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COMPOSITIONS AND FIBONACCI IDENTITIES

IRA M. GESSEL AND JI LI

Abstract. We study formulas expressing Fibonacci numbers as sums over compositions. For
example,

F2n =
∑

a1a2 · · · ak

and for n ≥ 2,

Fn−2 =
∑

⌊

a1 − 1

2

⌋

· · ·

⌊

ak − 1

2

⌋

.

where the sums are over all compositions a1 a2 · · · ak of n, for any k. We give a systematic
account of such formulas using free monoids. The number of compositions of n with parts 1
and 2 is the Fibonacci number Fn+1, and these compositions form a free monoid. Our formulas
all come from free submonoids of this free monoid.

1. Introduction

A composition of an integer n is a sequence a1 a2 · · · ak of positive integers, called the parts
of the composition, with sum n. Richard Stanley’s Enumerative Combinatorics, Vol. 1 [12,
Chapter 1, Exercise 35, pp. 109 and 152–153], contains several formulas expressing Fibonacci
numbers in terms of sums over compositions:

(i) Fn+1 is the number of compositions of n into parts equal to 1 or 2.

(ii) Fn−1 is the number of compositions of n into parts greater than 1.
(iii) Fn is the number compositions of n into odd parts.

(iv) F2n =
∑

a1a2 · · · ak.

(v) F2n−2 =
∑

(2a1−1 − 1) · · · (2ak−1 − 1)

(vi) F2n+1 =
∑

2#{i : ai=1}

Here the Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn = Fn−1+Fn−2 for n ≥ 2, and
the sums in (iv)–(vi) are over all compositions a1 a2 · · · ak of n. We note that these formulas
are generally not true for n = 0.

Our goal in this paper is to study identities of this form systematically, and to explain how
to find such identities, how to prove them with generating functions, and how to prove them
combinatorially.

It is easy to express sums over compositions in terms of generating functions. Let C(n) be the
set of compositions of n. Then we will write

∑

a∈C(n) for a sum over all compositions a1 · · · ak
of n, with any number of parts. The following result is well known and easily proved. (See, for
example, Moser and Whitney [8] and Hoggatt and Lind [6].)

Lemma 1. Let u1, u2, u3, . . . be any sequence of numbers. Then the sum
∑

a∈C(n)

ua1ua2 · · · uak
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is the coefficient of xn in
(

1−
∞
∑

i=1

uix
i

)−1

.

Then formulas (i)–(vi) follow from Lemma 1, the easily verifiable identities

1

1− x− x2
=
(

1− x− x2
)−1

(i′)

1 +
x2

1− x− x2
=
(

1− x2 − x3 − x4 − · · ·
)−1

(ii′)

1 +
x

1− x− x2
=
(

1− x− x3 − x5 − · · ·
)−1

(iii′)

1 +
x

1− 3x+ x2
=
(

1− x− 2x2 − 3x3 − · · ·
)−1

(iv′)

1 +
x2

1− 3x+ x2
=
(

1− x2 − 3x3 − 7x4 − 15x5 − · · ·
)−1

(v′)

1− x

1− 3x+ x2
=
(

1− 2x− x2 − x3 − x4 − x5 − · · ·
)−1

,(vi′)

and the formulas
∞
∑

n=0

Fnx
n =

x

1− x− x2
(1.1a)

∞
∑

n=0

F2nx
n =

x

1− 3x+ x2
(1.1b)

∞
∑

n=0

F2n+1x
n =

1− x

1− 3x+ x2
. (1.1c)

Formula (1.1a) follows easily from the Fibonacci recurrence Fn = Fn−1 + Fn−1. For (1.1b) and
(1.1c), we have

∞
∑

n=0

Fnx
n =

x

1− x− x2
·
1 + x− x2

1 + x− x2

=
x+ x2 − x3

1− 3x2 + x4
= x

1− x2

1− 3x2 + x4
+

x2

1− 3x2 + x4
. (1.2)

Then (1.1b) and (1.1c) follow by extracting the even odd powers of x from (1.2).

The proofs we have just sketched (essentially the generating function proofs given by Stanley),
though straightforward, do not really explain why these formulas are true, nor how one might
find them or other similar formulas. To do this, we study a combinatorial structure that lies
behind them.

2. Free Monoids

Let A be a set, which we call an alphabet. Let A∗ be the set of words (finite sequences) of
elements of A. Then with the operation of concatenation, A is a monoid (a semigroup with
unit), where the unit is the empty word. We call A∗ the free monoid on A. The length l(x) of
an element x = a1a2 · · · ak, where each ai is in A, is k.

More generally, a free monoid M is a monoid isomorphic to a free monoid of the form A∗.
So if M is a free monoid, then there exists a subset P of M such that every element of M has
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a unique factorization as a product of elements of P . We call P the set of primes of M . (It is
easy to see that P is unique.)

A weight function on a free monoid M is a function ω : M → N, where N is the set of
nonnegative integers, with the properties that ω(m1m2) = ω(m1) + ω(m2) for all m1,m2 ∈ M
and ω(m) = 0 if and only if m is the unit element of M . It is easy to see that a weight function
on M is determined by its values on the primes of M .

If L is any submonoid of a free monoid, we call an element p of L irreducible (in L) if p is not
the unit element of M and p cannot be expressed as a product of two non-unit elements of L.
(Note that the irreducibility of p depends on both p and L.) It is clear that every element of L
can be factored as a product of irreducibles, but in general this factorization is not unique. If
L is a free monoid, then the factorization is always unique and the irreducible elements are the
primes of L.

Let M be a free monoid with a weight function ω. If x is an indeterminate then the map
m 7→ xω(m) is a homomorphism from M to the monoid of powers of x under multiplication, and
unique factorization in M gives the well-known identity for formal power series

∑

m∈M

xω(m) =

(

1−
∑

p∈P

xω(p)
)−1

, (2.1)

where P is the set of primes of M . Equivalently, the number of words in M of weight n is the
sum

∑

a∈C(n)

ua1ua2 · · · uak ,

where ui is the number of primes of M of weight i. We will see that formulas (i)–(vi) can all be
interpreted in this way.

We will be especially interested in free monoids that are submonoids of A∗ for some alphabet A.
For example, the set of words in {a}∗ of even length is a free submonoid of {a}∗. The set of
words in {a}∗ of length not equal to 1 is also a submonoid but it is not free, since a5 has two
factorizations, a5 = a2 ·a3 = a3 ·a2 into words that cannot be further factored. The set of words
in {a, b}∗ that start with a, together with the empty word, is a free submonoid in which the
primes are of the form abi, for i ∈ N.

Next we discuss some lemmas that are helpful in proving that submonoids of free monoids
are free.

Lemma 2. Suppose that M is a submonoid of a free monoid A∗ with the property that every

nonempty word in M has a unique factorization of the form xy where x is irreducible in M and

y ∈ M . Then M is free.

Proof. We prove by induction on n that every word in M of length n has a unique factorization
into irreducibles of M . The assertion holds trivially for n = 0. Now suppose that w is a word in
M of length n > 0 and that all words in M of length less than n have unique factorizations into
irreducibles. Let w = x1x2 · · · xk be a factorization of w into irreducibles. Since w has a unique
factorization of the form w = xy where x is irreducible in M and y ∈ M , we must have x1 = x
and x2 · · · xk = y. By the induction hypothesis, y has a unique factorization into irreducibles,
so x2, . . . , xk are uniquely determined. �

Let us say that a submonoid M of the free monoid A∗ satisfies Schützenberger’s criterion if
it has the property that for every p, q, and r in A∗, if p, pq, qr, and r are in M then q is in M .
The following useful result is due to Schützenberger [9, Theorem 1.4]; see also Tilson [13].
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Lemma 3. Let M be a submonoid of the free monoid A∗. Then M is free if and only if M
satisfies Schützenberger’s criterion.

Proof. First, suppose that M satisfies Schützenberger’s criterion. It is enough to show that the
hypothesis of Lemma 2 holds. Let w be a nonempty word of M , and suppose that w = xv where
x is irreducible in M and v ∈ M . Suppose also that w can also be factored as xy · z where y
is nonempty and xy and z are in M . It is enough to show that xy is not irreducible. Since x,
yz = v, xy, and z are in M , by Schützenberger’s criterion we have y ∈ M , and this implies that
xy is not irreducible.

Next, suppose thatM is free, and suppose that p, pq, qr, and r are inM . Let w = pqr. Then w
has a unique factorization w = u1u2 · · · uk into primes of M . The factorizations w = p·qr = pq ·r
into elements of M imply that for some i ≤ j, we have p = u1 · · · ui, q = ui+1 · · · uj , and
r = uj+1 · · · uk, and thus q ∈ M , so Schützenberger’s criterion holds. �

Now let u and v be words. We say that u overlaps with v if there exist words x and y such
that ux = yv and l(y) < l(u) (and thus l(x) < l(v)). For example, ab overlaps with bc because
ab · c = a · bc. We call a word w non-overlapping if it does not overlap with itself. Thus ab is
non-overlapping, but aa overlaps with itself.

Let w be a word in the free monoid A∗. Let us denote by Aw the set of words in A∗ that start
with w, together with the empty word. Then Aw is a submonoid of A∗. If A = {a} and w = a2,
then Aw is not free, since Aw is the set of words in {a}∗ of length not equal to 1. On the other
hand, if A = {a, b} and w = ab then Aw is easily seen to be free.

It will be conveniently to refer to Aw as “the monoid of words in A∗ that start with w,”
and more generally, whenever we speak of the monoid of words with some property, it will be
understood that the empty word is included, even if it does not have the property.

Lemma 4. The submonoid Aw of the free monoid A∗ is free if and only if w is non-overlapping.

Proof. We first show that the condition is sufficient. Suppose that w is non-overlapping. We
will show that Schützenberger’s criterion holds. Suppose that p, pq, qr, and r are in Aw and
that r is nonempty. Then since qr and r both start with w, and w is non-overlapping, we must
have l(q) ≥ l(w). This implies that since qr starts with w, so does q, so q ∈ Aw.

For necessity, we show that if w is overlapping then Aw is not free. Suppose that w is
overlapping, so there exist words t, u, and v such that t = wu = vw, where v (and thus also u)
is shorter than w. We will show that wt has two different factorizations into irreducibles in Aw.
Any word in Aw that is not irreducible must have length at least twice the length of w, so wu
and wv are irreducible. Therefore w · wu and wv · w are two different factorizations of wt into
irreducibles of Aw, so Aw is not free. �

We can show similarly that if u does not overlap with v then the submonoid of A∗ of words
that start with u and end with v is free.

3. Fibonacci Compositions

Let us define a Fibonacci composition of n to be a composition of n with parts 1 and 2.
Thus the set of all Fibonacci compositions is the free monoid {1, 2}∗. Most of our results are
consequences of the fact there are Fn+1 Fibonacci compositions of n. (Many other identities are
proved using this interpretation of Fibonacci numbers in Benjamin and Quinn [1].)
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Applying (2.1) to this free monoid with the weight function ω(1) = 1, ω(2) = 2, together with
the fact that there are Fn+1 Fibonacci compositions of n, gives the generating function

∞
∑

n=0

Fn+1x
n =

1

1− x− x2
,

which is equivalent to (1.1a). Our proofs of (i)–(vi) and other similar formulas are all based on
free submonoids of the free monoid of Fibonacci compositions.

Now let us consider the monoid {1, 2}1 of Fibonacci compositions that start with 1 (including
the empty Fibonacci composition). By Lemma 4, this monoid is free (though this is easy to see
directly), and the primes are the compositions of the form 1 2i, for i ≥ 0. So the generating
function for primes in this free monoid is

∑∞
i=0 x

2i+1.

It follows that if sn is the number of Fibonacci compositions of n that start with 1, with
s0 = 1, then

∞
∑

n=0

snx
n =

(

1−

∞
∑

i=0

x2i+1

)−1

, (3.1)

and the right side of (3.1) is the generating function for compositions with odd parts. But
the number of Fibonacci compositions of n that start with 1 is just the number of Fibonacci
compositions of n− 1, so we see that for n > 0, the number of compositions of n with odd parts
is equal to the number of Fibonacci compositions of n − 1, which is Fn. So (iii) holds. (This
result seems to have been first given by Hoggatt [3] and Hoggatt and Lind [5].)

Our approach gives a simple bijective proof of this fact. Suppose that c is a Fibonacci
composition of n − 1. Thus 1 c is a Fibonacci composition of n that starts with 1, which can
be expressed uniquely as 1 2i1 1 2i2 · · · 1 2ik . Then the corresponding composition of n with odd
parts is 1 + 2i1 1 + 2i2 · · · 1 + 2ik.

We could apply exactly the same analysis with the roles of 1 and 2 switched, and we would
find that the number of Fibonacci compositions of n that start with 2 is equal to the number of
compositions of n with all parts greater than 1, and this is (ii).

A similar result applies to compositions with any set of two parts (cf. Zeilberger [14], Sills
[10], and Munagi [7, Theorem 1.2]):

Proposition 5. Let p and q be distinct integers. Then for n ≥ p, the number of compositions

of n − p with parts p and q is equal to the number of compositions of n with parts of the form

p+ qi, where i ∈ N.

Proof. First we note that prepending a part p to a composition of n−p with parts p and q gives
a composition of n that starts with p. In the free monoid {p, q}∗p of compositions with parts p

and q that start with p, the primes are compositions of the form p qi. Thus a bijection from the
compositions of n > 0 that start with p to the compositions of n with parts of the form p+ qi is
given by the map that takes p qi1 p qi2 · · · p qik to the composition p+ qi1 p+ qi2 · · · p+ qik. �

The generating function identity that corresponds to Proposition 5 is

1 +
xp

1− xp − xq
=

(

1−
xp

1− xq

)−1

.

More generally, we can show that for any k ≥ 1,

1 + xk
∞
∑

n=0

Fn+1x
n = 1 +

xk

1− x− x2

5



is the generating function for a free monoid.

Proposition 6. Fix an integer k ≥ 2. The monoid M of Fibonacci compositions starting with

2 1k−2 is a free monoid in which the primes are of the form 2 1k−2 1i q, where i is a nonnegative

integer and q is empty or is a Fibonacci composition that starts with 2 and contains no 2 1k−2.

The generating function for the primes of M is xk/(1− x− x2 + xk), and thus we have a

combinatorial interpretation to the identity:

1 +
xk

1− x− x2
=

(

1−
xk

1− x− x2 + xk

)−1

. (3.2)

Proof. By Lemma 4, M is a free monoid, and it is easy to see that the primes of M are as
stated in the proposition. Let Q be the monoid of Fibonacci compositions that start with 2 and
contain no 2 1k−2. Then Q is a free monoid in which the set of primes consists of compositions
2 1i, with 0 ≤ i ≤ k − 3. Thus the generating function for Q is

(

1−

k−1
∑

j=2

xj
)−1

=
1− x

1− x− x2 + xk
,

and the generating function for the primes of M is

xk

1− x
·

1− x

1− x− x2 + xk
=

xk

1− x− x2 + xk
. �

For k = 2, M is the free monoid of compositions that start with 2, and the primes, as we saw
before, are of the form 2 1i, for i ≥ 0.

For k = 3, the generating function for the primes of M is

x3

1− x− x2 + x3
=

x3

(1 − x)2(1 + x)
=

x3 + x4

(1− x2)2
=

∞
∑

n=3

⌊

n− 1

2

⌋

xn

This gives the formula

Fn−2 =
∑

a∈C(n)

⌊

a1 − 1

2

⌋

· · ·

⌊

ak − 1

2

⌋

, (3.3)

for n ≥ 2. (Recall that C(n) is the set of compositions a1 . . . ak of n.) We can explain this
formula combinatorially by showing that there are ⌊(n− 1)/2⌋ primes of M of weight n. In this
case, the primes are of the form 2 1i+1 2j for i, j ∈ N. If such a word is a composition of n, then
i+ 1 + 2(j + 1) = n so i = n− 2j − 3, and this is nonnegative for j = 0, 1, . . . , ⌊n/2⌋ − 1.

There is a slightly simpler interpretation of (3.3). Instead of Fibonacci compositions that
start with 2 1, we consider Fibonacci compositions that start with 1 and end with 2. These form
a free monoid in which the primes are of the form 1i 2j , where i, j ≥ 1, and there are ⌊(n−1)/2⌋
of them of weight n.

The cases when k = 2, 3, 4, or 5 in (3.2) are specializations of the identities

1 +
a

1− a− b
=

(

1−
a

1− b

)−1

, (3.4)

1 +
ab

1− a− b
=

(

1−
ab

(1− a)(1− b)

)−1

, (3.5)

1 +
a2b

1− a− b
=

(

1−
a2b

(1− a)(1− b− ab)

)−1

, (3.6)

which can also be interpreted in terms of free monoids.
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There are other interesting applications of these formulas. Taking a = b = x in (3.4), shows
that the total number of compositions of n, for n > 0, is 2n−1. Taking a = b = x in (3.5) gives

2n−2 =
∑

a∈C(n)

(a1 − 1) · · · (ak − 1), n ≥ 2.

Taking a = b = x in (3.6), and using the fact that

x3

(1− x)(1− x− x2)
=

x

1− x− x2
−

x

1− x
=

∞
∑

n=1

(Fn − 1)xn,

gives

2n−3 =
∑

a∈C(n)

(Fa1 − 1) · · · (Fak − 1), n ≥ 3. (3.7)

(the nonzero terms come from compositions into parts greater than 2). Formula (3.7) “explains”
why the first three nonzero values of Fn − 1 are the first three powers of 2 (i.e., F3 − 1 = 1,
F4 − 1 = 2, F5 − 1 = 4), since for 3 ≤ n < 6 there is just one nonzero term in the sum in (3.7).
That Fn − 1 = 2n−3 for 3 ≤ n < 6 can also be seen from the formula

x

1− x− x2
−

x

1− x
=

x3

1− 2x+ x3
.

Taking a = x, b = xm in (3.5) gives a generalization of (3.3):

Proposition 7. Fix m ≥ 1 and define the numbers rn by

∞
∑

n=0

rnx
n =

1

1− x− xm
.

Then for n ≥ m+ 1 we have

rn−m−1 =
∑

a∈C(n)

⌊

a1 − 1

m

⌋

· · ·

⌊

ak − 1

m

⌋

,

where the only nonzero terms come from compositions in which every part is at least m+ 1.

Proof. By (3.5) with a = x, b = xm, we have

1 +

∞
∑

n=m+1

rn−m−1x
n = 1 +

xm+1

1− x− xm
=

(

1−
xm+1

(1− x)(1− xm)

)−1

.

We have

xm+1

(1− x)(1 − xm)
= xm+1 1 + x+ · · ·+ xm−1

(1− xm)2

= x(xm + xm+1 + · · ·+ x2m−1)(1 + 2xm + 3x2m + · · · )

=
∞
∑

n=1

⌊

n− 1

m

⌋

xn

and the result follows. �

It is not hard to give a combinatorial interpretation to Proposition 7. The number rn counts
compositions of n with parts 1 and m, so for n ≥ m + 1, rn−m−1 is the number of such
compositions of n that start with 1 and end with m. These compositions form a free monoid in
which the primes are of the form form 1i mj, where i, j ≥ 1, and there are ⌊(n− 1)/m⌋ of them
of weight n.

7



The numbers rn form = 3, 4, 5, 6, . . . , 15 are sequences A000930, A003269, A003520, A005708–
A005711, and A017898–A017909.

4. Multisection

To explain results such as (iv)–(vi) of Section 1, we need to consider Fibonacci compositions
of only even or only odd numbers. More generally, given m and i, we may consider Fibonacci
compositions of numbers congruent to i modulo m.

The following result, which follows easily from Lemma 3, tells us that the relevant monoids
are free.

Lemma 8. Let M be a free monoid with a weight function and let m be a positive integer.

Then the submonoid of M consisting of elements of weight divisible by m is free.

We shall apply Lemma 8 to free monoids of Fibonacci words. Let

fm,i =

∞
∑

n=0

Fmn+i+1x
n,

so that the coefficient of xn in fm,i is the number of Fibonacci compositions of mn+ i.

It follows from Lemma 8 that the monoid of Fibonacci compositions of multiples of m is free.
Let us define a weight function on this monoid by taking the weight of a composition of mn to
be n. Then the generating function for this monoid is fm,0.

Now let w be a non-overlapping Fibonacci composition of an integer r = mk− i, where k ≥ 1
and 0 ≤ i < m. Then by Lemmas 4 and 8, the monoid of Fibonacci compositions of multiples
of m, starting with w, is a free monoid, and the generating function for this free monoid is
1 + xkfm,i.

In this section, we consider a few cases of these generating functions for arbitrary m, and in
sections 5 and 6 we look in more detail at the cases m = 2 and m = 3.

It is not hard to show (e.g., by using the Binet formula for Fibonacci numbers) that

∞
∑

n=0

Fmn+jx
n =

Fj + (−1)jFm−jx

1− Lmx+ (−1)mx2
, (4.1)

where Ln is the nth Lucas number (L0 = 2 and Ln = Fn−1 + Fn+1). See, for example, Hoggatt
and Lind [4, equation (4.18)]. We can find simple free monoid interpretations for generating
functions for Fmn+1 and Fmn−1.

For Fmn+1, we have the following formula, due to Hoggatt [3].

Proposition 9.

fm,0 =

∞
∑

n=0

Fmn+1x
n =

1− Fm−1x

1− Lmx+ (−1)mx2
=

(

1− Fm+1x−
F 2
mx2

1− Fm−1x

)−1

. (4.2)

Proof. The formula is a straightforward computation, using the case j = 1 of (4.1), the formula
Lm = Fm−1 + Fm+1, and Cassini’s identity Fm+1Fm−1 − (−1)m = F 2

m. �

We can interpret Proposition 9 combinatorially by describing the primes of the free monoid
of Fibonacci compositions of multiples of m. The primes of weight one are the Fibonacci
compositions of m, which are counted by Fm+1. The primes of weight n > 1 are of the form
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u 2 v1 2 v2 2 . . . 2 vk 2w where u and w are Fibonacci compositions of m − 1 and each vi is a
Fibonacci composition of m− 2.

There is an analogous formula for Fmn−1, corresponding to compositions of multiples ofm that
start with 2, which have the generating function 1 + xfm,m−2. A straightforward computation
gives the following result, also due to Hoggatt [3].

Proposition 10.

1 + xfm,m−2 = 1 +
∞
∑

n=1

Fmn−1x
n =

(

1− Fm−1x−
F 2
mx2

1− Fm+1x

)−1

. (4.3)

There is a simple combinatorial interpretation for Proposition 10. In the free monoid of
Fibonacci compositions of multiples of m that start with 2, the primes of weight 1 are the
Fibonacci compositions of m that start with 2, and there are Fm−1 of them. Every other prime
of this free monoid is of the form 2u v1 . . . vk w, for k ≥ 0, where u and w are Fibonacci
composition of m− 1 (counted by Fm) and each vi is a Fibonacci composition of m (counted by
Fm+1).

There don’t seem to be results as simple as Propositions 9 and 10 for fm,i with i not equal
to 0 or m− 2.

For i = m− 1, we have by (4.1)

fm,m−1 =

∞
∑

n=0

Fm(n+1) =
Fm

1− Lmx+ (−1)mx2
, (4.4)

and a straightforward calculation gives

1 + xfm,m−1 =

(

1−
Fmx

1− 2Fm−1x+ (−1)mx2

)−1

. (4.5)

It is possible to describe the corresponding primes explicitly, but there doesn’t seem to be a
simple combinatorial explanation for their generating function (4.5).

We note also that if m is odd then by (4.1),

fm,m−1 =

∞
∑

n=0

Fmn+mxn =
Fm

1− Lmx− x2
.

Although this formula looks like it should have a simple combinatorial explanation, there does
not seem to be one.

In the next two sections we consider bisection and trisection in more detail.

5. Bisection

We now consider the case m = 2 of (4.1), which gives

f2,0 =
1− x

1− 3x+ x2

and

f2,1 =
1

1− 3x+ x2
.

We leave it to the reader to give a combinatorial interpretation of the formula f2,1 = (1−x)−1f2,0.
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The case m = 2 of (4.2) is

f2,0 =
1− x

1− 3x+ x2
= (1− 2x− x2 − x3 − · · · )−1 =

(

1− 2x−
x2

1− x

)−1

. (5.1)

and the primes of the free monoid of Fibonacci compositions of even integers are the composi-
tion 2 and compositions of the form 1 2i 1 for non-negative integers i. The generating function
for the primes, together with (2.1), gives formula (vi) of section 1,

F2n+1 =
∑

a∈C(n)

2#{i:ai=1}.

We also have the identity

1 + xkf2,0 = 1 +
xk(1− x)

1− 3x+ x2
=

(

1−
xk(1− x)

1− 3x+ x2 + xk − xk+1

)−1

, (5.2)

so xk(1− x)/(1 − 3x+ x2 + xk − xk+1) is the generating function for primes in the free monoid
of Fibonacci compositions of even integers that start with 2 12k−2. Only the case k = 1 of (5.2),
which is also the case m = 2 of (4.3), is especially simple (though the prime counting sequence
for k = 2 is A052921). Here we have

1 + xf2,0 =

(

1− x−
x2

1− 2x

)−1

= (1− x− x2 − 2x3 − 4x4 − 8x5 − · · · )−1,

which gives the formula

F2n−1 =
∑

a∈C(n)

2#{i:ai=1}+n−2k,

where k is the number of parts of the composition a.

We note also that the continued fraction formula

1 + xf2,0 =
1− 2x

1− 3x+ x2
=

1

1−
x

1−
x

1− x

shows that F2n−1, for n > 0, is the number of Dyck paths of length 2n and height at most 3
(see, e.g., Flajolet [2]).

The analogous formulas for f2,1 are somewhat simpler than those for f2,0.

Proposition 11. Fix an integer k ≥ 1. The set of Fibonacci compositions of even numbers

that start with 1 2k−1 is a free monoid whose primes are of the form 1 2k−1 2i q 1 2j , where i and
j are nonnegative integers and q is an element of the free monoid Q with primes

1 2l 1 2m, for l ≥ 0 and 0 ≤ m ≤ k − 2.

This gives identity

1 + xkf2,1 = 1 +
xk

1− 3x+ x2
=

(

1−
xk

1− 3x+ x2 + xk

)−1

. (5.3)

For k = 1, the free monoid Q contains only the empty word, and the primes are of the form

1 2i 1 2j for i, j ≥ 0.
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Proof. Let M be the monoid of Fibonacci compositions of even numbers that start with 1 2k−1.
By Lemma 4, M is a free monoid. A prime of M is a Fibonacci composition that starts with
1 2k−1 and contains an even number of 1s, where the jth part 1, for j > 1 and odd, is followed
by at most k − 2 parts 2. It is clear that these primes are as described in the proposition.

The generating function for Q is

u(x) =

(

1−

k−1
∑

i=1

xi

1− x

)−1

=
(1− x)2

1− 3x+ x2 + xk
.

Thus the generating function for the primes of M is

xk ·
1

1− x
· u(x) ·

1

1− x
=

xk

1− 3x+ x2 + xk
. �

For k = 1, (5.3) gives

1 +
x

1− 3x+ x2
=

(

1−
x

(1− x)2

)−1

= (1− x− 2x2 − 3x3 − · · · )−1.

We can see directly that there are n prime compositions of 2n, since these are compositions of
2n of the form 1 2i 1 2j and there are n solutions of i+ j = n− 1.

This identity gives formula (iv) of Section 1,

F2n =
∑

a∈C(n)

a1a2 · · · ak, (5.4)

for n ≥ 1, as shown by Moser and Whitney [8].

Stanley [12, p. 52] gives a combinatorial interpretation of (5.4): The sum
∑

a1a2 · · · ak is the
number of ways of inserting at most one vertical bar in each of the n − 1 spaces separating a
line of n dots, and then circling one dot in each compartment. Replacing each bar by a 1, each
uncircled dot by a 2, and each circled dot by a 1 gives all Fibonacci compositions of 2n − 1
exactly once. As an example for n = 8, we have

• ⊙ | ⊙ • | ⊙ | • • ⊙ ⇐⇒ 21112111221

We can explain this bijection in terms of our free monoid approach: if we insert a bar at the be-
ginning of one of these arrangements of bars and dots, then we have a sequence of configurations
of the form | •i ⊙ •j , and this configuration corresponds to the prime 1 2i 1 2j .

For k = 2, the generating function for the primes in Proposition 11 is

x2

1− 3x+ 2x2
=

x2

(1− 2x)(1 − x)
=

∞
∑

n=2

n−2
∑

i=0

2ixn =

∞
∑

n=2

(2n−1 − 1)xn.

This gives formula (v) of Section 1:

F2n−2 =
∑

a∈C(n)

(2a1−1 − 1)(2a2−1 − 1) · · · (2ak−1 − 1), (5.5)

for n ≥ 1. From Proposition 11, the prime compositions corresponding to (5.5) are of the form

1 2 2l0 1 2l1 12 2l2 12 · · · 12 2lm 12 2lm+1 ,

with m ≥ 0, where l0, . . . , lm+1 are nonnegative integers. To see combinatorially that there are
2n−1 − 1 such compositions of 2n, we start with the composition of 2n− 2 with n− 1 parts, all
equal to 2. We choose some nonempty subset of the parts, which we can do in 2n−1 − 1 ways.
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We replace the first selected 2 with 1 and replace each other selected 2 with 1 1. Finally we
insert 1 2 at the beginning.

For k > 2, the primes in Proposition 11 are more complicated, but for k = 3 and k = 4 the
sequences that count them are A048739 and A077849.

6. Trisection

Now we consider trisections of the Fibonacci sequence, for which we have

f3,0 =
1− x

1− 4x− x2

f3,1 =
1 + x

1− 4x− x2

f3,2 =
2

1− 4x− x2
.

Proposition 9 and its combinatorial interpretation give us a combinatorial interpretation to
the identity

f3,0 = (1− 3x− 4x2 − 4x3 − · · · )−1 =

(

1− 3x− 4
x2

1− x

)−1

, (6.1)

which gives the formula

F3n+1 =
∑

a∈C(n)

3#{i : ai=1}4#{j : aj 6=1},

for n ≥ 0: the free monoid of Fibonacci compositions of numbers divisible by 3 has three primes
of weight one, 1 1 1, 1 2, and 2 1, and four primes of weight n for each n ≥ 2, each of which is of
the form

a b c,

where a and c are either 1 1 or 2, and b is the composition

2 1 2 1 · · · 2 1 2

with n− 2 parts 1 and n− 1 parts 2.

Next, we give a free monoid interpretation to the case m = 3 of (4.5):

1 + xf3,2 = 1 +
2x

1− 4x− x2
=

(

1−
2x

1− 2x− x2

)−1

. (6.2)

The left side of (6.2) counts Fibonacci compositions of numbers divisible by 3 that start with
a part 1. In this free monoid there are two primes of weight one, 1 1 1 and 1 2. For n ≥ 2, a
prime p of weight n ends with 2 1, 2 1 1 or 2 2, so it must be of one the following three kinds:

(1) p is obtained from a prime of weight n− 1 by attaching 2 1 in the end;
(2) p is obtained from a prime of weight n−1 ending with a part 1 by replacing the 1 with 2 1 1;
(3) p is obtained from a prime of weight n− 1 ending with a part 1 by replacing the 1 with 2 2.

Let an be the number of primes of weight n and let bn be the number of primes of weight n that
end with a part 1. Then we have an = an−1 + 2bn−1 and bn = an−1 + bn−1. Thus

an = an−1 + 2bn−1 = an−1 + 2(an−2 + bn−2)

= (an−1 + an−2) + (an−2 + 2bn−2) = (an−1 + an−2) + an−1

= 2an−1 + an−2
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for n ≥ 3, and since a2 = a1 + 2b1 = 2 + 2 = 4 = 2a1 + a0, where a0 = 0, the recurrence holds
for n ≥ 2. Thus we find that the generating function for primes is

2x

1− 2x− x2
, (6.3)

and (6.2) follows. The coefficients of (6.3) are sequence A052542 or A163271. They are twice
the Pell numbers, sequence A000129.

The case m = 3 of Proposition 10 is

1 + xf3,1 =

(

1− x−
4x2

1− 3x

)−1

=

(

1− x−
∞
∑

n=1

4 · 3n−2xn

)−1

,

where the counting sequence for the primes is A003946

We note also that

1 + xf3,0 =

(

1−
x(1− x)

1− 3x− 2x2

)−1

,

where the primes are counted by A104934, and

1 + xf4,3 =

(

1−
3x

1− 4x+ x2

)−1

,

where the primes are counted by A005320.
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[10] A. V. Sills, Compositions, partitions, and Fibonacci numbers, Fibonacci Quart. 49 (2011), 348–354.
[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[12] R. P. Stanley, Enumerative Combinatorics, Volume 1, 2nd edition, Cambridge University Press, 2011.
[13] B. Tilson, The intersection of free submonoids of a free monoid is free, Semigroup Forum 4 (1972), 345–350.
[14] D. Zeilberger, The composition enumeration reciprocity theorem, The Personal Journal of Shalosh B. Ekhad

and Doron Zeilberger, http://www.math.rutgers.edu/~zeilberg/pj.html, Feb. 28, 2012.

Department of Mathematics, Brandeis University, MS 050, Waltham, MA 02453

E-mail address: gessel@brandeis.edu

E-mail address: vieplivee@gmail.com

13

http://oeis.org/A052542
http://oeis.org/A163271
http://oeis.org/A000129
http://oeis.org/A003946
http://oeis.org/A104934
http://oeis.org/A005320
http://oeis.org
http://www.math.rutgers.edu/~zeilberg/pj.html

	1. Introduction
	2. Free Monoids
	3. Fibonacci Compositions
	4. Multisection
	5. Bisection
	6. Trisection
	References

