2ℓ
Bk

=
∣

∣

∣
I
r,r−2ℓ
Bk

∣

∣

∣
=

(

k

r

)

(k − r − 1)!!

(

r

2ℓ

)

(2ℓ− 1)!!. (4.5)

This count is justified as follows: choose the r positions for the propagating edges in
(k
r

)

ways and
pair the remaining k − r positions for contractions in (k − r − 1)!! ways. Among the propagating
edges, choose r − 2ℓ fixed points and pair the remaining edges in transpositions in (2ℓ− 1)!! ways.

The model representation for Bk(x) satisfies,

M
r,f
Bk

∼=
⊕

λ⊢r

odd(λ)=f

Bλ
k and MBk

∼=

⌊k/2⌋
⊕

c=0

⌊(k−2c)/2⌋
⊕

ℓ=0

M
k−2c,k−2c−2ℓ
Bk

∼=
⊕

λ∈ΛBk

Bλ
k . (4.6)

If we let bk = |IBk
| =

∑⌊k/2⌋
c=0

∑⌊(k−2c)/2⌋
ℓ=0 |Ik−2c,k−2c−2ℓ

Bk
| = dimMBk

denote the total number of
symmetric diagrams in Bk(x), then bk is the sum of the degrees of the irreducible Bk(x)-modules
(see [Ra]). This value can be obtained by summing (4.5) over the given values of c and ℓ or by
summing over m = c+ ℓ as follows,

dimMBk
=

⌊k/2⌋
∑

m=0

(

k

2m

)

(2m− 1)!!2m =

⌊k/2⌋
∑

m=0

(

k

2m

)

(2m)!

m!
=

⌊k/2⌋
∑

m=0

(

k

2m

)(

2m

m

)

m!. (4.7)

Here we choose 2m points to be the endpoints of the transpositions and contractions, we pair
them up in (2m − 1)!! ways, and then we decide in 2m ways if each is to be a transposition
or a contraction. The first few values of bk are 1, 1, 3, 7, 25, 81, 331, 1303, 5937, which is
[OEIS] A047974 with exponential generating function b(x) = ex

2+x =
∑∞

k=0 bk
xk

k! . To justify this
generating function, verify that bk satisfies the recurrence bk+2 = bk+1 + (2k + 1)bk and therefore
b′′(x) = (1 + 2x)b′(x) + 2b(x) which has solution b(x) = ex

2+x.

4.3 The rook monoid algebra Rk

The rook monoid algebra Rk is the subalgebra spanned by rook monoid diagrams with parameter

x = 1. It has dimension dimRk =
∑k

ℓ=0

(k
ℓ

)2
ℓ! and is semisimple (see [So], [Ha2], [KM]) with

irreducible modules labeled by

ΛRk
= { λ ⊢ r | 0 ≤ r ≤ k }. (4.8)
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Symmetric rook monoid diagrams in Rk consist of f fixed points, ℓ transpositions, and k−f−2ℓ
vertical pairs of empty vertices. For example, the symmetric rook monoid diagram,

∈ R14

has ℓ = 3 transpositions (2, 5), (7, 9), (8, 13), f = 5 fixed points 4, 6, 10,11, 14, empty vertices in
positions 1, 3, 12, and rank r = 11. Observe that f = r − 2ℓ and that every pair 0 ≤ f ≤ r ≤ k,
with r − f even, is possible. The number of symmetric rook diagrams of rank r with f = r − 2ℓ
fixed points is

dimM
r,f
Rk

= dimM
r,r−2ℓ
Rk

=
∣

∣

∣
I
r,r−2ℓ
Rk

∣

∣

∣
=

(

k

r

)(

r

2ℓ

)

(2ℓ− 1)!!. (4.9)

To justify this count, choose the r positions for propagating edges in
(k
r

)

ways, choose r − 2ℓ
positions for fixed points among these in

( r
2ℓ

)

ways, and pair the remaining propagating edges into
transpositions in (2ℓ− 1)!! ways.

The model representation for Rk satisfies,

M
r,f
Rk

∼=
⊕

λ⊢r

odd(λ)=f

Rλ
k and MRk

∼=

k
⊕

r=0

⌊r/2⌋
⊕

ℓ=0

M
r,r−2ℓ
Rk

∼=
⊕

λ∈ΛRk

Rλ
k . (4.10)

If we let rk = |IRk
| =

∑k
r=0

∑⌊r/2⌋
ℓ=0 |Ir,r−2ℓ

Rk
| = dimMRk

denote the total number of symmetric
diagrams in Rk, then rk is the sum of the degrees of the irreducible Rk-modules (which can be found
in [So], [Ha2]). The first few values of these dimensions are 1, 2, 5, 14, 43, 142, 499, 1850, 7193.
The sequence rk gives the number of “self-inverse partial permutations” and is [OEIS] A005425.
Furthermore, rk is related to the number of involutions sk in the symmetric group (see Section 2.1)
by the binomial transform rk =

∑k
i=0

(k
i

)

si and thus (see [GKP, (7.75)]) has exponential generating

function exex
2/2+x = ex

2/2+2x =
∑∞

k=0 rk
xk

k! .

Remark 4.11. The model representation that we construct with our methods here differs from the
model for the rook monoid given in [KM] in the same way that the Saxl symmetric group model
differs from the one used by Adin, Postnikov, and Roichman [APR]. See Section 2.3.

4.4 The rook-Brauer algebra RBk(x)

The rook-Brauer algebra RBk(x) is spanned by rook-Brauer diagrams and has dimension equal to
∑k

ℓ=0

(

2k
2ℓ

)

(2ℓ− 1)!! (see [dH] or [MM]). For all but finitely many x ∈ K (the exact values have not
been determined), RBk(x) is semisimple and its irreducible modules are labeled by

ΛRBk
= { λ ⊢ r | 0 ≤ r ≤ ⌊k⌋ }. (4.12)

Symmetric rook-Brauer diagrams in RBk(x) consist of ℓ transpositions, f fixed points, c contrac-
tions, and k− 2ℓ− 2c− f vertical pairs of empty vertices. For example, the symmetric rook-Brauer
diagram,

∈ RB14(x)

has ℓ = 2 transpositions (1, 3), (2, 5), c = 3 contractions in positions {4, 7}, {8, 12}, {11, 14}, f = 2
fixed points in positions 10 and 13, empty vertices in positions 6 and 9, and rank r = 6. Observe
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that these diagrams satisfy f = r − 2ℓ, and that every pair 0 ≤ f ≤ r ≤ k, with r − f even, is
possible. The number of symmetric diagrams of this type is

dimM
r,f
RBk

= dimM
r,r−2ℓ
RBk

=
∣

∣

∣
I
r,r−2ℓ
RBk

∣

∣

∣
=

⌊(k−r)/2⌋
∑

c=0

(

k

r

)(

k − r

2c

)

(2c− 1)!!

(

r

2ℓ

)

(2ℓ− 1)!!, (4.13)

where here we sum over the number c of contractions. This count is justified as follows: in
(k
r

)

ways, choose r positions for the propagating edges. Then from the non propagating points, select
the 2c endpoints for the contractions in

(

k−r
2c

)

ways and match them up in (2c − 1)!! ways. Then
choose the 2ℓ endpoints of the transpositions in

(

r
2ℓ

)

ways, and match them up in (2ℓ− 1)!! ways.
The model representation for RBk(x) satisfies,

M
r,f
RBk

∼=
⊕

λ⊢r
odd(λ)=f

RBλ
k and MRBk

∼=

k
⊕

r=0

⌊r/2⌋
⊕

ℓ=0

M
r,r−2ℓ
RBk

∼=
⊕

λ∈ΛRBk

RBλ
k . (4.14)

If we let rbk = |IRBk
| =

∑k
r=0

∑⌊r/2⌋
ℓ=0 |Ir,r−2ℓ

RBk
| = dimMRBk

denote the total number of symmetric
diagrams in RBk(x), then rbk is the sum of the degrees of the irreducible RBk(x)-modules (these
dimensions can be found in [dH] or [MM]). The first few values of rbk are 1, 2, 6, 20, 76, 312, 1384,
6512, 32400. The sequence rbk is [OEIS] A000898 and it is related to the number of symmetric
diagrams bk in the Brauer algebra by the binomial transform rbk =

∑k
i=0

(

k
i

)

bi and thus (see [GKP,

(7.75)]) has exponential generating function exex
2+x = ex

2+2x =
∑∞

k=0 rbk
xk

k! .

4.5 The Temperley-Lieb algebra TLk(x)

The Temperley-Lieb algebra TLk(x) is spanned by planar Brauer diagrams and has dimension equal
to the Catalan number Ck = 1

k+1

(

2k
k

)

. For x ∈ K that is not the root of Uk(x/2), where Uk is the
Chebyshev polynomial of the second kind, TLk(x) is semisimple (see [We] or [Jo1]) with irreducible
modules indexed by

ΛTLk = { k − 2ℓ | 0 ≤ ℓ ≤ ⌊k/2⌋ }. (4.15)

Symmetric Temperley-Lieb diagrams of rank r have f fixed points and c contractions with
r = f = k − 2c. For example

∈ TL14(x)

has c = 5 contractions in positions {1, 2}, {4, 9}, {5, 6}, {7, 8}, {12, 13}, f = 4 fixed points in
positions 3, 10, 11, and 14, and rank r = 4. The number of symmetric Temperley-Lieb diagrams
(see [We, p. 545] or [Jo1, Sec. 5.1]) is given by

dimM
r,f
TLk

=
∣

∣

∣
Ik−2c
TLk

∣

∣

∣
=

{

k
c

}

:=

(

k

c

)

−

(

k

c− 1

)

. (4.16)

The model representation for TLk(x) satisfies,

M
(k−2c)
TLk

∼= TL
(k−2c)
k and MTLk

∼=

⌊k/2⌋
⊕

c=0

M
(k−2c)
TLk

∼=
⊕

(k−2c)∈ΛTLk

TL
(k−2c)
k . (4.17)

19

http://oeis.org/A000898


The total number of symmetric diagrams in TLk(x) is

tlk = dimMTLk = dim |ITLk | =

⌊k/2⌋
∑

c=0

|Ik−2c
TLk

| =

⌊k/2⌋
∑

c=0

(

k

c

)

−

(

k

c− 1

)

=

(

k

⌊k/2⌋

)

,

which are the central binomial coefficients [OEIS] A000984, and the first few values are 1, 1, 2, 3,

6, 10, 20, 35, 70. This sequence has exponential generating function I0(2x) + I1(2x) =
∑∞

k=0 tlk
xk

k! ,
where In(z) is the modified Bessel function of the first kind (see for example [GKP, (5.78)]).

Remark 4.18. The irreducible modules TL
(k−2c)
k are constructed in [We] on “cup diagrams” (or

1-factors). Cup diagrams correspond exactly to the upper half of a symmetric diagram (since the
diagrams are symmetric, only half is needed), and the action of TLk(x) on these diagrams is exactly
the same as our conjugation action on symmetric diagrams.

4.6 The Motzkin algebra Mk(x)

The Motzkin algebraMk(x) is spanned by planar rook-Brauer diagrams, which correspond to partial
planar matchings of {1, . . . , k, 1′, . . . , k′}, and so the dimension of Mk(x) is the Motzkin numberM2k

(see [BH]). For x ∈ K that is not the root of Uk((x− 1)/2), where Uk is the Chebyshev polynomial
of the second kind, Mk(x) is semisimple (see [BH]) and its irreducible modules are indexed by

ΛMk
= {0, 1, . . . , k}. (4.19)

Symmetric Motzkin diagrams of rank r consist of f = r fixed points, c contractions, and k−f−2c
pairs of empty vertices. For example, the symmetric Motzkin diagram,

∈ M14(x)

has c = 4 contractions in positions {1, 2}, {4, 9}, {6, 8}, {12, 13}, f = 3 fixed points in positions 3,
10, 14, vertical pairs of empty vertices in positions 5, 7, 11, and rank r = 3. Observe that every
rank 0 ≤ r ≤ k is possible. The number of symmetric diagrams of this type is

dimMr
Mk

=
∣

∣IrMk

∣

∣ =

⌊(k−r)/2⌋
∑

c=0

(

k

r + 2c

){

r + 2c
c

}

, (4.20)

where
{

r+2c
c

}

is defined in (4.16). This formula is derived in [BH, (3.21)].
The model representation for Mk(x) satisfies,

Mr
Mk

∼= M
(r)
k and MMk

∼=

k
⊕

r=0

Mr
Mk

∼=
⊕

r∈ΛMk

M
(r)
k . (4.21)

If we let mk = |IMk
| =

∑k
r=0 |I

r
Mk

| = dimMMk
denote the total number of symmetric diagrams in

Mk(x), then mk is the sum of the degrees of the irreducible Mk(x)-modules. The first few values
of mk are 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303. The sequence mk is [OEIS] A005773 and it
is related to the number of symmetric diagrams tlk in the Temperley-Lieb algebra by the binomial
transform mk =

∑k
i=0

(k
i

)

tli. Thus (see [GKP, (7.75)]) mk has exponential generating function

ex(I0(2x) + I1(2x)) =
∑∞

k=0mk
xk

k! .
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Remark 4.22. The irreducible modules M
(r)
k are constructed in [BH] on 1-factors. These 1-factors

correspond exactly to the upper half of a symmetric Motzkin diagram, and the action of Mk(x) on
these diagrams is exactly the same as our conjugation action on symmetric diagrams. Indeed, it was
knowledge of this conjugation action that allowed [BH] to produce the action of Mk(x) on 1-factors.

4.7 The planar rook monoid algebra PRk

The planar rook monoid algebra PRk is spanned by planar rook-monoid diagrams with parameter
set to x = 1. It has dimension

(

2k
k

)

, and is semisimple with irreducible modules labeled by

ΛPRk
= {0, 1, . . . , k} . (4.23)

Symmetric planar rook monoid diagrams or rank r consist of f = r fixed points and k − f
vertical pairs of empty vertices. For example, the symmetric planar rook monoid diagram,

∈ PR14

has f = 7 fixed points in positions 2, 3, 5, 8, 10, 11, 14, and rank r = 7. We associate this diagram
with its fixed points S = {2, 3, 5, 8, 10, 11, 14}, and thus symmetric diagrams correspond exactly to
subsets S ⊆ {1, 2, . . . , k}. Thus, the number of symmetric diagrams is

dimM
r,f
PRk

= dimMr
PRk

=
∣

∣IrPRk

∣

∣ =

(

k

r

)

. (4.24)

The model representation for PRk satisfies,

Mr
PRk

∼= PR
(r)
k and MPRk

∼=

k
⊕

r=0

Mr
PRk

∼=
⊕

r∈ΛPRk

PR
(r)
k . (4.25)

If we let prk = |IPRk
| =

∑k
r=0 |I

r
PRk

| = dimMPRk
denote the total number of symmetric diagrams in

PRk, then prk is the number of subsets of {1, 2, . . . , k}, so prk = dimMPRk
= 2k with exponential

generating function e2x =
∑∞

k=0 2
k xk

k! .

Remark 4.26. The irreducible modules PR
(r)
k are constructed in [FHH] on a basis of r-subsets of

{1, 2, . . . , k}. These r-subsets correspond to symmetric rook monoid diagrams, and the action of
PRk on subsets is exactly the same as our conjugation action on symmetric diagrams. Indeed, it
was knowledge of this conjugation action that led [FHH] to produce the action of PRk on subsets.
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