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A STACK AND A POP STACK IN SERIES

Rebecca Smith∗

Department of Mathematics
SUNY Brockport

Brockport, New York

Vincent Vatter†

Department of Mathematics
University of Florida
Gainesville, Florida

We study sorting machines consisting of a stack and a pop stack in series,

with or without a queue between them. While there are, a priori, four such

machines, only two are essentially different: a pop stack followed directly

by a stack, and a pop stack followed by a queue and then by a stack. In the

former case, we obtain complete answers for the basis and enumeration of

the sortable permutations. In the latter case, we present several conjectures.

1. INTRODUCTION

A stack is a last-in first-out sorting device with push and pop operations. In Volume 1 of The Art of
Computer Programming [16, Section 2.2.1], Knuth showed that the permutation π can be sorted (mean-
ing that by applying push and pop operations to the sequence of entries π(1), . . . , π(n) one can output
the sequence 1, . . . , n) if and only if π avoids the permutation 231, i.e., if and only if there do not exist
three indices 1 ≤ i1 < i2 < i3 ≤ n such that π(i1), π(i2), π(i3) are in the same relative order as 231.
Shortly thereafter Tarjan [21], Even and Itai [15], Pratt [19], and Knuth himself in Volume 3 [17, Section
5.2.4] studied networks with multiple stacks in series or in parallel. The questions typically studied
for such networks include:

• Can the set of sortable permutations be characterized by a finite set of forbidden patterns (e.g.,
{231} in the case of a single stack)?

• How many permutations of each length can be sorted?

For k ≥ 2 stacks in series or in parallel the answer to the first question is no, due to Murphy [18] and
Tarjan [21], respectively. The exact enumeration question appears to be much less tractable, and here
only relatively crude bounds are known; see Albert, Atkinson, and Linton [5].
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Given how difficult the two stacks in series problem appears to be, numerous researchers have
considered weaker machines. Atkinson, Murphy, and Ruškuc [9] considered sorting with two increas-
ing stacks in series, i.e., two stacks whose entries must be in increasing order when read from top to
bottom1. They characterized the permutations this machine can sort with an infinite list of forbidden
patterns, and also found the enumeration of these permutations. (Interesting, these permutations are
in bijection with the 1342-avoiding permutations previously counted by Bóna [12].) Another weaken-
ing, sorting with a stack of depth 2 followed by a standard stack (of infinite depth), was studied by
Elder [14]. He characterized the sortable permutations with a finite list of forbidden patterns, but did
not enumerate these permutations.

The objects we study, pop stacks, were introduced by Avis and Newborn [11]. A pop stack is a
handicapped form of a stack in which the only way to output an entry in the stack is to pop the
entire stack (in last-in first-out order as usual). Avis and Newborn considered placing pop stacks in
series, which by their interpretation means that when the entire set of items currently in the ith pop
stack is popped, they are pushed immediately onto the (i + 1)st pop stack. They proved that the set
of permutations sortable by k pop stacks in series can be characterized by a finite set of forbidden
patterns and provided the enumeration of these permutations for every k.

There is another way to view sorting with pop stacks in series, where one is allowed to save the
output of one pop stack and pass it into the next an entry at a time. Serially linking pop stacks in this
manner corresponds to placing a queue between the pop stacks, and is much more powerful than the
Avis-Newborn interpretation. Atkinson and Stitt [10], who also gave a simpler derivation of Avis and
Newborn’s enumerative results using what is now known as the substitution decomposition, found
the (rational) generating function for the permutations that can be sorted by a pop stack followed by a
queue followed by another pop stack.

Here we consider sorting with a stack and a pop stack in series. A priori, there are three different
methods that these may be connected:

PS: A pop stack followed by a stack, connected in Avis and Newborn’s manner.
PQS: A pop stack followed by a queue followed by a stack.
SP: A stack followed by a pop stack, connected in Avis and Newborn’s manner.
SQP: A stack followed by a queue followed by a pop stack.

Clearly the permutations sortable by PS are a subset of those sortable by PQS. In the next section,
we prove that SP and SQP are equivalent, and that PQS is a symmetry of these two machines. Then,
in Section 3 we characterize and enumerate the permutations sortable by PS. In Section 4 we consider
the class PQS, but are able to establish few concrete results.

It will be helpful to give names to the operations involved in these sorting machines. Given a
system of two stacks (of any type) in series, we refer to moving an entry from the input to the first
stack as an input, moving an entry from the first stack to the second stack as a transfer, and moving an
entry from the second stack to the output as an output. When there is a queue between the two stacks,
we use the term transfer to describe both moving an entry from the first stack to the queue and moving
it from the queue to the second stack.

We conclude the introduction with a bit of terminology which will be useful. A permutation class is
a downset of permutations under the containment order. Every permutation class can be specified by
the set of minimal permutations which are not in the class, which we call its basis. Finally, for a set B of
permutations, we denote by Av(B) the class of permutations which do not contain any element of B.
For example, Knuth’s result says that the stack-sortable permutations are precisely Av(231), i.e., that

1Even without this restriction, the final stack must be increasing if the sorting is to be successful.
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they have the singleton basis {231}. Given any naturally defined sorting machine, the set of sortable
permutations forms a class2.

Finally, it is frequently helpful to remember that the permutation containment order has eight sym-
metries which form the dihedral group of the square. These are generated by two symmetries inverse
and reverse, defined, respectively, by

π−1(π(i)) = i,

πr(i) = π(n+ 1− i),

for all i. We will also make use of the complement symmetry, defined by

πc(i) = n+ 1− π(i),

also for all i.

2. THE EQUIVALENCE OF PQS, SP, & SQP

We begin with the easier equivalence, between the machines SP and SQP.

Proposition 2.1. The machines SP and SQP are equivalent.

Proof. More generally, adding a queue after a regular stack never alters the sorting capabilities of a
permutation machine. The machine SM (a stack followed by M) can sort the entries of π if and only if it
can sort π(i1), . . . , π(in) where i1 · · · in is a permutation which can be generated by a stack starting with
the identity permutation as input. Clearly, the same is true for the machine SQM, because the queue
cannot alter the order in which entries pass through it. (While it is not important to this proof, note that
a stack can reorder the entries of π as π(i1), . . . , π(in) if and only if i1 · · · in avoids 231−1 = 312.)

Now we show that the permutations sortable by PQS and SQP are symmetries of each other. To
do so we consider a construction introduced by Murphy in his thesis [18]. The two-stack dual of the
permutation π of length n is defined by

πd =
(

(πr)
−1

)r

,

or more concretely by
πd(i) = n+ 1− π−1(n+ 1− i)

for all i.

Proposition 2.2 (Murphy [18]). The permutation π can be sorted by two stacks in series if and only if the
permutation πd can be sorted by two stacks in series.

Proof. Consider any sequence of pushes, transfers, and pops which sorts the permutation π. We think
of these operations as generating 12 · · ·n from the input π. By performing these operations in reverse,
we obtain a procedure to generate n · · · 21 from πr — in this new procedure, the last entry popped from
the second stack becomes the first entry pushed onto the first stack. By applying (πr)−1 to the input
symbols, we obtain a procedure to generate the identity from (πr)−1 ◦ n · · · 21, i.e., sort the two-stack
dual of π.

2The exception that proves this rule is West’s notion of 2-stack-sortability [22], which has an unusual defect due to restrictions
on how the machine can use its two stacks. For example, this machine can sort 35241, but not its subpermutation 3241.
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Figure 1: Sorting the permutation 24513 with the PS machine.

So long as there is a queue in between, the proof of Proposition 2.2 shows that the order of the
stack and pop stack can be interchanged if we change the permutation to its two-stack dual, giving the
result below.

Proposition 2.3. The permutation π can be sorted by PQS if and only if πd can be sorted by SQP = SP.

3. WITHOUT A QUEUE BETWEEN — PS

We begin by finding three permutations that the PS machine cannot sort. We will later show that these
are the only minimal permutations which cannot be sorted by PS.

Proposition 3.1. The permutations 2431, 3142, and 3241 are not PS-sortable.

Proof. The proof consists of three separate case analyses. As the cases are similar, we give the details
for the first only. The other two follow from the work of Smith [20] mentioned in the conclusion or can
be viewed as exercises for the reader.

Consider attempting to sort the permutation 2431 with PS. First the 2 must be pushed into the pop
stack. Suppose the 2 is not transferred to the next stack before the 4 enters the pop stack. If the entries
of the pop stack ever contain a increase when read from top to bottom, then the sorting will clearly
fail, so the 4 and thus also (by the pop property) the 2 must be transferred to the stack at this point.
However, now there is no way to output the 1 before the 3 is forced to be transferred to the stack above
the 2.

Alternatively, if the 2 is transferred from the pop stack to the stack before the 4 enters the pop stack,
again there is no way output the 1 before the 3 and 4 are transferred to the stack above the 2.
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Figure 2: An inflation of 2413, a sum, and a skew sum.

Thus the PS-sortable permutations are a subclass of Av(2431, 3142). The structure of the reverse-
complement of this class, Av(3142, 4213), was described by Albert, Atkinson, and Vatter [7]. This
structural description rests on the notion of simple permutations; the only intervals that are mapped
to intervals by such permutations are singletons and their entire domains. For example, 31542 is not
simple because it maps {3, 4} to {4, 5}, but 25314 is simple. Simple permutations are precisely those
that do not arise from a non-trivial inflation, in the following sense. Given a permutation σ of length
m and nonempty permutations α1, . . . , αm, the inflation of σ by α1, . . . , αm, denoted σ[α1, . . . , αm], is
the permutation of length |α1|+ · · ·+ |αm| obtained by replacing each entry σ(i) by an interval that is
order isomorphic to αi in such a way that the intervals are order isomorphic to σ. For example,

2413[1, 132, 321, 12] = 4 798 321 56.

In particular, the inflation 12[α1, α2] is called (direct) sum and denoted by α1 ⊕ α2. A permutation is
sum decomposable if it can be expressed as a nontrivial sum, and sum indecomposable otherwise. A sum
decomposable permutation can always be expressed as α1 ⊕ α2 where α1 is sum indecomposable.
The inflation 21[α1, α2] is similarly called skew sum and denoted α1 ⊖ α2; we define the terms skew
decomposable and indecomposable analogously.

Every permutation π is the inflation of a unique simple permutation, called its simple quotient. If the
quotient has length greater than 2 then the intervals inflating the quotient are uniquely determined by
π (as Albert and Atkinson [6]). If the quotient has length 2 (i.e., π is sum or skew decomposable), then
we can enforce uniqueness by insisting that the first interval be sum or skew indecomposable.

A permutation class is sum closed if it contains the sum of any two of its members. Clearly the
PS-sortable permutations form a sum closed class because if PS can sort π and σ then it can sort π ⊕ σ

(simply sort the interval corresponding to π, then sort the interval corresponding to σ).

Proposition 3.2 (Albert, Atkinson, and Vatter [7]). The simple permutations in Av(2431, 3142) are 1 (triv-
ially), 12, 21, and the parallel alternations of the form

246 · · · (2m)135 · · · (2m− 1)

for m ≥ 2.

We aim to produce a structural description of Av(2431, 3142, 3241)which will allow us to show that
every permutation in the class is PS-sortable. Because each of these basis elements is sum indecompos-
able, this class is sum closed (as is the class of PS-sortable permutations). For skew sums π ⊖ σ, notice
that to avoid 2431 and 3241, π must avoid 132 and 213, but there are no further restrictions (except that
σ must lie in the larger class, obviously). The class Av(132, 213) is easily seen to be the reverse layered
permutations, i.e., those of the form

ι1 ⊖ · · · ⊖ ιm

where each ι1, . . . , ιm is increasing.
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It remains to consider inflations of parallel alternations of the form 246 · · · (2m)135 · · · (2m − 1).
In order to avoid 3241, all even entries in such a parallel alternation except the greatest may only
be inflated by increasing intervals. Furthermore, in order to avoid 2431, the greatest even entry also
may only be inflated by an increasing interval. Inflations of the odd entries, however, have no further
restrictions. We have therefore obtained the following structural decomposition of this class.

Proposition 3.3. The class Av(2431, 3142, 3241) consists precisely of permutations of the form

(a) π ⊕ σ where π, σ ∈ Av(2431, 3142, 3241),

(b) π ⊖ σ where π ∈ Av(132, 213) and σ ∈ Av(2431, 3142, 3241), and

(c) inflations of parallel alternations 246 · · · (2m)135 · · · (2m − 1) for m ≥ 2 where the even entries are
inflated by increasing intervals and the odd entries are inflated by intervals in Av(2431, 3142, 3241).

We now describe how to sort all of the permutations in Av(2431, 3142, 3241), verifying that this is
indeed the class of PS-sortable permutations.

Theorem 3.4. The PS-sortable permutations are precisely Av(2431, 3142, 3241).

Proof. Choose an arbitrary π ∈ Av(2431, 3142, 3241). Using induction on the length of π, we show that
π is PS-sortable. The base case is trivial, as PS can sort 1. If π = σ ⊕ τ for shorter permutations σ and
τ in this class, then by induction, the PS machine can sort (and output) σ and then sort τ . If π is skew
indecomposable, then we know from Proposition 3.3 that

π = ι1 ⊖ · · · ιm ⊖ σ

for increasing permutations ι1, . . . , ιm and an arbitrary σ ∈ Av(2431, 3142, 3241). To sort permutations
of this form, we push each ιk, in turn, onto the pop stack and then pop it into the stack. After having
performed this operation on ι1, . . . , ιm, we are left with their entries sitting in increasing order in the
stack, and thus can (by induction) sort and output σ and then output the entries of ι1, . . . , ιm.

Finally suppose π is of the form (c) in Proposition 3.3, so

π = 246 · · · (2m)135 · · · (2m− 1)[ι1, . . . , ιm, σ1, . . . , σm]

where ι1, . . . , ιm are increasing and σ1, . . . , σm ∈ Av(2431, 3142, 3241). To sort these permutations, we
first push all entries of ι1, . . . , ιm onto the pop stack and then pop them all into the stack. This leaves
the entries of ι1, . . . , ιm in increasing order on the stack. We then sort and output σ1 (which can be
done by induction), then output ι1, then sort and output σ2, then output ι2, and so on.

Proposition 3.3 also leads almost immediately to the enumeration of this class.

Theorem 3.5. The PS-sortable permutations are enumerated by the generating function

1− 3x+ 2x2 −
√
1− 6x+ 5x2

2x(2− x)
,

sequence A033321 in the OEIS [1].

Proof. Let f denote the generating function for the PS-sortable permutations and f⊕ (resp., f⊖) denote
the generating function for the sum (resp., skew) decomposable PS-sortable permutations.

http://oeis.org/A033321
http://oeis.org/
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The sum indecomposable PS-sortable permutations are therefore counted by f − f⊕. Because ev-
ery sum decomposable permutation can be expressed uniquely as the sum of a sum indecomposable
permutation with an arbitrary permutation, we see that f⊕ = (f − f⊕)f . Solving this for f⊕ yields

f⊕ =
f2

1 + f
.

Now consider skew decomposable permutations. The reverse layered permutations contain a
unique skew indecomposable permutation of each length (the increasing permutation), so by Propo-
sition 3.3, the contribution of skew decomposable permutations is

f⊖ =
xf

1− x
.

Finally, the contribution of permutations of the form (c) in Proposition 3.3 is given by

∑

m≥2

(

xf

1− x

)m

=
(xf)2

(1 − x)(1 − x− xf)
.

Combining these quantities (and the contribution of the permutation 1) we have

f = x+
f2

1 + f
+

xf

1− x
+

(xf)2

(1− x)(1 − x− xf)
,

and solving this for f completes the proof of the theorem.

The generating function from Theorem 3.5 has arisen at least twice before in the study of permuta-
tion patterns. The Theory of Computing Research Group at the University of Otago [3] showed that
it counts Av(2431, 4231, 4321), while Brignall, Huczynska, and Vatter [13] showed that it enumerates
Av(2143, 2413, 3142). None of these three classes are symmetries of each other so this is example of
“Wilf-equivalence”.

4. WITH A QUEUE BETWEEN — PQS

There is another way to characterize the permutations which are PS-sortable, which we introduce
now because we will use it to characterize the PQS-sortable permutations. A divided permutation is
a permutation equipped with one or more dividers |, i.e., π1|π2| · · · |πt. We refer to π1|π2| · · · |πt as a
division of the concatenated permutation π1π2 · · ·πt, and we refer to each πi as a block of this division.
We say that the divided permutation σ1|σ2| · · · |σs is contained in the divided permutation π1|π2| · · · |πt

if π1π2 · · ·πt contains a subsequence order isomorphic to σ1σ2 · · ·σs in which the entries corresponding
to each σi come from the same block, and no other entries of this subsequence come from that block.
For example:

• 513|4|2 contains 32|1 because of the subsequence 532, but

• 32|1 is not contained in 51|34|2 despite the subsequence 532.

In particular, if σ contains no dividers, then σ is contained in π1|π2| · · · |πt if and only if σ is contained
in a single block πi.

Proposition 4.1. The permutation π can be sorted by PS if and only if divisions can be added to π to obtain a
divided permutation which avoids 21, 2|13, and 2|3|1.
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Proof. We view the divisions as marking the moments when we transfer all contents of the pop stack
to the stack (with a final transfer occurring at the end of reading the permutation). Thus if there is no
such division of π, in any sorting of this permutation there will come a time when either:

• the pop stack contains an increase when read from top to bottom (21),

• the stack contains an entry which lies between two entries of the pop stack in value (2|13), or

• the stack contains a decrease when read from top to bottom (2|3|1).

Any of these three situations will cause the sorting to fail.
Conversely, suppose that divisions can be added to π to obtain a divided permutation which avoids

21, 2|13, and 2|3|1. To show π is sortable, we need to show that none of the transfers dictated by these
divisions forces an inversion in the stack. We know a set of entries moved by a single transfer will
not form an inversion in the stack since the divided permutation avoids 21. The only other way an
inversion could be forced within the stack is if there is an entry 2 that was previously transferred to the
stack, an entry 3 that is transferred to the stack later, and an entry 1 that is transferred at the same time
as or later than the 3 (and thus not allowing the 2 to be output before the 3 enters the stack). Notice
these PS movements imply that there is a 2|13, a 2|31 (which means there is a 21), or a 2|3|1. This shows
that π is sortable by PS.

The analogue of Proposition 4.1 for the PQS machine is the following.

Proposition 4.2. The permutation π can be sorted by PQS if and only if divisions can be added to π to obtain a
divided permutation which avoids 132, 2|13, 32|1, and 2|3|1.

Proof. A permutation can be sorted with a stack if and only if it avoids 231, so we need to show that
we can fill the queue between the pop stack and the stack with a 231-avoiding permutation if and only
if π can be divided in the manner specified.

First suppose that π can be divided as π1|π2| · · · |πt so that this division avoids the four divided
permutations 132, 2|13, 32|1, and 2|3|1. Consider pushing each element of π1 into the pop stack and
then popping the entire pop stack into the queue, then pushing each element of π2 onto the pop stack
and then popping the entire pop stack into the queue, and so on. This fills the queue with the permu-
tation πr

1π
r
2 · · ·πr

t . Now consider the four different ways this permutation could contain 231: if all three
entries are in πr

i then πi contains 132, if the first entry is in πr

i and the other two are in πr

j for i < j then
πi|πj contains 2|13, if the first two entries are in πr

i and the last is in πr
j for i < j then πi|πj contains

32|1, and finally, if all three entries are in different blocks, then π1|π2| · · · |πt contains 2|3|1. The other
direction follows immediately.

The PS-sortable permutations can be characterized by a finite number of forbidden divided pat-
terns (Proposition 4.1) and by a finite basis (Theorem 3.4). However, it does not follow that every class
defined by finitely many forbidden divided patterns has a finite basis, as we show in the next section.
Nor is it apparent how to convert such a list of divided patterns into a basis. In the case of the PQS

machine, we have not been able to verify that it is finitely based, although computations performed
by Michael Albert strongly suggests this to be the case.

Conjecture 4.3. The class of PQS-sorting permutations consists of 108 permutations, all of length at most 9.

The enumeration of this class is

1, 2, 6, 24, 120, 685, 4148, 25661, 159829, 997870, . . . ,

sequence A214611 in the OEIS [1].

http://oeis.org/A214611
http://oeis.org/
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5. AVOIDING DIVIDED PERMUTATIONS IN GENERAL

As remarked in Section 3, classes defined by finitely many divided permutations need not be finitely
based. Here we give an example. Our basis will contain the infinite antichain of permutations referred
to as U :

u1 = 2, 3, 5, 1, 6, 7, 4

u2 = 2, 3, 5, 1, 7, 4, 8, 9, 6

u3 = 2, 3, 5, 1, 7, 4, 9, 6, 10, 11, 8

...

uk = 2, 3, 5, 1, 7, 4, 9, 6, 11, 8, . . . , 2k + 3, 2k, 2k + 4, 2k + 5, 2k + 2.

Each member of U has precisely two copies of 2341: its first four entries, and the first, second, third,
and fifth entries from the right, and this observation can be used to prove that U is indeed an antichain
(see Atkinson, Murphy, and Ruškuc [8] for such a proof). We call the first four entries in uk the head,
the last five entries the tail, and the entries between the midsection.

Proposition 5.1. Every member of the infinite antichain U is a basis element for the permutation class defined
by avoiding the divided permutations

(a) 2341.

(b) 234|1, 23|4|1, 2|34|1, 2|3|4|1,

(c) 314|2, 31|42, and 31|4|2.

Proof. Consider any member of the antichain U . In order to avoid 2341, the head — 2351 — must
be divided. However, to avoid 234|1, 23|4|1, 2|34|1, and 2|3|4|1, this division cannot occur between
the 5 and the 1. Therefore there is a block containing 51. Now consider the four entries starting
with 51, which in uk for k ≥ 2 consist of 5174. As these entries are order isomorphic to 3142 and
the 51 block is not divided, in order to avoid 314|2, 31|42, and 31|4|2, they cannot be divided. This
propagates throughout the midsection of uk, and at the end of the process, we see that then entries
5, 1, 7, 4, 9, 6, 11, 8, . . . , 2k+1, 2k−2 all lie in the same block. Now consider the tail. Because the entries
2k + 1, 2k − 2, 2k + 3, 2k are order isomorphic to 3142 and the 2k + 1 and 2k − 2 are not divided, there
cannot be a division between then. The same argument shows that the entries 2k+3, 2k, 2k+5, 2k+2
lie in the same block. However, this implies that this block contains the entire tail, which is order
isomorphic to 2341.

We must now argue that by removing any entry of such a permutation we obtain a permutation in
the class, which follows from a case analysis. Typically, when an entry is removed one would relabel
the remaining entries so that they consist of the numbers 1 through n − 1, but it is easier to make
this argument without relabeling, so, for example, if the 1 is removed, we talk about the permutation
beginning with 235.

Suppose an entry of the head is removed. In this case, the remaining elements of the head do not
form a copy of 2341, so we are able to insert a division immediately preceding the 1 (assuming the 1
was not removed), or immediately following the 5 (assuming the 5 was not removed). Because of this
division, we can then insert divisions between every two entries in the midsection. This then allows
us to add a division in the tail between 2k + 3 and 2k, and the resulting division avoids the divided
permutations desired. For example, if the 3 is removed from u5 we have the division

2 ✁3 5 | 1 | 7 | 4 | 9 | 6 | 11 | 8 | 13 | 10 14 15 12.
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Suppose now that an entry from the midsection is removed. In this case the permutation splits
into a direct sum of two shorter permutations, one consisting of the head and forward midsection, and
the other consisting of the rear midsection and the tail. We can then add a division in the first sum
component the 2 and the 3. In the second component, we add divisions between all entries in the rear
midsection, and then between the 2k + 3 and 2k in the tail. It is straight-forward to check that the
resulting division avoids the desired divided permutations. For example, if the 9 is removed from u5

we have the division
2 | 3 5 1 7 4 ✁9 6 | 11 | 8 | 13 | 10 14 15 12,

where forward and rear midsections are denoted by under- and over-lining, respectively.
To complete the proof, suppose that an entry from the tail is removed. If this entry is part of

the copy of 2341, then we can simply add a division between the 2 and 3 at the beginning of the
permutation. For example, if the 14 is removed from u5, we obtain

2 | 3 5 1 7 4 9 6 11 8 13 10✚✚14 15 12.

Otherwise, the entry 2k was removed. In this case, the 2k + 3 and 2k + 4 are not involved in a copy of
3142, and so we can add a division between them, and also between the 2 and the 3. For example, if
the 10 is removed from u5, we obtain

2 | 3 5 1 7 4 9 6 11 8 13 |✚✚10 14 15 12.
This final case completes the proof.

6. CONCLUDING REMARKS

Note that the pop stack can never contain a noninversion (when read from top to bottom) in the PS

machine. Thus PS sorting is a special case of sorting with a decreasing stack followed by an increasing
stack, the DI machine, which has been studied by Smith [20]. However, there is no relation between
DI-sortable and PQS-sortable permutations — 3142 can be sorted by PQS but not DI, while 465132 can
be sorted by DI but not PQS.

We have demonstrated with Proposition 5.1 that even though the PQS sortable permutations can
be characterized by finitely many divided patterns, this alone does not imply that this class has a
finite basis. However, there is another possible generalization of this problem. Let us say that the
permutation σ can be obtained from π by local reversals if π = π1π2 · · ·πt and σ = πr

1
πr
2
· · ·πr

t . Thus
the PQS-sortable permutations are those that can be obtained by local reversals from the 231-avoiding
permutations.

Question 6.1. Let C be a permutation class and D the class of all permutations that can be obtained by local
reversals from members of C. If C is finitely based, must D also be finitely based?

Our suspicion is that the answer to Question 6.1 is “no”. This suspicion is based on an example
found by the Theory of Computing Research Group at the University of Otago [4]. They considered a
machine denoted T,called a transposition switch. Given a permutation π, T returns the set of permuta-
tions which can be generated from π by disjoint adjacent transpositions of entries of π. This operation
is then extended to sets (and thus, classes) of permutations in the natural way. The Otago group

showed that while T
4(Av(21)) is finitely based, Tk(Av(21)) is infinitely based for all k ≥ 5. Thus T

does not preserve finite bases.

Acknowledgments: The analysis of the PS machine in Section 3 was aided by Michael Albert’s PermLab
program [2]. The authors would also like to thank Albert for computing the basis in Conjecture 4.3 and
drawing our attention to [4], and Daniel Rose for his LATEX macros for drawing two stacks in series.
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