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Abstract

We introduce the notion of pattern in the context of lattice paths, and investigate it in the
specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment
relation defines a poset structure on the set of all Dyck paths, which we call the Dyck
pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths
covered by P , as well as for the number of Dyck paths covering P . We then address some
typical pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths.
Finally, we offer a conjecture concerning the asymptotic behavior of the sequence counting
Dyck paths avoiding a generic pattern and we pose a series of open problems regarding the
structure of the Dyck pattern poset.

1 Introduction

One of the most investigated and fruitful notions in contemporary combinatorics is that of
a pattern. Historically it was first considered for permutations [Kn], then analogous definitions
were provided in the context of many other structures, such as set partitions [Go, Kl, Sa],
words [Bj, Bu], and trees [DPTW, Gi, R]. Perhaps all of these examples have been motivated
or informed by the more classical notion of graphs and subgraphs. Informally speaking, given a
specific class of combinatorial objects, a pattern can be thought of as an occurrence of a small
object inside a larger one; the word “inside” means that the pattern is suitably embedded into
the larger object, depending on the specific combinatorial class of objects. The main aim of the
present work is to introduce the notion of pattern in the context of lattice paths and to begin
its systematic study in the special case of Dyck paths.

For our purposes, a lattice path is a path in the discrete plane starting at the origin of a fixed
Cartesian coordinate system, ending somewhere on the x-axis, never going below the x-axis and
using only a prescribed set of steps Γ. We will refer to such paths as Γ-paths. This definition is
extremely restrictive if compared to what is called a lattice path in the literature, but it will be
enough for our purposes. Observe that a Γ-path can be alternatively described as a finite word
on the alphabet Γ obeying certain conditions. Using this language, we say that the length of a
Γ-path is simply the length of the word which encodes such a path. Among the classical classes
of lattice paths, the most common are those using only steps U(p) = (1, 1), D(own) = (1,−1)
and H(orizontal) = (1, 0); with these definitions, Dyck, Motzkin and Schröder paths correspond
respectively to the set of steps {U,D}, {U,H,D} and {U,H2, D}.

Consider the class PΓ of all Γ-paths, for some choice of the set of steps Γ. Given P,Q ∈ PΓ

having length k and n respectively, we say that Q contains (an occurrence of) the pat-
tern P whenever P occurs as a subword of Q. So, for instance, in the class of Dyck paths,
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UUDUDDUDUUDD contains the pattern UUDDUD, whereas in the class of Motzkin paths,
UUHDUUDHDDUDHUD contains the pattern UHUDDHUD. When Q does not contain
any occurrence of P we will say that Q avoids P . In the Dyck case, the previously considered
path UUDUDDUDUUDD avoids the pattern UUUUDDDD.

This notion of pattern gives rise to a partial order in a very natural way, by declaring
P ≤ Q when P occurs as a pattern in Q. In the case of Dyck paths, the resulting poset will be
denoted by D. It is immediate to notice that D has a minimum (the empty path), does not have
a maximum, is locally finite and is ranked (the rank of a Dyck path is given by its semilength).
As an example, in Figure 1 we provide the Hasse diagram of an interval in the Dyck pattern
poset.

Figure 1: An interval of rank 3 in the Dyck pattern poset.

Observe that this notion of pattern for paths is very close to the analogous notion for
words (considered, for instance, in [Bj], where the author determines the Möbius function of the
associated pattern poset). Formally, instead of considering the set of all words of the alphabet
{U,D}, we restrict ourselves to the set of Dyck words (so what we actually do is to consider a
subposet of Björner’s poset). However, the conditions a word has to obey in order to belong to
this subposet (which translate into the fact of being a Dyck word) make this subposet highly
nontrivial, and fully justify our approach, consisting of the study of its properties independently
of its relationship with the full word pattern poset.

2 The covering relation in the Dyck pattern poset

In the Dyck pattern poset D, following the usual notation for covering relation, we write
P ≺ Q (Q covers P ) to indicate that P ≤ Q and the rank of P is one less than the rank of Q
(i.e., rank(P ) = rank(Q)−1). Our first result concerns the enumeration of Dyck paths covered
by a given Dyck path Q. We need some notation before stating it. Let k + 1 be the number of
points of Q lying on the x-axis (call such points p0, p1, . . . , pk). Then Q can be factorized into
k Dyck factors F1, . . . , Fk, each Fi starting at pi−1 and ending at pi. Let ni be the number of
ascents in Fi (an ascent being a consecutive run of U steps; ni also counts both the number
of descents and the number of peaks in Fi). Moreover, we denote by |UDU | and |DUD| the
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number of occurrences in a Dyck path of a consecutive factor UDU and DUD, respectively. In
the path Q of Figure 2, we have n1 = 2, n2 = 1, n3 = 2, |UDU | = 3, and |DUD| = 2.

F
1

p
0

p
1

F
2

p
2

p
3

F
3

Figure 2: A Dyck path having three factors.

Proposition 2.1 If Q is a Dyck path with k factors F1, . . . Fk, with Fi having ni ascents, then
the number of Dyck paths covered by Q is given by∑k

i=1 ni
2 + (

∑k
i=1 ni)

2

2
− |UDU | − |DUD| . (1)

Proof. We proceed by induction on k. If Q is any Dyck path having only one factor (and
so necessarily n1 ascents), then a path P such that P ≺ Q is obtained by choosing (and then
removing) a U step and a D step from an ascent and a descent of Q, respectively. This can be
done in n2

1 different ways. Note that, once an ascent and a descent have been selected, the path
P is uniquely determined if each of the two steps U and D is chosen within the same ascent
and descent, respectively. Moreover, for each UDU (resp., DUD) occurring in Q, removing the
D step from the UDU (resp., the U step from the DUD) and a U (resp., D) step from the
ascent (resp., descent) either immediately before D (resp., U) or immediately after D (resp.,
U) produces the same path P covered by Q. Therefore, these paths would be counted twice if
the term n2

1 were not corrected by subtracting both |UDU | and |DUD|. This leads to formula
(1) in the case k = 1.

Now suppose that Q̃ is a Dyck path which has k > 1 factors F1, . . . , Fk, each factor Fi

having ni ascents. Let l be the total number of UDU and DUD (i.e. l = |UDU | + |DUD|) in
Q̃. If a new factor Fk+1 having nk+1 ascents and a total number lk+1 of UDU and DUD factors
is appended to Q̃ (after Fk), then the paths covered by the new path Q can be obtained by
removing a D step and a U step either both belonging to Q̃, or both belonging to Fk+1, or one
belonging to Q̃ and the other one belonging to Fk+1.

We start by supposing that the two factors Fk and Fk+1 are both different from UD. In
the first of the above cases, the number of covered paths is given by formula (1) thanks to our
inductive hypothesis (since the removal of the steps U and D involves only the first k factors
of the Dyck path). The second case is easily dealt with using the induction hypothesis as well,
namely applying the base case (k = 1) to the last factor Fk+1. Finally, concerning the last
case, notice that the step D must be removed from Q̃, and the step U must be removed from
Fk+1, otherwise the resulting path would fall below the x-axis. Then, the D step can be selected
from

∑k
i=1 ni different descents of Q̃, while the U step can be chosen among the steps of the

nk+1 ascents of Fk+1, leading to nk+1 ·
∑k

i=1 ni different paths covered by Q. Summing the
contributions of the three cases considered above, we obtain:

∑k
i=1 ni

2 + (
∑k

i=1 ni)
2

2
− l + n2

k+1 − lk+1 + nk+1

k∑
i=1

ni

=

∑k+1
i=1 ni

2 + (
∑k+1

i=1 ni)
2

2
− l − lk+1 . (2)
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However, we still have to take into account the cases in which Fk and/or Fk+1 are equal to
UD. If Fk = Fk+1 = UD, then in formula (2) we have to subtract 2 (since we have one more
factor UDU and one more factor DUD than those previously counted). In the remaining cases,
there is only one more factor (either UDU or DUD), thus in formula (2) we have to subtract
1. In all cases, what we get is precisely formula (1). �

In a similar fashion, we are also able to find a formula for the number of all Dyck paths
which cover a given path.

Proposition 2.2 If Q is a Dyck path of semilength n with k factors F1, . . . Fk, with Fi having
semilength fi, then the number of Dyck paths covering Q is given by

1 +
∑
i

f2
i +

∑
i<j

fifj . (3)

Proof. A path P covers Q if and only if it is obtained from Q by suitably inserting an up
step U and a down step D. Thus the set of all Dyck paths covering Q can be determined by
choosing, in all possible ways, two positions (inside Q) in which to insert an up step and a down
step. Clearly, in performing these insertions, we must take care not to fall below the x-axis.

Let P cover Q and denote with R the first occurrence (from the left) of Q in P . There are
precisely two steps in P (a U and a D) which do not belong to R. We distinguish three distinct
cases.

1. The last step of R is the third-to-last step of P (so that R is a prefix of P ). This means
that the two added steps are the last two steps of P (which therefore ends with UD), and
it is clear that there is precisely one path P covering Q which falls into this case.

2. The last step of R is the second-to-last step of P . This means that the D step inserted
into R is the last step of P . Thus P is obtained by inserting a U step somewhere in R
(except that at the end, since in this case we will return to the previous case). The number
of path P of this form is then given by the number of different places of R in which we
are allowed to insert a new up step. Since R is required to be the first occurrence of Q
in P , it can be shown that a new up step can be inserted immediately before each down
step of R. There are precisely n Dyck paths of this form.

3. The last step of R is the last step of P . In this case, P is obtained from R by suitably
inserting an up step and a down step. We can consider two distinct cases. If U and D are
inserted into the same factor of R, then we can either insert U before D or vice versa. In
this specific case, since R has to be the first occurrence of Q inside P , U can be inserted
immediately before each D step of the factor and D can be inserted immediately before
each U ; similarly, D can be inserted immediately before each U , except of course for the
very first step of the factor, moreover D can also be inserted at the end of the factor.
There is however one factor that behaves in a slightly different way. If we choose to insert
the two new steps into the last factor of P , then we cannot insert a D at the end of the
factor (since we are supposing that the last step of R is also the last step of P ). Thus,
if we insert U and D into the factor Fi, i < k, then we obtain f2

i different paths P of
this form, whereas if we insert U and D into Fk we get a total of fk(fk − 1) paths. So,
in this specific case, the total number of paths thus obtained is

∑k
i=1 f

2
i − fk. On the

other hand, if we choose to insert U and D into two distinct factors, then U must be
inserted before D (otherwise the resulting path would fall below the x-axis). If we decide
to insert D into the factor Fi, i < k (for which, by an argument similar to the above one,
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we have fi possibilities), then we can insert U into any of the preceding factors, whence
in
∑i−1

j=1 fj ways. Instead, if D is inserted into Fk, we only have fk − 1 possibilities, and

we can then insert U in any of the first k−1 factors, for a total of
∑k−1

j=1 fj different paths
thus obtained. Thus, in this last case, the total number of paths P having this form is

given by
∑k−1

i=1

(
fi ·
∑i−1

j=1 fj

)
+ (fk − 1) ·

∑k−1
j=1 fj .

Finally, summing up all the quantities obtained so far, we find the following expression for
the number of paths covering a given path Q:

1 + n+
k∑

i=1

f2
i − fk +

k∑
i=1

fi · i−1∑
j=1

fj

− k−1∑
i=1

fi

= 1 +
k∑

i=1

f2
i +

∑
i<j

fifj .

This is precisely formula (3). �

3 Enumerative results on pattern avoiding Dyck paths

In the present section we will be concerned with the enumeration of some classes of pattern
avoiding Dyck paths. Similarly to what has been done for other combinatorial structures, we
are going to consider classes of Dyck paths avoiding a single pattern, and we will examine the
cases of short patterns. Specifically, we will count Dyck paths avoiding any single path of length
≤ 3; each case will arise as a special case of a more general result concerning a certain class of
patterns.

Given a pattern P , we denote by Dn(P ) the set of all Dyck paths of semilength n avoiding
the pattern P , and by dn(P ) the cardinality of Dn(P ).

3.1 The pattern (UD)k

This is one of the easiest cases.

Proposition 3.1 For any k ∈ N, Q ∈ Dn((UD)k) if and only if Q has at most k − 1 peaks.

Proof. A Dyck path Q = Ua1Db1Ua2Db2 · · ·UahDbh contains the pattern (UD)k if and
only if h ≥ k, that is Q has at least k peaks. �

Since it is well known that the number of Dyck paths of semilength n and having k peaks
is given by the Narayana number Nn,k (sequence A001263 in [Sl]), we have that dn((UD)k) =∑k−1

i=0 Nn,i (partial sums of Narayana numbers). Thus, in particular:

- dn(UD) = 0;

- dn(UDUD) = 1;

- dn(UDUDUD) = 1 +
(
n
2

)
.
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3.2 The pattern Uk−1DUDk−1

Let Q be a Dyck path of length 2n and P = Uk−1DUDk−1. Clearly if n < k, then Q avoids
P , and if n = k, then all Dyck paths of length 2n except one (Q itself) avoid Q. Therefore:

• dn(P ) = Cn if n < k, and

• dn(P ) = Cn − 1 if n = k,

where Cn is the n-th Catalan number.
Now suppose n > k. Denote by A the end point of the (k − 1)-th U step of Q. It is easy to

verify that A belongs to the line r having equation y = −x+2k−2. Denote with B the starting
point of the (k− 1)-th-to-last D step of Q. An analogous computation shows that B belongs to
the line s having equation y = x− (2n− 2k + 2).

Depending on how the two lines r and s intersect, it is convenient to distinguish two cases.

1. If 2n − 2k + 2 ≥ 2k − 4 (i.e. n ≥ 2k − 3), then r and s intersect at height ≤ 1, whence
xA ≤ xB (where xA and xB denote the abscissas of A and B, respectively). The path Q
can be split into three parts (see Figure 3): a prefix QA from the origin (0, 0) to A, a path
X from A to B, and a suffix QB from B to the last point (2n, 0).

k − 1    D
 steps

k−
 −

1 
U

 st
ep

s

(2n,0)

P

AQ

Q B

X

(2k − 4,0)

r

s

(2k − 2,0)

2n − 2k + 2

A
B

Figure 3: Avoiding Uk−1DUDk−1, with n ≥ 2k − 3

We point out that QA has exactly k−1 U steps and its last step is a U step. Analogously,
QB has exactly k − 1 D steps and its first step is a D step. Notice that there is a clear
bijection between the set A of Dyck prefixes having k − 1 U steps and ending with a U
and the set B of Dyck suffixes having k − 1 D steps and starting with a D, since each
element of B can be read from right to left thus obtaining an element of A. Moreover, A
is in bijection with the set of Dyck paths of semilength k− 1 (just complete each element
of A with the correct sequence of D steps), hence |A| = Ck−1.

If we require Q to avoid P , then necessarily X = U iDj , for suitable i, j (for, if a valley
DU occurred in X, then Q would contain P since Uk−1 and Dk−1 already occur in QA

and QB, respectively). In other words, A and B can be connected only in one way, using
a certain number (possibly zero) of U steps followed by a certain number (possibly zero)
of D steps. Therefore, a path Q avoiding P is essentially constructed by choosing a prefix
QA from A and a suffix QB from B, whence:

dn(P ) = C2
k−1, (if n ≥ 2k − 3). (4)

2. Suppose now k+1 ≤ n < 2k−3 (which means that r and s intersect at height > 1). Then
it can be either xA ≤ xB or xA > xB.
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a) If xA ≤ xB, then we can count all Dyck paths Q avoiding P using an argument
analogous to the previous one. However, in this case the set of allowable prefixes of
each such Q is a proper subset of A. More specifically, we have to consider only those
for which xA = k−1, k, k+1, . . . , n (see Figure 4). In other words, an allowable prefix
has k − 1 U steps and 0, 1, 2, . . . or n− k + 1 D steps. If bi,j denotes the numbers of

k 
− 1

 U
 st

ep
s k − 1   D

 steps

P

A

B

X=U  D
i j

Q
B

Q
A

r
s

2n − 2k + 2

(2k − 4,0) (2k − 2,0) (2n,0)

Figure 4: Avoiding Uk−1DUDk−1, with xA ≤ xB

Dyck prefixes with i U steps and j D steps (i ≥ j), then the contribution to dn(P )
in this case is

d(1)
n (P ) =

n−k+1∑
j=0

bk−2,j

2

.

The coefficients bi,j are the well-known ballot numbers (sequence A009766 in [Sl]),
whose first values are reported in Table 1.

b) If xA > xB, then it is easy to see that Q necessarily avoids P , since A clearly occurs
after B, and so there are strictly less than k − 1 D steps from A to (2n, 0). Observe
that, in this case, the path Q lies below the profile drawn by the four lines y = x, r,
s and y = −x + 2n. In order to count these paths, referring to Figure 5, just split
each of them into a prefix and a suffix of equal length n and call C the point having
abscissa n.

P

A

B

C

(n, 2k−2)

(2n,0)

s

r

Figure 5: Avoiding Uk−1DUDk−1, with xA > xB

Since C must lie under the point where r and s intersect, then its ordinate yC equals
−n+ 2k − 2− 2t with t ≥ 1 (and also recalling that yC = −n+ 2k − 2− 2t ≥ 0). A
prefix whose final point is C has k − j U steps and n − k + j D steps, with j ≥ 2.
Since, in this case, a path Q avoiding P is constructed by gluing a prefix and a suffix
chosen among bk−j,n−k+j possibilities (j ≥ 2), we deduce that the contribution to
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HHH
HHHi

j
0 1 2 3 4 5 6 7 8 9

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430
9 1 9 44 154 429 1001 2002 3432 4862 4862

Table 1: The sum of the gray entries gives the bold entry in the line below. The sum of the
squares of the bold entries gives an appropriate element of Table 2.

dn(P ) in this case is:

d(2)
n (P ) =

∑
j≥2

b2k−j,n−k+j .

Summing up the two contributions we have obtained in a) and b), we get:

dn(P ) = d(1)
n (P ) + d(2)

n (P )

=

n−k+1∑
j=0

bk−2,j

2

+
∑
j≥2

b2k−j,n−k+j , if k + 1 ≤ n < 2k − 3. (5)

Notice that formula (5) reduces to the first sum if n ≥ 2k−3, since in that case n−k+ j >
k − j, for j ≥ 2. We then have a single formula including both cases 1. and 2.:

dn(P ) =

n−k+1∑
j=0

bk−2,j

2

+
∑
j≥2

b2k−j,n−k+j , if n ≥ k + 1 . (6)

Formula (6) can be further simplified by recalling a well known recurrence for ballot num-
bers, namely that

bi+1,j =

j∑
s=0

bi,s.

Therefore, we get the following interesting expression for dn(P ) (when n ≥ k + 1) in terms
of sums of squares of ballot numbers along a skew diagonal (see also Tables 1 and 2):

dn(P ) =
∑
j≥1

b2k−j,n−k+j . (7)

Therefore we obtain in particular:

dn(UUDUDD) = 4, when n ≥ 3.
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HHH
HHk
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
3 1 1 2 4 4 4 4 4 4 4 4 4 4 4 . . .
4 1 1 2 5 13 25 25 25 25 25 25 25 25 25 . . .
5 1 1 2 5 14 41 106 196 196 196 196 196 196 196 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 1764 1764 1764 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 17424 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Table 2: Number of Dyck paths of semilength n avoiding Uk−1DUDk−1. Entries in boldface are
the nontrivial ones (k + 1 ≤ n < 2k − 3).

HH
HHHk

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
3 1 1 2 4 4 0 0 0 0 0 0 0 0 0 . . .
4 1 1 2 5 13 25 25 0 0 0 0 0 0 0 . . .
5 1 1 2 5 14 41 106 196 196 0 0 0 0 0 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 0 0 0 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 0 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Table 3: Number of Dyck paths of semilength n avoiding UkDk. Entries in boldface are the
nontrivial ones (k + 1 ≤ n < 2k − 3).

3.3 The pattern UkDk

The case P = UkDk is very similar to the previous one. We just observe that, when
xA ≤ xB, the two points A and B can be connected only using a sequence of D steps followed
by a sequence of U steps. This is possible only if n ≤ 2k − 2, which means that r and s do not
intersect below the x-axis. Instead, if n ≥ 2k− 1, Q cannot avoid P . Therefore we get (see also
Table 3):

dn(P ) =

{
0 if n ≥ 2k − 1;∑

j≥1 b
2
k−j,n−k+j otherwise.

In particular, we then find:

- dn(UUDD) = 0, when n ≥ 3;

- dn(UUUDDD) = 0, when n ≥ 5.

3.4 The pattern Uk−1Dk−1UD

This is by far the most challenging case.
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Let Q be a Dyck path of length 2n and P = Uk−1Dk−1UD. If Q avoids P , then there are
two distinct options: either Q avoids Uk−1Dk−1 or Q contains such a pattern. In the first case,
we already know that dn(Uk−1Dk−1) is eventually equal to zero. So, for the sake of simplicity,
we will just find a formula for dn(P ) when n is sufficiently large, i.e. n ≥ 2k − 3. Therefore, for
the rest of this section, we will suppose that Q contains Uk−1Dk−1.

The (k − 1)-th D step of the first occurrence of Uk−1Dk−1 in Q lies on the line having
equation y = −x + 2n. This is due to the fact that Q has length 2n and there cannot be
any occurrence of UD after the first occurrence of Uk−1Dk−1. The path Q touches the line of
equation y = −x+ 2k− 2 for the first time with the end point A of its (k− 1)-th U step. After
that, the path Q must reach the starting point B of the (k − 1)-th D step occurring after A.
Finally, a sequence of consecutive D steps terminates Q (see Figure 6). Therefore, Q can be
split into three parts: the first part, from the beginning to A, is a Dyck prefix having k − 1 U
steps and ending with a U step; the second part, from A to B, is a path using n − k + 1 U
steps and k− 2 D steps; and the third part, from B to the end, is a sequence of D steps (whose
length depends on the coordinates of A). However, both the first and the second part of Q have
to obey some additional constraints.

k 
− 1

 U
 st

ep
s

n−
k+

1 
U

 s
te

ps

k−
2 D

 stepsP

y = − x + 2k − 2

( k−1) − th D step of the first occurrence of P
B

A

y = − x + 2n

Figure 6: A path Q avoiding P = Uk−1Dk−1UD

The height of the point A (where the first part of Q ends) must allow Q to have at least
k− 1 D steps after A. Thus, the height of A plus the number of U steps from A to B minus the
number of D steps from A to B must be greater than or equal to 1 (to ensure that the pattern
Uk−1Dk−1 occurs in Q). Hence, denoting with x the maximum number of D steps which can
occur before A, either x = k − 2 or the following equality must be satisfied:

(k − 1)− x+ (n− k + 1)− (k − 2) = 1.

Therefore, x = min{n − k + 1, k − 2}. Observe however that, since we are supposing that
n ≥ 2k − 3, we always have x = k − 2.

Concerning the part of Q between A and B, since we have to use n − k + 1 U steps and
k− 2 D steps, there are

(
n−1
k−2

)
distinct paths connecting A and B. However, some of them must

be discarded, since they fall below the x-axis. In order to count these “bad” paths, we split
each of them into two parts. Namely, if A′ and B′ are the starting and ending points of the
first (necessarily D) step below the x-axis, the part going from A to A′, and the remaining part
(see Fig. 7). It is not too hard to realize that the number of possibilities we have to choose the
first part is given by a ballot number (essentially because, reading the path from right to left,
we have to choose a Dyck prefix from A′ to A), whereas the number of possibilities we have
to choose the second part is given by a binomial coefficient (essentially because, after having
discarded the step starting at A′, we have to choose an unrestricted path from B′ to B). After
a careful inspection, we thus get to the following expression for the total number dn(P ) of Dyck
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Figure 7: A forbidden subpath from A to B.

HHH
HHHk
n

0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 2 4 6 8 10 12 14 16
4 1 1 2 5 13 28 48 73 103 138
5 1 1 2 5 14 41 110 245 450 739
6 1 1 2 5 14 42 131 397 1069 2427

Table 4: Avoiding Uk−1Dk−1UD

paths of semilength n ≥ 2k − 3 avoiding P :

dn(P ) =

(
n− 1

k − 2

)
Ck−1

−
k−2∑
s=2

bk−2,s ·

(
s−2∑
i=0

bk−3−i,s−2−i

(
n− k − s+ 3 + 2i

i

))
. (8)

Formula (8) specializes to the following expressions for low values of k (see also Table 4):

- when k = 3, dn(P ) = 2n− 2 for n ≥ 3;

- when k = 4, dn(P ) = 5n2−15n+6
2 for n ≥ 5;

- when k = 5, dn(P ) = 14n3−84n2+124n−84
6 for n ≥ 7.

4 Some remarks on the asymptotics of pattern avoiding Dyck
paths

In this final section we collect some thoughts concerning the asymptotic behavior of integer
sequences counting pattern-avoiding Dyck paths. Unlike the case of permutations, for Dyck
paths it seems plausible that a sort of “master theorem” exists, at least in the case of single
avoidance. This means that all the sequences which count Dyck paths avoiding a single pattern
P have the same asymptotic behavior (with some parameters, such as the leading coefficient,
depending on the specific path P ). We have some computational evidence which leads us to
formulate a conjecture, whose proof we have not been able to complete, and so we leave it as
an open problem.
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Let P denote a fixed Dyck path of semilength x. We are interested in the behavior of dn(P )
when n→∞. Our conjecture is the following:

Conjecture. Suppose that P starts with a U steps and ends with b D steps. Then, setting
k = 2x− 2− a− b, we have that dn(P ) is asymptotic to

αP · Ca · Cb

k!
nk,

where Cm denotes the m-th Catalan numbers and αP is the number of saturated chains in the
Dyck lattice of order x (see [FP]) from P to the maximum UxDx.

Equivalently, αP is the number of standard Young tableaux whose Ferrers shape is deter-
mined by the region delimited by the path P and the path UxDx, as shown in Figure 8.
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33 3231
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23 22 20

1918 171615

14 12 11
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5 4

3

1

2

13

21

29
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Figure 8: An instance of a standard Young tableau determined by a Dyck path.

In the above conjecture, the only parts of the formula we are able to justify are the coef-
ficients Ca and Cb. Indeed, suppose that Q is a Dyck path of semilength n, with n very large.
Then we can consider the minimum prefix Qpref of Q containing exactly a U steps and the
minimum suffix Qsuff of Q containing exactly b D steps. They certainly exist, due to the hy-
pothesis that n is very large. As we have already shown in the previous section, the number
of Dyck prefixes having a U steps and ending with U is precisely equal to Ca. Of course, an
analogous fact holds for suffixes as well.

We close our paper with some further conjectures concerning the order structure of the
Dyck pattern poset.

• What is the Möbius function of the Dyck pattern poset (from the bottom element to a
given path? Of a generic interval?)?

• How many (saturated) chains are there up to a given path? Or in a general interval?

• Does there exist an infinite antichain in the Dyck pattern poset?

The last conjecture has been suggested by an analogous one for the permutation pattern
poset which has been solved in the affirmative (see [SB] and the accompanying comment). In
the present context we have no intuition on what could be the answer, though we are a little
bit less optimistic than in the permutation case.
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