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Abstract

We show that the counting sequence for permutations avoiding both of the (clas-

sical) patterns 1243 and 2134 has the algebraic generating function supplied by

Vaclav Kotesovec for sequence A164651 in The On-Line Encyclopedia of Integer

Sequences.

1 Introduction

Several authors have developed methods to count permutations avoiding a given set of

patterns; see, for example, the references in the Wikipedia entry [1]. In particular, enu-

meration schemes have been developed for automated counting [2, 3]. When successful,

an automated method produces an enumeration scheme that yields the initial terms of

the counting sequence (perhaps 20 or more) and sometimes these terms appear to have an

algebraic generating function that does not follow readily from the enumeration scheme.

Here, we treat one such case. The counting sequence for permutations that avoid both of

the (classical) patterns 1243 and 2134 begins 1, 2, 6, 22, 87, 354, . . . , sequence A164651

in The On-Line Encyclopedia of Integer Sequences [4]. In a comment on this sequence

dated Oct 24 2012, Vaclav Kotesovec observed that the generating function

3x2 − 9x+ 2 + x(1− x)
√

1− 4x

2(x− 1)(x2 + 4x− 1)

fits the known terms of the sequence.

We will show that {1243, 2134}-avoiders do indeed have this generating function.

Defining a start-small permutation to be one that does not start with its largest entry,

the proof rests on a bijection φ from start-small {1243, 2134}-avoiders of length n to lists

of start-small 123-avoiders whose total length is n − 1 + the length of the list. Under

this bijection φ, for example, 12345→ (12, 12, 12, 12), a list of length 4 with total length

of its entries = 8, and 3412 → (3412), a singleton list. Now, 123-avoiders are famously
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counted by the Catalan numbers and the well known combinatorial interpretation of the

transform (an)n≥1 → (bn)n≥1, defined via generating functions by

1 +B(x) =
1

1− A(x)
,

permits counting these lists of start-small 123-avoiders. The generating function for start-

small {1243, 2134}-avoiders thus obtained readily yields the generating function for un-

restricted {1243, 2134}-avoiders.

In Section 2, we show that φ is given by iteration of a more basic bijection, which

is presented in Section 3. Finally, Section 4 gives the bookkeeping details to obtain the

desired generating function from φ.

2 Reduction of problem

A mid-123 entry in a permutation is an entry that serves as the “2” in a 123 pattern.

A key mid-123 entry is a mid-123 entry b whose immediate predecessor is either < b or a

right-to-left maximum (max for short). For example, the mid-123 entries in 1 3 4 5 2 6 are

3, 4, 5, 2 but only 3, 4, and 5 are key.

Lemma 1. A permutation with no key mid-123 entries has no mid-123 entries at all and

so is a 123-avoider.

Proof. Suppose the ith entry πi of a permutation π is a mid-123 entry but not key.

Then, by definition of key, we have πi−1 > πi and πi−1 is not a right-to-left max. So

πi−1 is also a mid-123 entry. Again, if πi−1 is not key, then πi−2 > πi−1 and πi−2 is not

a right-to-left max. Iterating this process, we must eventually arrive at a key mid-123

entry. Hence, every permutation with a mid-123 entry has a key mid-123 entry .

Lemma 2. Suppose b is the last mid-123 entry in a {1243, 2134}-avoider. Then there is

a unique c such that bc forms the “ 23” of a 123 pattern.

Proof. Suppose abc and abc′ are 123 patterns with c 6= c′, say c < c′. If c precedes

c′ in the permutation, then c is a mid-123, violating the hypothesis on b. If c follows c′,

then abc′c is a proscribed 1243.

Let An denote the set of start-small {1243, 2134}-avoiders on [n], and An,k the subset

with k key mid-123 entries.
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To produce the promised bijection φ from An to lists of start-small 123-avoiders whose

total length is n − 1 + the length of the list, it suffices to exhibit, for 0 ≤ k ≤ n − 2, a

bijection

An,k →
{

(σ1, . . . , σk+1) : each σi is a start-small 123-avoider,

lengths of the σi’s sum to n+ k
}
.

For k = 0, naturally the bijection is π → (π), a singleton list, because, by Lemma 1, π is

already 123-avoiding. For 1 ≤ k ≤ n− 2 and k + 1 ≤ j ≤ n− 1 let

An,k,j = {π ∈ An,k : the last mid-123 entry of π is in position j}.

The result of the next Section extracts from a start-small {1243, 2134}-avoider that does

contain 123’s two {1243, 2134}-avoiders, both start-small, the first with one fewer key

mid-123 entries than the original and the second with no key mid-123 entries. Iteration

then gives the desired bijection φ.

3 The crucial bijection

Proposition 3. For 1 ≤ k < j ≤ n− 1, there is a bijection

An,k,j → Aj, k−1 ×An+1−j, 0 .

Proof. Given π ∈ An,k,j, we need to reversibly produce σ1 ∈ Aj, k−1 and σ2 ∈ An+1−j, 0.

Write π as τ1bτ2 where b is the last mid-123 entry in π, and let abc be the 123 pattern

in π with smallest a (c is uniquely determined by Lemma 2). Concatenate a and τ2 and

standardize (replace smallest entry by 1, next smallest by 2, and so on) to get the desired

σ2 with no 123’s.

Concatenate τ1 and c to get a {1243, 2134}-avoider ρ—a candidate (after standard-

ization) for σ1. This ρ may need further processing because of two glitches: ρ may still

have k key mid-123’s instead of the required k − 1 and ρ cannot end with its smallest

entry (which must be possible in σ1). But these glitches cancel out.

If b is a key mid-123 in π, then ρ has k − 1 key mid-123’s because b has been lost. In

this case, just standardize ρ to get σ1. Otherwise, the last entry of τ1 exceeds b but is not

a right-to-left max. Delete from ρ the longest terminal string of τ1 that is decreasing but

does not contain a right-to-left max of π (equivalently, does not contain an entry > c);
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say r ≥ 1 entries are deleted. Add r to each remaining entry of ρ, append the entries

r, r − 1, . . . , 1 and standardize to obtain σ1.

For example, for π = 11 2 12 9 7 8 4 5 6 1 10 3, we find that the last mid-123, b = 6,

is a key mid-123, and a = 2, c = 10. So σ2 = standardize(2 1 10 3) = 2 1 4 3 and σ1 =

standardize(11 2 12 9 7 8 4 5 10) = 8 1 9 6 4 5 2 3 7.

As another example, for π = 13 16 12 3 15 8 9 10 11 7 6 5 2 1 14 4, we find that the last

mid-123, b = 5, is not key, and a = 3, c = 14. So σ2 = standardize(3 2 1 14 4) = 3 2 1 5 4.

Here, τ1 = 13 16 12 3 15 8 9 10 11 7 6 and the longest decreasing terminal string of τ1

that does not contain a right-to-left max of π has length r = 3. So σ1 = standardize(3 +

(13 16 12 3 15 8 9 10 11 7 6 14) 3 2 1) = standardize(16 19 15 6 18 11 12 13 17 3 2 1) =

9 12 8 4 11 5 6 7 10 3 2 1.

The invertibility of this map rests on structural properties of {1243, 2134}-avoiders

evident in the matrix diagrams above: consider scanning the entries leftward from the

last mid-123 entry b. In case b is key, as long as these entries decrease, they decrease by

1 (in square box at center of yellow region). In case b is not key, they increase by 1 until

either an entry > c, a decrease, or a jump > 1 to an entry < c occurs. In the latter case,

the “missing” entries in the jump occur in increasing order immediately to the left of the

jump (again in square box at center of yellow region). In both cases, the gray regions

are empty except for the “a” and “c”, and the yellow square box is bisected by the main

diagonal.

The preceding observations, all immediate consequences of the patterns 1243 and 2134
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being proscribed and b being the last mid-123, validate the following description of the

inverse map. For a permutation σ, we use σ[j] to denote the entry in position j and σ[j, k]

to denote the list of entries occupying positions j through k.

Suppose given a {1243, 2134}-avoider σ1 and a 123-avoider σ2 and we wish to recapture

π. We have n = length(σ1) + length(σ2) − 1 and j = length(σ1). Define the integer r

by writing σ1 in the form µ, r, r − 1, . . . , 2, 1 with r maximal, where it is understood

that µ is σ1 and r is 0 if σ1 does not end with 1. Set p = j − r, the length of µ, and

q = length(σ2)− 1. The positions i and k of the “a” and “c” respectively in π are given

by i = position in µ of its minimum entry, and k = j− 1 + position in σ2 of its maximum

entry. The values of “a” and “c” are recaptured as a = σ2[1] and c = σ1[p] + q. Define s

to be the length of the longest increasing terminal string in σ1[i+ 1, p].

Now concatenate the strings

σ1[1, p−s] + q, σ1[p−s+1, p−1] + q−1, n−j+r+s, σ1[p+1, j] + q, σ2[2, q+1],

where the next to last string is empty when p = j, equivalently, when r = 0.

Finally, to obtain π from the resulting string, overwrite, with a and c respectively, the

entries in the positions that a and c should occupy, namely, positions i and k.

For instance, the second example above yielded

σ1 = 9 12 8 4 11
←−
5

s
6 7
−→
10
←−
3
r
2
−→
1 , σ2 = 3 2 1 5 4 ,

and, to reverse the map, we find n = 16, j = 12, r = 3, p = 9, q = 4, s = 4, i = 4, k =

(j − 1) + 4 = 15, a = σ2[1] = 3, c = σ1[9] + 4 = 14. The strings to be concatenated are

(9 12 8 4 11) + 4, (5 6 7) + 3, 11, (3 2 1) + 4, (2 1 5 4) ,

yielding

13 16 12 8 15 8 9 10 11 7 6 5 2 1 5 4 ,

with entries in positions i = 4 and k = 15 crossed out. Replace them with a = 3 and

c = 14, respectively, to recover π.

4 Putting it all together

A k-list is a list of length k. Recall that if A is a class (species) of combinatorial structures

with an structures of size n (n ≥ 1), and a compositional A-structure of size n is one
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obtained by taking a composition (n1, n2, . . . , nk) of n and forming a k-list of A-structures

of respective sizes n1, n2, . . . , nk, then the counting sequence (bn)n≥1 for compositional A-

structures has generating function B(x) :=
∑

n≥1 bnx
n given by

1 +B(x) =
1

1− A(x)
,

where A(x) is the generating function for A-structures. This is known as the INVERT

transform [5] but bearing the combinatorial interpretation in mind, it could as well be

called the Compositional transform. We will apply it to the class of (nonempty) start-small

123-avoiders with size measured as “length minus 1” (note that there is no start-small

123-avoider of length 1).

With C(x) := 1−
√
1−4x
2x

denoting the generating function for the Catalan numbers Cn,

which are well known to count Dyck paths of n upsteps, we compute

[xn]C(x)3 = # ordered triples (P,Q,R) of Dyck paths with a total of n upsteps

= # Dyck paths of n+ 2 upsteps that start UU
(
(P,Q,R)→ UUPDQDR

)
= # start-small 123-avoiders on [n+ 2] (via Krattenthaler’s bijection [6]) .

Thus,

[xn]xC(x)3 = [xn−1]C(x)3 = # start-small 123-avoiders on [n+ 1]

= # start-small 123-avoiders of size n ,

and, using the Compositional transform, we have for n ≥ 1,

[xn]
1

1− xC(x)3
= # lists of start-small 123-avoiders of total size n

=
n∑

k=1

# k-lists of start-small 123-avoiders of total length n+ k .

Hence, for n ≥ 2,

[xn]
x

1− xC(x)3
=

n−1∑
k=1

# k-lists of start-small 123-avoiders of total length n− 1 + k

= # start-small {1243, 2134}-avoiders of length n (via the bijection φ) ,

from which it is immediate that the generating function for start-small {1243, 2134}-
avoiders (with x marking length) is

G(x) = 1 +
x

1− xC(x)3
− x .
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Now let (un)n≥0 = (1, 1, 2, 6, . . . ) and (vn)n≥0 = (1, 0, 1, 4, . . . ) denote the counting

sequences for {1243, 2134}-avoiders and start-small {1243, 2134}-avoiders respectively.

Clearly, vn = un−un−1 for n ≥ 1, (consider deletion of the first entry from a {1243, 2134}-
avoider on [n] that starts n). So the generating functions F (x) =

∑
n≥0 unx

n and

G(x) =
∑

n≥0 vnx
n are related by F (x) = G(x)/(1− x). Thus

F (x) =
G(x)

1− x
=

1 + x
1−xC(x)3

− x
1− x

which, after expansion, agrees with Kotesovec’s formula.

Losonczy [7] has counted permutations that avoid 3421, 4312 and 4321 or equivalently

(by reversal) both of the patterns treated here and 1234.
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