
ar
X

iv
:1

30
3.

08
85

v2
 [

m
at

h.
C

O
]

 2
3

Ju
n

20
13

Zeroless Arithmetic: Representing Integers ONLY using ONE

Edinah K. GNANG and Doron ZEILBERGER

“The One counts Himself, and no-one else counts Him, and He is every number, He is

root, and foundation and square and cube, and He is like the essence that carries all the cases, and

every number is in His power, and He is in every number in deed, and He is present, and every

number is present because of Him, and He is Ancient, and every [other] number is [re]newed, and

He is the reason for every number, pair[even] and that is not pair, He is not a number, and will

not multiply and will not divide.”

- Abraham Ibn Ezra (1089-1164), Sefer HaEkhad (“Book of One”)[I]

Abstract: We use recurrence equations (alias difference equations) to enumerate the number of

formula-representations of positive integers using only addition and multiplication, and using ad-

dition, multiplication, and exponentiation, where all the inputs are ones. We also describe

efficient algorithms for the random generation of such representations, and use Dynamical Pro-

gramming to find a shortest possible formula representing any given positive integer.

Very Important: This article is accompanied by the Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/ArithFormulas ,

and the output files that are linked to from the webpage (“front”) of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/arif.html .

Prologue

According to conventional wisdom, the invention (“discovery”) of zero was one of the greatest

moments in the annals of mathematics. We respectfully disagree. The invention of zero was a great

disaster, that lead to the beginning of nihilism. Here we will show how it is possible to manage

very well without 0.

Introduction

Mark Twain once wrote a letter to a friend that started with

“I didn’t have time to write a short letter so I wrote a long one ...”

We mathematicians (and computer scientists) deal with numbers rather than words, but even the

seemingly naive question of representing a positive integer as succinctly as possible is far from

trivial.

This interesting question was addressed in [GD], where the systematic study of arithmetical formula-

representation was initiated, and two natural ways, called there “the first canonical form” (FCF),

1

http://arxiv.org/abs/1303.0885v2

and the “second canonical form” (SCF) were introduced. The present article is a natural follow-up

of [GD], but in order to make it self-contained, we will review the basic notions.

We are all familiar with the “caveman’s representation” of a positive integer by marking lines (only

using 1’s), for example

17 = 11111111111111111 ,

also called the unary representation. More “efficiently” we have the familiar decimal, ‘positional’

systems that, alas, needs ten symbols. The binary representation “only” uses two (one too many!)

symbols, 0 and 1, where, for example, seventeen is written as 10001, meaning

17 = 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 .

One can use the “sparse notation” by only keeping the 1’s

17 = 24 + 1 .

and doing the same for the exponents

17 = 22
2

+ 1 ,

and finally replacing 2 by 1 + 1 getting an expression that only uses 1

17 = (1 + 1)(1+1)1+1

+ 1 .

This lead (in [GD]) to the First Canonical Form. Another natural way is to use the Fundamental

Theorem of Arithmetic and factor the integer into prime powers, and then either write each prime

as a sum of 1’s and keep factorizing the exponents, or write a prime as 1 + (p − 1) and factorize

p− 1 and continue recursively. This lead, in [GD], to the Second Canonical Form.

Either way, the bottom line is an expression that only uses 1’s, plus (“+”), times (“∗”), and

exponentiation (“∧”).

We will make the convention that 1 can never be an argument of either multiplication or exponen-

tiation, or else there would be infinitely many ways of representing even 1.

Given a positive integer n, how can we express it as a formula only using the operations {+, ∗,∧}

and the integer 1? [where we consider our operations as binary, i.e. fan-in 2]

Of course there is only one way to express 1, namely, 1. There is also only one way to express 2:

2 = 1 + 1 .

[Strictly speaking we should write 2 = (1) + (1), but we will abuse notation and abbreviate (1) to

1].

2

There are exactly two ways to express 3

3 = (1 + 1) + 1 , 3 = 1 + (1 + 1) .

So far we only used addition. There are five ways to express 4 only using addition:

1+((1+1)+1) , 1+(1+(1+1)) , (1+1)+(1+1) , ((1+1)+1)+1 , (1+(1+1))+1 .

[In general there are Cn = (2n)!/(n!(n + 1)!) ways of expressing n only using addition].

If you are also allowing multiplication, then we have, in addition (no pun intended)

4 = (1 + 1) ∗ (1 + 1) ,

and if you are also allowing exponentiation, we have

4 = (1 + 1) ∧ (1 + 1) .

The above are examples of formulas whose inputs are always 1’s. The easiest way to define a

formula is via ‘grammars’. If we only use addition, the additive formulas are given by the grammar

F = 1 OR (F) + (F) ,

while the formulas that allow both addition and multiplication are defined by

F = 1 OR (F) + (F) OR (F) ∗ (F) ,

and if you also allow exponentiation, then the grammar is

F = 1 OR (F) + (F) OR (F) ∗ (F) OR (F) ∧ (F) .

The above format is infix. As is well known (especially to users of HP calculators) one can get rid

of parentheses, using postfix (alias Reverse Polish) notation. The translation from infix to postfix

is easy

1 → 1 , a+ b → ab+ , a ∗ b → ab∗ , a ∧ b → ab ∧ .

Of course these transformation rules are to be applied recursively. For example, the expression

(1 + (1 + 1)) ∧ ((1 + 1) + 1)

(representing twenty-seven), is written in postfix notation as

111 + +11 + 1 + ∧ .

3

We have already mentioned that the number of expressions of n that only use addition, let’s call

it Ca(n), is the famous Catalan sequence (2n)!/(n!(n + 1)! (why?). Let Cam(n) be the number of

such expressions that use both addition and multiplication, and Came(n) the number of expressions

that use the full arsenal of addition, multiplication, and exponentiation.

In this short article (accompanied by a very long Maple package, and even longer sample output

files) we will answer the following questions.

• How to compute the sequences Cam(n) and Came(n) for as many n as possible ?(it is unlikely

that there are closed-form formulas).

• What is the asymptotics of Cam(n) and Came(n) as n → ∞ ?

• How to draw uniformly at random, such an expression ?

• How to find the shortest possible expression for a given integer n. Of course, if you only use

addition all Ca(n) expressions have the same length 2n−1, but of course if one allows multiplication

one can get much shorter expressions, and if one also allows exponentiation, then one can get yet

shorter ones. [The length of such a minimal expression may be called the computational complexity

of the integer (w.r.t. the computational models discussed here)]

Enumeration

Only using addition

Let Ca(n) be the number of expressions for the positive integer n only using addition. Such an

expression may be written as n = k + (n − k) for some 1 ≤ k < n, and the number of these is

Ca(k)Ca(n− k), so we have the non-linear recurrence

Ca(n) =

n−1∑

k=1

Ca(k)Ca(n− k) , Ca(1) = 1,

whose solution is famously (2n)!/(n!(n+1)!), the ubiquitous Catalan sequence [S] http://oeis.org/A000108.

Using addition and multiplication

Let Cam(n) be the number of formula-trees with the leaves all 1’s that represent the integer n, and

Ca
am(n) be the number of those whose root is +, and Cm

am(n) be the number of those whose root

is ∗. Then we have, of course

Cam(n) = Ca
am(n) +Cm

am(n) ,

and the non-linear recurrences

Ca
am(n) =

n−1∑

i=1

Cam(i)Cam(n− i) ,

4

Cm
am(n) =

⌊n/2⌋∑

i>1,n/i integer

Cam(i)Cam(n/i) .

[See procedures Cam(n) and CamSeq(N) in ArithFormulas].

Using the Wilf-methodology [W][NW] we can use the remembered values of Cam(n) and Ca
am(n),

Cm
am(n) to generate uniformly at random such an expression. First use a loaded coin with probabil-

ities Ca
am(n)/Cam(n), Cm

am(n)/Cam(n) to decide whether the root-operation is “plus” or “times”,

and in the former case use an n − 1-faced loaded die whose faces are labeled 1, ..., n − 1, and the

probability of lending on i is Cam(i)Cam(n − i)/Ca
am(n), and continue recursively for i, n − i as-

suming that it landed on i. Similarly if the loaded coin decided that the root-operation is “∗” then,

create a loaded die whose faces are labeled by the non-trivial divisors of n, and the probability of

lending on face i is Cam(i)Cam(n/i)/Cm
am(n) and continue recursively.

[See procedures RaFamT(n) and RaFamP(n)in ArithFormulas].

Using addition, multiplication and exponentiation

Let Came(n) be the number of formula-trees, whose internal nodes are in {+, ∗,∧} and whose

leaves are all 1’s, that represent the integer n, and Ca
ame(n) be the number of those whose root is

+, Cm
ame(n) be the number of those whose root is ∗, Ce

ame(n) be the number of those whose root is

∧.

Then we have, of course

Came(n) = Ca
ame(n) + Cm

ame(n) + Ce
ame(n) ,

and the non-linear recurrences

Ca
ame(n) =

n−1∑

i=1

Came(i)Came(n− i) ,

Cm
ame(n) =

⌊n/2⌋∑

i>1,n/i integer

Came(i)Came(n/i) .

Ce
ame(n) =

∑

ij=n,j>1

Came(i)Came(j) .

[See procedures Came(n) and CameSeq(N) in ArithFormulas].

Using theWilf-methodology [W][NW] we can use the remembered values of Came(n) and Ca
ame(n), C

m
ame(n), C

e
ame(n)

to generate uniformly at random such an expression, in an analogous way to the addition-multiplication

trees above.

[See procedures RaFameT(n) and RaFameP(n)in ArithFormulas].

5

Finding the Shortest Formula

Using Dynamical programming we can find the shortest possible formula (measured in terms of

length in postfix notation), in either categories. We look at all the possible root operations and

their subtrees and pick the shortest possibility, using the previously obtained expressions for the

children.

[See procedures ShortestTam(n), ShortestTame(n) for the shortest formulas in infix (tree) no-

tation and procedures ShortestPam(n), ShortestPame(n) for the shortest formulas in postfix

(Reverse Polish) notation].

Asymptotics

The well-known asymptotics for Ca(n) = (2n)!/(n!(n + 1)!) can be easily derived from Stirling’s

formula, yielding 1√
π
4nn−3/2. It is much harder to derive the asymptotics for Cam(n) and Came(n)

rigorously, but using procedure Zinn of ArithFormulas, we get the following non-rigorous estimates

Cam(n) ≍ c1n
−3/2(4.077...)n ,

Came(n) ≍ c2n
−3/2(4.131...)n ,

for some constants c1, c2.

The Book of Minimal Formulas

To get the enumeration (up to n = 40), and a list of optimal-length formulas for n from 2 to 8000,

generated by procedures SeferAM(K1,K2) and SeferAME(K1,K2) (with K1 = 40,K2 = 8000)

for formulas using only addition and multiplication and for formulas also using exponentiation,

respectively, see the two webbooks

http://www.math.rutgers.edu/~zeilberg/tokhniot/oArithFormulas1 ,

http://www.math.rutgers.edu/~zeilberg/tokhniot/oArithFormulas2 .

These minimal expressions are listed in postfix notation, ready to be entered into a Reverse Polish

Calculator (available on-line, e.g. http://www.alcula.com/calculators/rpn/, viewed March 1,

2013). They are given in the most memory-efficient way (using procedure MinMemory) so as to

minimize the number of memory locations (stack-size) needed, i.e. realizing the Strahler number

(see Stra in ArithFormulas).

We also have analogous procedures for using addition and exponentiation (i.e. no multiplication).

The output is presented in the following webbook

http://www.math.rutgers.edu/~zeilberg/tokhniot/oArithFormulas3 .

6

Conclusion

In addition to the great intrinsic interest of this project-what can be more natural or fundamental

than expressing integers?-it is also a case study in using Experimental Mathematics to enu-

merate, randomly generate, and optimally generate, combinatorial objects. We believe that the

same methodology could be applied to Boolean formulas and even Boolean circuits, that would

shed yet another angle on the central problem of theoretical computer science, the notorious P vs.

NP problem. So far most of the work was done by humans, using pencil-and-paper. It is about

time that computers will put some effort towards settling the most central problem of their field,

or at the very least, give some empirical and experimental insight about it.

References

[GD] Edinah K. Gnang and Patrick Devlin, Some Integer Formula-Encodings and related algo-

rithms, to appear in Adv. Appl. Math. [available from www.arxiv.org]

[I] Abraham Ibn Ezra, “Sefer HaEkhad” [The “Book of One”], available on-line from

http://www.scribd.com/doc/17323522/Ibn-Ezra-Sefer-HaEchad [viewed March 2, 2013]

[NW] Albert Nijenhuis and Herbert S. Wilf, “Combinatorial algorithms for computers and calcula-

tors”, Academic Press, 2nd edition, 1978.

[S] Neil Sloane, The On-Line Encyclopedia of Integer Sequences, oeis.org.

[W] Herbert S. Wilf, A unified setting for sequencing, ranking, and selection algorithms for combi-

natorial objects, Advances in Mathematics 24 (1977), 281-291.

Edinah K. Gnang, Computer Science Department, Rutgers University (New Brunswick), Piscat-

away, NJ 08854, USA. gnang at cs dot rutgers dot edu

Doron Zeilberger, Mathematics Department, Rutgers University (New Brunswick), Piscataway, NJ

08854, USA. zeilberg at math dot rutgers dot edu

March 4, 2013

7

