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ALGEBRAICITY OF THE ZETA FUNCTION

ASSOCIATED TO A MATRIX OVER

A FREE GROUP ALGEBRA

CHRISTIAN KASSEL AND CHRISTOPHE REUTENAUER

Abstract. Following and generalizing a construction by Kontsevich,
we associate a zeta function to any matrix with entries in a ring of
noncommutative Laurent polynomials with integer coefficients. We show
that such a zeta function is an algebraic function.

1. Introduction

Fix a commutative ring K. Let F be a free group on a finite number of
generators X1, . . . ,Xn and

KF = K〈X1,X
−1
1 , . . . ,Xn,X

−1
n 〉

be the corresponding group algebra: equivalently, it is the algebra of non-
commutative Laurent polynomials with coefficients in K. Any element
a ∈ KF can be uniquely written as a finite sum of the form

a =
∑

g∈F

(a, g) g ,

where (a, g) ∈ K.
Let M be a d × d-matrix with coefficients in KF . For any n ≥ 1 we

may consider the n-th power Mn of M and its trace Tr(Mn), which is an
element of KF . We define the integer an(M) as the coefficient of 1 in the
trace of Mn:

(1.1) an(M) = (Tr(Mn), 1) .

Let gM and PM be the formal power series

(1.2) gM =
∑

n≥1

an(M) tn and PM = exp





∑

n≥1

an(M)
tn

n



 .

They are related by

gM = t
d log(PM )

dt
.

We call PM the zeta function of the matrix M by analogy with the zeta
function of a noncommutative formal power series (see Section 2.1); the two
concepts will be related in Proposition 4.1.
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2 C. KASSEL AND C. REUTENAUER

The motivation for the definition of PM comes from the well-known iden-
tity expressing the inverse of the reciprocal polynomial of the characteristic
polynomial of a matrix M with entries in a commutative ring

1

det(1 − tM)
= exp





∑

n≥1

Tr(Mn)
tn

n



 .

Note that for any scalar λ ∈ K, the corresponding series for the ma-
trix λM become

(1.3) gλM (t) = gM (λt) and PλM (t) = PM (λt) .

Our main result is the following; it was inspired by Theorem 1 of [15].

Theorem 1.1. For each matrix M ∈ Md(KF ) where K = Q is the ring of
rational numbers, the formal power series PM is algebraic.

The special case d = 1 is due to Kontsevich [15]. A combinatorial proof
in the case d = 1 and F is a free group on one generator appears in [17].

Observe that by the rescaling equalities (1.3) it suffices to prove the the-
orem when K = Z is the ring of integers.

It is crucial for the veracity of Theorem 1.1 that the variables do not
commute: for instance, if a = x + y + x−1 + y−1 ∈ Z[x, x−1, y, y−1], where
x and y are commuting variables, then exp(

∑

n≥1 (an, 1) tn/n) is a formal

power series with integer coefficients, but not an algebraic function (this
follows from Example 3 in [7, Sect. 1]).

The paper is organized as follows. In Section 2 we define the zeta func-
tion ζS of a noncommutative formal power series S and show that it can be
expanded as an infinite product under a cyclicity condition that is satisfied
by the characterististic series of cyclic languages.

In Section 3 we recall the notion of an algebraic noncommutative formal
power series and some of their properties.

In Section 4 we reformulate the zeta function of a matrix as the zeta
function of a noncommutative formal power series before giving the proof
of Theorem 1.1; the latter follows the steps sketched in [15] and relies on
the results of the previous sections as well as on an algebraicity result by
André [2] elaborating on an idea of D. and G. Chudnovsky.

We concentrate on two specific matrices in Section 5. We give a closed
formula for the zeta function of the first matrix; its nonzero coefficients
count the planar rooted bicubic maps as well as Chapoton’s “new intervals”
in a Tamari lattice (see [9, 22]).

2. Cyclic formal power series

2.1. General definitions. As usual, if A is a set, we denote by A∗ the
free monoid on A: it consists of all words on the alphabet A, including the
empty word 1. Let A+ = A− {1}.

Recall that w ∈ A+ is primitive if it cannot be written as ur for any
integer r ≥ 2 and any u ∈ A+. Two elements w,w′ ∈ A+ are conjugate if
w = uv and w′ = vu for some u, v ∈ A∗.

Given a set A and a commutative ring K, let K〈〈A〉〉 be the algebra of
noncommutative formal power series on the alphabet A. For any element
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S ∈ K〈〈A〉〉 and any w ∈ A∗, we define the coefficient (S,w) ∈ K by

S =
∑

w∈A∗

(S,w)w .

As an example of such noncommutative formal power series, take the
characteristic series

∑

w∈L w of a language L ⊆ A∗. In the sequel we shall
identify a language with its characteristic series.

The generating series gS of an element S ∈ K〈〈A〉〉 is the image of S under
the algebra map ε : K〈〈A〉〉 → K[[t]] sending each a ∈ A to the variable t.
We have

(2.1) gS − (S, 1) =
∑

w∈A+

(S,w) t|w| =
∑

n≥1





∑

|w|=n

(S,w)



 tn ,

where |w| is the length of w.
The zeta function ζS of S ∈ K〈〈A〉〉 is defined by

(2.2) ζS = exp





∑

w∈A+

(S,w)
t|w|

|w|



 = exp





∑

n≥1





∑

|w|=n

(S,w)





tn

n



 .

The formal power series gS and ζS are related by

(2.3) t
d log(ζS)

dt
= t

ζ ′S
ζS

= gS − (S, 1) ,

where ζ ′S is the derivative of ζS with respect to the variable t.

2.2. Cyclicity.

Definition 2.1. An element S ∈ K〈〈A〉〉 is cyclic if

(i) ∀u, v ∈ A∗, (S, uv) = (S, vu) and
(ii) ∀w ∈ A+,∀r ≥ 2, (S,wr) = (S,w)r .

Cyclic languages provide examples of cyclic formal power series. Recall
from [4, Sect. 2] that a language L ⊆ A∗ is cyclic if

(1) ∀u, v ∈ A∗, uv ∈ L ⇐⇒ vu ∈ L ,
(2) ∀w ∈ A+,∀r ≥ 2, wr ∈ L ⇐⇒ w ∈ L .

The characteristic series of a cyclic language is a cyclic formal power series
in the above sense.

Let L be any set of representatives of conjugacy classes of primitive ele-
ments of A+.

Proposition 2.2. If S ∈ K〈〈A〉〉 is a cyclic formal power series, then

ζS =
∏

ℓ∈L

1

1 − (S, ℓ) t|ℓ|
.

Proof. Since both sides of the equation have the same constant term 1,
it suffices to prove that they have the same logarithmic derivative. The
logarithmic derivative of the RHS multiplied by t is equal to

∑

ℓ∈L

|ℓ| (S, ℓ) t|ℓ|

1 − (S, ℓ) t|ℓ|
,
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which in turn is equal to
∑

ℓ∈L, k≥1

|ℓ| (S, ℓ)k tk|ℓ| .

In view of (2.1) and (2.3) it is enough to check that for all n ≥ 1,

(2.4)
∑

|w|=n

(S,w) =
∑

ℓ∈L, k≥1, k|ℓ|=n

|ℓ| (S, ℓ)k .

Now any word w = uk is the k-th power of a unique primitive word u,
which is the conjugate of a unique element ℓ ∈ L. Moreover, w has exactly
|ℓ| conjugates and since S is cyclic, we have

(S,w) = (S, uk) = (S, u)k = (S, ℓ)k.

From this Equation (2.4) follows immediately. �

Corollary 2.3. If a cyclic formal power series S has integer coefficients,
i.e., (S,w) ∈ Z for all w ∈ A∗, then so has ζS.

3. Algebraic noncommutative series

This section is essentially a compilation of well-known results on algebraic
noncommutative series.

Recall that a system of proper algebraic noncommutative equations is a
finite set of equations

ξi = pi i = 1, . . . , n ,

where ξ1, . . . , ξn are noncommutative variables and p1, . . . , pn are elements
of K〈ξ1, . . . , ξn, A〉, where A is some alphabet. We assume that each pi has
no constant term and contains no monomial ξj. One can show that such
a system has a unique solution (S1, . . . , Sn), i.e., there exists a unique n-
tuple (S1, . . . , Sn) ∈ K〈〈A〉〉n such that Si = pi(S1, . . . , Sn, A) for all i =
1, . . . , n and each Si has no constant term (see [20], [18, Th. IV.1.1], or [21,
Prop. 6.6.3]).

If a formal power series S ∈ K〈〈A〉〉 differs by a constant from such a
formal power series Si, we say that S is algebraic.

Example 3.1. Consider the proper algebraic noncommutative equation

ξ = aξ2 + b .

(Here A = {a, b}.) Its solution is of the form

S = b + abb + aabbb + ababb + · · · .

One can show (see [3]) that S is the characteristic series of  Lukasiewicz’s
language, namely of the set of words w ∈ {a, b}∗ such that |w|b = |w|a + 1
and |u|a ≥ |u|b for all proper prefixes u of w.

Recall also that S ∈ K〈〈A〉〉 is rational if it belongs to the smallest subal-
gebra of K〈〈A〉〉 containing K〈A〉 and closed under inversion. By a theorem
of Schützenberger (see [5, Th. I.7.1]), a formal power series S ∈ K〈〈A〉〉 is
rational if and only if it is recognizable, i.e., there exist an integer n ≥ 1,
a representation µ of the free monoid A∗ by matrices with entries in K, a
row-matrix α and a column-matrix β such that for all w ∈ A∗,

(S,w) = αµ(w)β .
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We now record two well-known theorems.

Theorem 3.2. (1) If S ∈ K〈〈A〉〉 is algebraic, then its generating series
gS ∈ K[[t]] is algebraic in the usual sense.

(2) The set of algebraic power series is a subring of K〈〈A〉〉.
(3) A rational power series is algebraic.
(4) The Hadamard product of a rational power series and an algebraic

power series is algebraic.
(5) Let A = {a1, . . . , an, a

−1
1 , . . . , a−1

n } and L be the language consisting
of all words on the alphabet A whose image in the free group on a1, . . . , an
is the identity element. Then the characteristic series of L is algebraic.

Items (1)–(4) of the previous theorem are due to Schützenberger [20],
Item (5) to Chomsky and Schützenberger [10] (see [21, Example 6.6.8]).

The second theorem is a criterion due to Jacob [13].

Theorem 3.3. A formal power series S ∈ K〈〈A〉〉 is algebraic if and only
if there exist a free group F , a representation µ of the free monoid A∗ by
matrices with entries in KF , indices i, j and γ ∈ F such that for all w ∈ A∗,

(S,w) =
(

(µw)i,j , γ
)

.

The following is an immediate consequence of Theorem 3.3.

Corollary 3.4. If S ∈ K〈〈A〉〉 is an algebraic power series and ϕ : B∗ → A∗

is a homomorphism of finitely generated free monoids, then the power series
∑

w∈B∗

(S,ϕ(w)) w ∈ K〈〈B〉〉

is algebraic.

As a consequence of Theorem 3.2 (5) and of Corollary 3.4, we obtain the
following.

Corollary 3.5. Let f : A∗ → F be a homomorphism from A∗ to a free
group F . Then the characteristic series of f−1(1) ∈ K〈〈A〉〉 is algebraic.

4. Proof of Theorem 1.1

Let M be a d × d-matrix. As observed in the introduction, it is enough
to establish Theorem 1.1 when all the entries of M belong to ZF .

We first reformulate the formal power series gM and PM of (1.2) as the
generating series and the zeta function of a noncommutative formal power
series, respectively.

Let A be the alphabet whose elements are triples [g, i, j], where i, j are
integers such that 1 ≤ i, j ≤ d and g ∈ F appears in the (i, j)-entry Mi,j

of M , i.e., (Mi,j, g) 6= 0. We define the noncommutative formal power series
SM ∈ K〈〈A〉〉 as follows: for w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+, the scalar
(SM , w) vanishes unless we have

(a) jn = i1 and jk = ik+1 for all k = 1, . . . , n− 1,
(b) g1 · · · gn = 1 in the group F ,

in which case (SM , w) is given by

(SM , w) = (Mi1,j1 , g1) · · · (Min,jn, gn) ∈ K .

By convention, (SM , 1) = d.
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Proposition 4.1. The generating series and the zeta function of SM are
related to the formal power series gM and PM of (1.2) by

gSM
− d = gM and ζSM

= PM .

Proof. For n ≥ 1 we have

Tr(Mn) =
∑

Mi1,j1 · · ·Min,jn

=
∑

(Mi1,j1 , g1) · · · (Min,jn , gn) g1 · · · gn ,

where the sum runs over all indices i1, j1, . . . , in, jn satisfying Condition (a)
above and over all g1, . . . , gn ∈ F . Then

an(M) = (Tr(Mn), 1) =
∑

(Mi1,j1 , g1) · · · (Min,jn , gn) ,

where Conditions (a) and (b) are satisfied. Hence,

an(M) =
∑

w∈A∗, |w|=n

(S,w) ,

which proves the proposition in view of (1.2), (2.1) and (2.2). �

We next establish that SM is both cyclic in the sense of Section 2 and
algebraic in the sense of Section 3.

Proposition 4.2. The noncommutative formal power series SM is cyclic.

Proof. (i) Conditions (a) and (b) above are clearly preserved under cyclic
permutations. Hence we also have

(SM , w) = (Mi2,j2 , g2) · · · (Min,jn , gn) (Mi1,j1 , g1)

when w = [g1, i1, j1] · · · [gn, in, jn] such that Conditions (a) and (b) are satis-
fied. It follows that (S, uv) = S(vu) for all u, v ∈ A∗.

(ii) If w satisfies Conditions (a) and (b), so does wr for r ≥ 2. Conversely,
if wr (r ≥ 2) satisfies Condition (a), then since

wr = [g1, i1, j1] · · · [gn, in, jn] [g1, i1, j1] · · ·

we must have jn = i1 and jk = ik+1 for all k = 1, . . . , n−1, and so w satisfies
Condition (a).

If wr (r ≥ 2) satisfies Condition (b), i.e., (g1 · · · gn)r = 1, then g1 · · · gn = 1
since F is torsion-free. Hence w satisfies Condition (b). It follows that
(S,wr) = ((Mi1,j1 , g1) · · · (Min,jn , gn))r = (S,w)r . �

Proposition 4.3. The noncommutative formal power series SM is alge-
braic.

Proof. We write SM as the Hadamard product of three noncommutative
formal power series S1, S2, S3.

The series S1 ∈ K〈〈A〉〉 is defined for w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+ by

(S1, w) = (Mi1,j1, g1) · · · (Min,jn , gn)

and by (S1, 1) = 1. This is a recognizable, hence rational, series with one-
dimensional representation A∗ → K given by [g, i, j] 7→ (Mi,j , g).

Next consider the representation µ of the free monoid A∗ defined by

µ([g, i, j]) = Ei,j ,
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where Ei,j denotes as usual the d×d-matrix with all entries vanishing, except
the (i, j)-entry which is equal to 1. Set

S2 =
∑

w∈A∗

Tr ((µw)) w ∈ K〈〈A〉〉 .

The power series S2 is recognizable, hence rational. Let us describe S2 more
explicitly. For w = 1, µ(w) is the identity d × d-matrix; hence (S2, 1) = d.
For w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+, we have

Tr ((µw)) = Tr(Ei1,j1 · · ·Ein,jn) .

It follows that Tr ((µw)) 6= 0 if and only if Tr(Ei1,j1 · · ·Ein,jn) 6= 0, which is
equivalent to jn = i1 and jk = ik+1 for all k = 1, . . . , n − 1, in which case
Tr ((µw)) = 1. Thus,

S2 = d +
∑

n≥1

∑

[g1, i1, i2] [g2, i2, i3] · · · [gn, in, i1] ,

where the second sum runs over all elements g1, . . . , gn ∈ F and all indices
i1, . . . , in.

Finally consider the homomorphism f : A∗ → F sending [g, i, j] to g.
Then by Corollary 3.5 the characteristic series S3 ∈ K〈〈A〉〉 of f−1(1) is
algebraic.

It is now clear that SM is the Hadamard product of S1, S2, and S3:

SM = S1 ⊙ S2 ⊙ S3 .

Since by [5, Th. I.5.5] the Hadamard product of two rational series is ratio-
nal, S1⊙S2 is rational as well. It then follows from Theorem 3.2 (4) and the
algebraicity of S3 that SM = S1 ⊙ S2 ⊙ S3 is algebraic. �

Since M has entries in ZF , the power series gSM
= gM + d belongs

to Z[[t]]. It follows by Corollary 2.3 and Proposition 4.2 that the power se-
ries PM = ζSM

has integer coefficients as well. Moreover, by Theorem 3.2 (1)
and Proposition 4.3,

t
d log(PM )

dt
= gM

is algebraic.
To complete the proof of Theorem 1.1, it suffices to apply the following

algebraicity theorem.

Theorem 4.4. If f ∈ Z[[t]] is a formal power series with integer coefficients
such that t d log f/dt is algebraic, then f is algebraic.

Note that the integrality condition for f is essential: for the transcenden-
tal formal power series f = exp(t), we have t d log f/dt = t, which is even
rational.

Proof. This result follows from cases of the Grothendieck–Katz conjecture
proved in [2] and in [6]. The conjecture states that if Y ′ = AY is a linear
system of differential equations with A ∈ Md(Q(t)), then far from the poles
of A it has a basis of solutions that are algebraic over Q(t) if and only if for
almost all prime numbers p the reduction mod p of the system has a basis
of solutions that are algebraic over Fp(t).
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Let us now sketch a proof of the theorem (see also Exercise 5 of [1, p. 160]).
Set g = tf ′/f and consider the system y′ = (g/t) y; it defines a differential
form ω on an open set S of the smooth projective complete curve S as-
sociated to g. We now follow [2, § 6.3], which is inspired from [11]. First,
extend ω to a section (still denoted ω) of Ω1

S
(−D), where D is the divisor

of poles of ω. For any n ≥ 2, we have a differential form
∑n

i=1 p∗i (ω) on Sn,
where pi : Sn → S is the i-th canonical projection; this form goes down
to the symmetric power S(n). Now let J be the generalized Jacobian of S
which parametrizes the invertible fibre bundles over S that are rigidified
over D. There is a morphism ϕ : S → J and a unique invariant differential
form ωJ on J such that ω = ϕ∗(ωJ). For any n ≥ 2, ϕ induces a morphism

ϕ(n) : S(n) → J such that (ϕ(n))∗(ωJ) =
∑n

i=1 p∗i (ω). For n large enough,

ϕ(n) is dominant and if ωJ is exact, then so is ω. To prove that ωJ is ex-
act, we note that J , being a scheme of commutative groups, is uniformized
by Cn. We can now apply Theorem 5.4.3 of loc. cit., whose hypotheses are
satisfied because the solution f of the system has integer coefficients.

Alternatively, one can use a special case of a generalized conjecture of
Grothendieck-Katz proved by Bost, namely Corollary 2.8 in [6, Sect. 2.4]:
the vanishing of the p-curvatures in Condition (i) follows by a theorem of
Cartier from the fact that the system has a solution in Fp(t), namely the
reduction mod p of f for all prime numbers p for which such a reduction
of the system exists (see Exercise 3 of [1, p. 84] or Theorem 5.1 of [14]);
Condition (ii) is satisfied since Cn satisfies the Liouville property. �

A nice overview of such algebraicity results is given in Chambert-Loir’s
Bourbaki report [8]; see especially Theorem 2.6 and the following lines.

5. Examples

Kontsevich [15] computed Pω when ω = X1 + X−1
1 + · · · + Xn + X−1

n

considered as a 1 × 1-matrix, obtaining

(5.1) Pω =
2n

(2n− 1)n−1
·

(

n− 1 + n
(

1 − 4(2n − 1)t2
)1/2)n−1

(

1 +
(

1 − 4(2n − 1)t2
)1/2)n

,

which shows that Pω belongs to a quadratic extension of Q(t).
We now present similar results for the zeta functions of two matrices, the

first one of order 2, the second one of order d ≥ 3.

5.1. Computing PM for a 2 × 2-matrix. Consider the following matrix
with entries in the ring Z〈a, a−1, b, b−1, d, d−1〉, where a, b, d are noncom-
muting variables:

(5.2) M =

(

a + a−1 b
b−1 d + d−1

)

.

Proposition 5.1. We have

(5.3) gM = 3
(1 − 8t2)1/2 − 1 + 6t2

1 − 9t2
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and

(5.4) PM =
(1 − 8t2)3/2 − 1 + 12t2 − 24t4

32t6
.

Expanding PM as a formal power series, we obtain

PM = 1 +
∑

n≥1

3 · 2n

(n + 2)(n + 3)

(

2n + 2

n + 1

)

t2n .

Proof. View the matrix M under the form of the graph of Figure 1, with two
vertices 1, 2 and six labeled oriented edges. We identify paths in this graph
and words on the alphabet A = {a, a−1, b, b−1, d, d−1}. Let B denote the
set of nonempty words on A which become trivial in the corresponding free
group on a, b, d and whose corresponding path is a closed path. Then the
integer an(M) is the number of words in B of length n. We have ε(B) = gM ,
where ε : K〈〈A〉〉 → K[[t]] is the algebra map defined in Section 2.1.

1 2

d

d−1

a

a−1

b

b−1

Figure 1. A graph representing M

We define Bi (i = 1, 2) as the set of paths in B starting from and ending
at the vertex i; we have B = B1 + B2. Each set Bi is a free subsemigroup
of A∗, freely generated by the set Ci of closed paths not passing through i
(except at their ends). The sets Ci do not contain the empty word. We have

Bi = C+
i =

∑

n≥1

Cn
i (i = 1, 2)

Given a letter x, we denote by Ci(x) the set of closed paths in Ci starting
with x. Any word of Ci(x) is of the form xwx−1, where w ∈ Bj when

i
x

−→ j; such w does not start with x−1. Identifying a language with its
characteristic series and using the standard notation L∗ = 1 +

∑

n≥1 Ln for
any language L, we obtain the following two equations:

(5.5) C1(a) = a(C1(a) + C1(b))
∗a−1

and

(5.6) C1(b) = b(C2(d) + C2(d−1))∗b−1 .

Applying the algebra map ε and taking into account the symmetries of
the graph, we see that the four noncommutative formal power series C1(a),
C1(a

−1), C2(d), C2(d−1) are sent to the same formal power series u ∈ Z[[t]],
while C1(b), C2(b

−1) are sent to the same formal power series v. It follows
from (5.5) and (5.6) that u and v satisfy the equations

(5.7) u = t2(u + v)∗ =
t2

1 − u− v
and v = t2(2u)∗ =

t2

1 − 2u
,
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from which we deduce

t2 = u(1 − u− v) = v(1 − 2u) .

The second equality is equivalent to (u−v)(u−1) = 0. Since C1(a) does not
contain the empty word, the constant term of u vanishes, hence u− 1 6= 0.
Therefore, u = v.

Since C1 = C1(a)+C1(a−1)+C1(b) and C2 = C2(d)+C2(d−1)+C2(b
−1),

we have ε(C1) = ε(C2) = 2u + v = 3u. Therefore, ε(B1) = ε(B2) =
3u/(1 − 3u) and

(5.8) gM = ε(B) =
6u

1 − 3u
.

Let us now compute u using (5.7) and the equality u = v. The formal power
series u satisfies the quadratic equation 2u2 − u + t2 = 0. Since u has zero
constant term, we obtain

u =
1 − (1 − 8t2)1/2

4
.

From this and (5.8), we obtain the desired form for gM .
Let P (t) be the right-hand side in Equation (5.4). To prove PM = P (t),

we checked that tP ′(t)/P (t) = gM and the constant term of P (t) is 1. �

Remark 5.2. We found Formula (5.4) for P (t) as follows. We first com-
puted the lowest coefficients of gM up to degree 10:

gM = 6 (t2 + 5t4 + 29t6 + 181t8 + 1181t10) + O(t12) .

From this it was not difficult to find that

(5.9) PM = 1 + 3 t2 + 12 t4 + 56 t6 + 288 t8 + 1584 t10 + O(t12) .

Up to a shift, the sequence (5.9) of nonzero coefficients of PM is the same
as the sequence of numbers of “new” intervals in a Tamari lattice computed
by Chapoton in [9, Sect. 9]. (We learnt this from [16] where this sequence
is listed as A000257.) Chapoton gave an explicit formula for the generating
function ν of these “new” intervals (see Eq. (73) in loc. cit.). Rescaling ν,
we found that P (t) = (ν(t2)− t4)/t6 has up to degree 10 the same expansion
as (5.9). It then sufficed to check that tP ′(t)/P (t) = gM .

By [16] the integers in the sequence A000257 also count the number of
planar rooted bicubic maps with 2n vertices (see [22, p. 269]). Planar maps
also come up in the combinatorial interpretation of (5.1) given in [17, Sect. 5]
for n = 2.

Note that the sequence of nonzero coefficients of gM/6 is listed as A194723
in [16].

5.2. A similar d × d-matrix. Fix an integer d ≥ 3 and let M be the
d× d-matrix with entries Mi,j defined by

Mi,i = ai + a−1
i and Mi,j =

{

bij if i < j ,

b−1
ji if j < i ,

where a1, . . . , ad, bij (1 ≤ i < j ≤ d) are noncommuting variables. This
matrix is a straightforward generalization of (5.2).
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Proceeding as above, we obtain two formal power series u and v satisfying
the following equations similar to (5.7):

u = t2(u + (d− 1)v)∗ =
t2

1 − u− (d− 1)v

and

v = t2(2u + (d− 2)v)∗ =
t2

1 − 2u− (d− 2)v
,

We deduce the equality u = v and the quadratic equation u(1 − du) = t2.
We finally have

gM =
d(d + 1)u

1 − (d + 1)u
,

which leads to

gM =
d(d + 1)

2

(1 − 4dt2)1/2 − 1 + 2(d + 1)t2

1 − (d + 1)2t2
.

Its expansion as a formal power series is the following:

gM = d(d + 1)
{

t2 + (2d + 1) t4 + (5d2 + 4d + 1) t6

+ (14d3 + 14d2 + 6d + 1) t8

+ (42d4 + 48d3 + 27d2 + 8d + 1) t10
}

+ O(t12) .

When d = 2, 3, 4, the sequence of nonzero coefficients of gM/d(d + 1) is
listed respectively as A194723, A194724, A194725 in [16] (it is also the d-
th column in Sequence A183134). These sequences count the d-ary words
either empty or beginning with the first letter of the alphabet, that can be
built by inserting n doublets into the initially empty word.

We were not able to find a closed formula for PM analogous to (5.4). Using
Maple, we found that, for instance up to degree 10, the expansion of PM is

1 +
d(d + 1)

2
t2 +

d(d + 1)(d2 + 5d + 2)

8
t4

+
d(d + 1)(d4 + 14d3 + 59d2 + 38d + 8)

48
t6

+
d(d + 1)(d6 + 27d5 + 271d4 + 1105d3 + 904d2 + 332d + 48)

384
t8 .
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Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France

E-mail address: kassel@math.unistra.fr
URL: www-irma.u-strasbg.fr/~kassel/
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