
ar
X

iv
:1

30
3.

41
73

v1
  [

m
at

h-
ph

]  
18

 M
ar

 2
01

3 Combinatorial expressions of the solutions to initial value
problems of the discrete and ultradiscrete Toda molecules

Shuhei Kamioka and Tomoaki Takagaki
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University, Kyoto, Japan, 606-8501

Abstract. Combinatorial expressions are presented to the solutions to initial value problems
of the discrete and ultradiscrete Toda molecules. For the discrete Toda molecule, a subtraction-
free expression of the solution is derived in terms of non-intersecting paths, for which two
results in combinatorics, Flajolet’s interpretation of continued fractions and Gessel–Viennot’s
lemma on determinants, are applied. By ultradiscretizing the subtraction-free expression, the
solution to the ultradiscrete Toda molecule is obtained. Itis finally shown that the initial value
problem of the ultradiscrete Toda molecule is exactly solved in terms of shortest paths on a
specific graph.

PACS numbers: 02.30.Ik, 04.20.Ex, 05.45.Yv

1. Introduction

The Toda molecule [1] is a semi-infinite version of the Toda lattice [2]. As is the Toda lattice,
the Toda molecule is known as a typical example of integrablesystems which has, despite its
nonlinearity, an exact solution in terms of Hankel determinants. Thediscrete Toda molecule
is a discrete analogue of the Toda molecule which is derived in [3] by using the bilinear
formalism. The discrete Toda molecule is a discrete integrable system which possesses a
Hankel determinant solution analogous to the Toda molecule.

The discrete Toda molecule is also derived by using the Lax formalism [4, 5], in which a
connection with orthogonal polynomials is exploited to deduce the time evolution equations
of the discrete Toda molecule

q(t+1)
n + e(t+1)

n = q(t)
n + e(t)

n+1, (1a)

q(t+1)
n e(t+1)

n+1 = q(t)
n+1e(t)

n+1, (1b)

e(t)
0 = 0 for t ∈ Z, n ∈ N0. (1c)

In numerical algorithms, the equations (1) are known as recurrence equations of theqd
algorithm, which is used for computing Padé approximants of analyticfunctions (see, e.g.,
[6]), and for computing eigenvalues of tridiagonal matrices (see, e.g., [7]). In the study
of pure combinatorics, Viennot [8] applied the qd algorithmto a combinatorial problem
of enumerating configurations of non-intersecting paths. From the viewpoint of dynamical
systems, Viennot’s combinatorial result is observed as solving an initial value problem of the
discrete Toda molecule (1) from particular initial value.

In recent progress of investigating integrable systems, much attention has been given to
ultradiscrete integrable systems, especially since the discovery of a direct connection between
discrete integrable systems and soliton cellular automata[9]. A general method to derive an
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ultradiscrete integrable system from a discrete integrable system is calledultradiscretization.
For the discrete Toda molecule (1),ultradiscretizationis performed as follows [10]: Introduce
new dependent variablesQ(t)

n , E(t)
n by q(t)

n = exp(−Q(t)
n /ε), e(t)

n = exp(−E(t)
n /ε) with a parameter

ε > 0, and take the limitε→ 0. The equations (1) then tend to theultradiscrete Toda molecule

Q(t+1)
n = min















n
∑

k=0

Q(t)
k −

n−1
∑

k=0

Q(t+1)
k ,E(t)

n+1















, (2a)

E(t+1)
n+1 = Q(t)

n+1 − Q(t+1)
n + E(t)

n+1, for t ∈ Z, n ∈ N0. (2b)

It is shown in [10] that the ultradiscrete Toda molecule (2) describes the dynamics of a box-
ball system.

In this paper, we examine the initial value problems of the discrete and ultradiscrete
Toda molecules, (1) and (2), for which the initial value is given att = 0. Obviously, one
can exactly solve the problems in the following sense: At anytime t ∈ N0 and any site
n ∈ N0, the exact value of each dependent variable can be calculated from the initial value
in finitely many arithmetic and minimizing operations. However, it is still nontrivial how
to formulate the solutions since the equations are nonlinear. The aim of this paper is to
derive an exact expression of the solutions to the initial value problems purely in terms of
the initial value. In order to formulate the solutions, we will utilize combinatorial objects,
non-intersecting paths and shortest paths on a graph, in view of the combinatorial results
on paths: Flajolet’s interpretation of continued fractions [11] and Gessel–Viennot’s lemma
[12, 13] on determinants.

This paper is organized as follows. In section 2, we review a determinant solution to the
discrete Toda molecule, based on which, in section 3, we combinatorially formulate an exact
expression of the solution to the initial value problem of the discrete Toda molecule in terms
of non-intersecting paths. In section 4, we derive the solution to the initial value problem of
the ultradiscrete Toda molecule by ultradiscretizing the solution to the discrete Toda molecule
obtained in section 3. Further combinatorial observationslead us to a simpler expression of
the solution in terms of shortest paths on a specific graph. Section 5 is devoted to concluding
remarks.

2. Determinant solution to the discrete Toda molecule

In section 2, we give a brief review on a determinant solutionto the discrete Toda lattice
together with bilinear equations associated with the discrete and ultradiscrete Toda molecules.
See, e.g., [14, 10] for detailed explanations. Based on the determinant solution, in the
subsequent sections, we will examine initial value problems of the discrete and ultradiscrete
Toda molecules.

We introduce a tau functionτ(t)
n of the discrete Toda molecule (1) by the variable

transformation

q(t)
n =

τ
(t+1)
n+1 τ

(t)
n

τ
(t+1)
n τ

(t)
n+1

, e(t)
n+1 =

τ
(t+1)
n τ

(t)
n+2

τ
(t+1)
n+1 τ

(t)
n+1

, n ∈ N0, (3)

for which we assume the boundary condition thatτ
(t)
0 = 1. We then obtain from (1) a bilinear

equation of the discrete Toda molecule,

τ
(t+1)
n+1 τ

(t−1)
n+1 = τ

(t+1)
n τ

(t−1)
n+2 + τ

(t)
n+1τ

(t)
n+1, n ∈ N0. (4)
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To the bilinear equation (4), we have an exact solution in theHankel determinant of sizen

τ(t)
n = det(f (t)

j+k)
n−1
j,k=0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f (t)
0 f (t)

1 · · · f (t)
n−1

f (t)
1 f (t)

2 · · · f (t)
n

...
...

. . .
...

f (t)
n−1 f (t)

n · · · f (t)
2n−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5a)

where f (t)
n is an arbitrary function subject to the lineardispersion relation

f (t+1)
n = f (t)

n+1, n ∈ N0. (5b)

(The determinant of size zero is assume to be unity conventionally.) We can verify the solution
(5) by means of Sylvester’s determinant identity. Substituting the determinant (5a) to (3), we
obtain an exact solution to the discrete Toda molecule (1).

We can derive a bilinear equation of the ultradiscrete Toda molecule (2) by
ultradiscretizing the procedure for the discrete Toda molecule: Introducing a tau function
T(t)

n by

Q(t)
n = T(t+1)

n+1 + T(t)
n − T(t+1)

n − T(t)
n+1, (6a)

E(t)
n+1 = T(t+1)

n + T(t)
n+2 − T(t+1)

n+1 − T(t)
n+1, n ∈ N0, (6b)

with T(t)
0 = 0, we then obtain from (2) a bilinear equation of the ultradiscrete Toda molecule,

T(t+1)
n+1 + T(t−1)

n+1 = min {T(t+1)
n + T(t−1)

n+2 , 2T(t)
n+1}, n ∈ N0. (7)

The equations (6), (7) for the ultradiscrete Toda molecule are obtained by
ultradiscretizing the corresponding (3), (4) for the discrete Toda molecule: Assume that
q(t)

n = exp(−Q(t)
n /ε), e(t)

n = exp(−E(t)
n /ε), τ

(t)
n = exp(−T(t)

n /ε) with ε > 0 and take the limit
ε → 0. Then, the equations (3), (4) tend to (6), (7), respectively. The limiting procedure in
ultradiscretization replaces the operations×, /, + with +, −, min, respectively, for we have

− ε log(e−X/ε × e−Y/ε) = X + Y, (8a)

−ε log(e−X/ε/e−Y/ε) = X − Y, (8b)

−ε log(e−X/ε
+ e−Y/ε)→ min {X,Y} asε→ 0. (8c)

However, the counterpart of subtraction,−, does not exist since the limit ofε log(e−X/ε−e−Y/ε)
as ε → 0 is undetermined. Commonly, we cannot ultradiscretize equations containing
subtractions. Especially, we cannot directly ultradiscretize the determinant solution (5)
because we may encounter subtractions in expanding the determinant. In section 3, we derive
a subtraction-freeexpression of the determinant solution (5) to which ultradiscretization is
directly applicable.

3. Initial value problem of the discrete Toda molecule

As an initial value problem of the discrete Toda molecule, weconsider the following:
For the discrete Toda molecule (1), let us write the initial value at t= 0

q(0)
n = a2n, e(0)

n+1 = a2n+1, n ∈ N0. (9)

Then, for every t∈ N0, find the exact value of q(t)
n , e(t)

n+1, n ∈ N0, uniquely determined from (1)
in terms of the initial value an.

To the qd algorithm for Padé approximants whose recurrenceequations are given by (1),
a combinatorial interpretation was given by Viennot [8], inwhich a combinatorial expression
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Figure 1. A positive grounded pathP of stepsUUDDUUUDDUDD. The label of each step,
an or 1, is shown below the step. The pathP weighsw(P) = a2

0a3
1a2.

of the determinant (5a) is formulated in terms of non-intersecting paths. The fundamental
idea used in section 3 comes from Viennot’s approach to the qdalgorithm.

The discrete Toda molecule (1) is linearized in the following sense: The nonlinear system
(1) for q(t)

n , e(t)
n reduces into the linear system (5b) forf (t)

n through the dependent variable
transformations (3) and (5a) via the tau functionτ(t)

n . We can thus evaluate the time evolution
of the discrete Toda molecule by the dispersion relation (5b) whose initial value problem is
exactly solved by

f (t)
n = f (0)

t+n, t, n ∈ N0. (10)

The initial value problem therefore amounts to the following two subproblems:

(i) Find the initial valuef (0)
n of f (t)

n at t = 0 in terms ofan from (9), (3) and (5).

(ii) Find the value of the determinant (5a) to evaluate the tau functionτ(t)
n for eacht ∈ N0.

In order to solve the subproblem (i), we utilize Flajolet’s combinatorial interpretation of
continued fractions [11]: Let us consider apath Pin Z2 consisting ofup steps U= (1, 1) and
down steps D= (1,−1). We say thatP is positiveif P never goes beneath thex-axis,y = 0.
(A positive path can touch thex-axis.) We say thatP is groundedif both the two ends, the
initial and terminal points, ofP are on thex-axis. Figure 1 shows an example of a positive
grounded pathP. We label each step inP by an if the step is an up step ascending from the
line y = n and by unity if a down step. We then define the weightw(P) of P by the product of
the labels of all the steps inP. For example, the pathP in figure 1 weighsw(P) = a2

0a
3
1a2. We

conventionally assume the weight of empty paths of no steps to be unity. We refer byD(P) to
the number of down steps inP.

Lemma 1 (Flajolet [11]). It holds that
∑

P

w(P)zD(P)
=

1

1−
a0z

1−
a1z

1−
a2z

1− · · ·

(11)

where the (formal) sum in the left-hand side is taken over allthe positive grounded paths P
whose initial point is fixed at(0, 0).

The subproblem (i) asks us to solve the system of equations

a2n =
∆
′
n+1∆n

∆′n∆n+1
, a2n+1 =

∆
′
n∆n+2

∆
′
n+1∆n+1

, n ∈ N0, (12a)

for f (0)
n , n ∈ N0, where∆n and∆′n denote the determinants of sizen

∆n = det(f (0)
j+k)

n−1
j,k=0, ∆

′
n = det(f (0)

j+k+1)n−1
j,k=0. (12b)
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In the theory of Padé approximants (see, e.g., [6]), it is well-known that the system (12) is
equivalent to the equation between a formal power series andan S-fraction

∞
∑

n=0

f (0)
n zn

=
1

1−
a0z

1−
a1z

1−
a2z

1− · · ·

(13)

with the normalization thatf (0)
0 = 1.

This observation on Padé approximants leads us to the solution to the subproblem (i):
Owing to lemma 1, with the normalization thatf (0)

0 = 1,

f (0)
n =

∑

P

w(P) (14)

where the sum in the right-hand side is taken over all the positive grounded pathsP whose
two ends are fixed at (0, 0) and (2n, 0). For example, the first few off (0)

n are

f (0)
0 = 1, (15a)

f (0)
1 = a0, (15b)

f (0)
2 = a2

0 + a0a1, (15c)

f (0)
3 = a3

0 + 2a2
0a1 + a0a

2
1 + a0a1a2. (15d)

As noted in [11], we can write the combinatorial formula (14)in the form

f (0)
n =

∑

k1=0

k1+1
∑

k2=0

k2+1
∑

k3=0

· · ·

kn−1+1
∑

kn=0

ak1ak2ak3 · · ·akn. (16)

The initial valuef (0)
n of f (t)

n is thus found as a polynomial inak homogeneous of degreen. The
number of monomials inf (0)

n , which is equal to the number of positive grounded paths from
(0, 0) to (2n, 0), is counted by the Catalan numberCn =

1
n+1

(

2n
n

)

. For details on the Catalan
numbers, refer the On-Line Encyclopedia of Integer Sequences [15] for Sequence A000108.

Due to (10) and (14), the (j, k)-entry of the determinant (5a),f (t)
j+k = f (0)

t+ j+k, is shown
to be equal to the sum of the weightw(P) of all the positive grounded pathsP going from
(0, 0) to (2t + 2 j + 2k, 0), or equivalently, going from (−2 j, 0) to (2t + 2k, 0). We can thereby
successfully apply Gessel–Viennot’s lemma on determinants [12, 13] to solve the subproblem
(ii): For t, n ∈ N0, let P(t, n) denote the collection ofn-setsP = {P0, . . . ,Pn−1} of positive
grounded pathsP j satisfying the following conditions:

(a) The two ends ofP j are fixed at (−2 j, 0) and (2t + 2 j, 0).

(b) Then pathsP0, . . . ,Pn−1 arenon-intersecting, Namely, every two distinct pathsP j and
Pk, j , k, never intersect at any points.

Then, with the normalization thatf (0)
0 = 1, Gessel–Viennot’s lemma yields that

τ(t)
n =

∑

P∈P(t,n)

w(P) wherew(P) = w(P0) · · ·w(Pn−1). (17)

As shown in figure 2, we can draw eachn-setP = {P0, . . . ,Pn−1} ∈ P(t, n) as a diagram ofn
positive grounded paths which are non-intersecting.

The value ofτ(t)
n is found as a polynomial inak homogeneous of degreen(2t + n− 1)/2.

The number of monomials inτ(t)
n , which is equal to the cardinality #P(t, n), is exactly evaluated

in [8],

#P(t, n) =
∏

1≤ j≤k<t

2n+ j + k
j + k

. (18)
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Figure 2. Then-setsP = {P0, . . . , Pn−1} ∈ P(t, n) of positive grounded paths, wheret = 4,
n = 3. Eachn-set P can be drawn in a diagram ofn non-intersecting positive grounded paths
P j such thatP j goes from (−2 j, 0) to (2t + 2 j, 0).

We have solved the subproblems (i) and (ii). The solution to the initial value problem of
the discrete Toda molecule is given as follows:

Theorem 2. The solution to the initial value problem of the discrete Toda molecule (1) is
given by (3) with the tau function

τ(t)
n =

∑

P∈P(t,n)

w(P), t, n ∈ N0. (19)

The expression (19) of the tau functionτ(t)
n is subtraction-free, namely, contains no

subtractions. That is whyτ(t)
n is positive for everyt, n ∈ N0 if and only if the initial valuean is

positive for everyn ∈ N0. The subtraction-free expression (19) ofτ
(t)
n is ultradiscretizableto

obtain an exact solution to the ultradiscrete Toda molecule.

4. Initial value problem of the ultradiscrete Toda molecule

As an initial value problem of the ultradiscrete Toda molecule (2), we consider the totally
analogous problem to the discrete Toda molecule solved in section 3:

For the ultradiscrete Toda molecule (2), let us write the initial value at t= 0

Q(0)
n = A2n, E(0)

n+1 = A2n+1, n ∈ N0. (20)

Then, for every t∈ N0, find the exact value of Q(t)n , E(t)
n+1, n ∈ N0, uniquely determined from

(2) in terms of the initial value An.
The solution to this initial value problem can be obtained byultradiscretizing the

corresponding solution to the discrete Toda molecule stated in theorem 2. Ultradiscretizing
theorem 2, we obtain the following statement:

Let P be a positive grounded path. We label each step inP by An if the step is an up
step ascending from the liney = n and byzero if a down step. We define the weightW(P)
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Figure 3. The hooksH in a positive grounded pathP. The pathP contains three up hooks,
highlighted in dotted lines, and two down hooks, in dashed lines.

by thesumof the labels of all the steps inP. The solution to the initial value problem of the
ultradiscrete Toda molecule is then given by (6) with the taufunction

T(t)
n = min

P∈P(t,n)
W(P), W(P) =W(P0) + · · · +W(Pn−1). (21)

The supportP(t, n) of the minimum is much the same as the sum in (19).
The rest of section 4 is devoted to simplifying the expression (21) of the tau functionT(t)

n

by combinatorial observation.

4.1. Solution in tabular paths

Let P be a positive grounded path. We refer to two consecutive up-down steps and down-
up steps,UD andDU, in P by a peakand avalley, respectively. We say thatP is tabular
provided that, for somek ∈ N0, all the peaks and the valleys inP reside in the strip of height
one bordered by the two horizontal linesy = k andy = k+ 1.

For t, n ∈ N0, we define a subset̄P(t, n) ⊆ P(t, n) as the collection ofn-sets P̄ =
{P̄0, . . . , P̄n−1} ∈ P(t, n) in which everyP̄ j is tabular. For example, all then-setsP ∈ P(t, n) in
figure 2, except the upper right one, belong toP̄(t, n) since each path inP is tabular.

Lemma 3. There exists̄P ∈ P̄(t, n) which takes the minimal weight: W(P̄) = minP∈P(t,n) W(P).

Proof. We will prove the lemma by examining particular subpaths which we callhooks. Let
P be a positive grounded path. We call a subpathH of P an up hook(resp. adown hook)
provided thatH is of at least four steps and that both the first and the last steps of H are
down steps (resp. up steps) and all the middle steps are up steps (resp. down steps). That is,
each up hook (resp. down hook) is of the formDUkD (resp.UDkU) for some integerk ≥ 2.
For example, see figure 3. Obviously, a positive grounded path P is tabular if and only ifP
contains no hooks.

Let us define two mapsϕ andψ which deform a positive grounded pathP as follows:
ϕ(P) (resp.ψ(P)) denotes the positive grounded path obtained fromP by replacing each up
hook inP, sayDUkD, with Uk−1DUD (resp. withDUDUk−1), whereϕ(P) = ψ(P) = P if P
contains no up hooks. See figure 4 which shows the deformed pathsϕ(P) andψ(P) obtained
from the positive grounded pathP in figure 3.

We can observe the following on the mapsϕ andψ: Let P andP′ be positive grounded
paths.

(a) Theϕ andψ never increase the number of up hooks inP as well as the number of down
hooks inP.

(b) If P contains no up hooks to the right side of the linex = j thenϕ(P) so to x = j − 2.
Similarly, if P contains no up hooks to the left side ofx = j thenψ(P) so tox = j + 2.

(c) Theϕ andψ never move the location of the two ends ofP.
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Figure 4. The deformation by the mapsϕ andψ. The pathsϕ(P) andψ(P) (depicted in solid
lines) are obtained from the pathP (in dotted lines) in figure 3 by deforming each up hook in
P as indicated by an arrow.

(d) If P andP′ are non-intersecting thenϕ(P) andϕ(P′) are so. That is also the case with
ψ(P) andψ(P′).

(e) The following ‘mean’ formula holds:

W(ϕ(P)) +W(ψ(P)) = 2W(P). (22)

Now, let us prove lemma 3. LetP = {P0, . . . ,Pn−1} ∈ P(t, n). We can assume thatP
takes the minimal weight,W(P) = minP′∈P(t,n) W(P′), without any loss of generality. For
eachk ∈ N0, let ϕk(P) = {ϕk(P0), . . . , ϕk(Pn−1)} denote then-sets of positive grounded paths
obtained fromP by applying the mapϕ iterativelyk times to each pathP j ∈ P. By induction
with respect tok ∈ N0, we can show the following:

(i) Due to the observation (b), every path inϕk(P) contains no up hooks to the right side
of the linex = 2t − 2k− 1. That is becauseP contains no up hooks to the right side of
x = 2t − 1.

(ii) Due to the observations (c) and (d),ϕk(P) ∈ P(t, n).

(iii) Due to the observation (e),W(ϕk(P)) = W(P). Indeed, ifW(ϕk(P)) > W(ϕk−1(P)), the
formula (22) would leadW(ψ ◦ ϕk−1(P)) < W(ϕk−1(P)), that contradicts the minimality
of W(P).

As a consequence of (i), (ii), (iii), we can deduce thatϕt−1(P) ∈ P(t, n) contains no up hooks
and has the minimal weightW(ϕt−1(P)) =W(P).

In a similar way, we can show the existence ofP̌ ∈ P(t, n) containing no down hooks
and having the minimal weightW(P̌) =W(P). From the discussion in the last paragraph, the
ϕt−1(P̌) contains no up hooks and has the minimal weightW(ϕt−1(P̌)) = W(P). Further, due
to the observation (a), theϕt−1(P̌) contains no down hooks. Therefore, theϕt−1(P̌) having the
minimal weight belongs to the set̄P(t, n). That completes the proof. �

As a consequence of lemma 3, we can also solve the initial value problem of the
ultradiscrete Toda molecule in the following way:
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Figure 5. The graphG and a pathQ̄ ∈ Q̄(t, n), wheret = 4, n = 3. The graphG splits into
two disjoint subgraphs, one of which is drawn in solid lines and the other in dashed lines. The
pathQ̄, drawn in thick lines, goes between (t, t) and (t + 2n, 1).

Theorem 4. The solution to the initial value problem of the ultradiscrete Toda molecule (2)
is given by (6) with the tau function

T(t)
n = min

P̄∈P̄(t,n)
W(P̄), t, n ∈ N0. (23)

The expression (23) of the tau functionT(t)
n is supported by the set̄P(t, n) much smaller

thanP(t, n) in (21). In fact, the cardinarity of̄P(t, n) is equal to the binomial number

#P̄(t, n) =

(

t + n− 1
t

)

=

∏

1≤ j<t

n+ j
j

(24)

which is much smaller than #P(t, n) given by (18). In this sense, the expression (23) gives a
simpler expression of the tau functionT(t)

n than (21).

4.2. Solution in shortest paths on a graph

In section 4.2, based on theorem 4, we derive another combinatorial expression of the solution
in terms ofshortest pathson a graph.

Let G denote the (directed acyclic) graph inN2
0 consisting of the vertices at the points

( j, k) ∈ N2
0, j ≥ k, connected by the two types of (directed) edges:east edges Ej,k = (2, 0) and

south edges Sj,k = (0,−1). Here the subscriptsj, k indicate that the initial points ofE j,k and
S j,k are at the vertex (j, k). As shown in figure 5, since the east edgesE j,k have length two, the
graphG splits into two disjoint subgraphs.
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We define the weight functionW over the edges inG by

W(E j,k) =
j−k−1
∑

ℓ=0

Aℓ + kAj−k, W(S j,k) = 0, (25)

whereAn are the initial value for the ultradiscrete Toda molecule. We think of the weight
W(e) of an edgeeas thelengthof e. For each pathQ onG, we then think of the weightW(Q)
as thelengthof Q, which is equal to the sum of the weightW(e) of all the edgese passed by
Q. (The lengthW(Q) may be negative due to the arbitrariness inAn.)

For t ∈ N0, t ≥ 1, andn ∈ N0, let Q̄(t, n) denote the collection of paths onG between
the two vertices (t, t) and (t + 2n, 1). We then have a one-to-one correspondence between
P̄ = {P̄0, . . . , P̄n−1} ∈ P̄(t, n) andQ̄ ∈ Q̄(t, n): The tabular positive grounded path̄P j has its
peaks and valleys in the strip bordered by the linesy = k− 2 j andy = k− 2 j + 1 if and only if
the pathQ̄ onG passes through the east edgeEt+2 j,t−k. For example, in then-setsP ∈ P(t, n)
of positive grounded paths in figure 2, the lower left one belongs toP̄(t, n) and is in one-to-one
correspondence with the path̄Q in figure 5. Actually, the weight functionW onG is defined
in (25) so thatW(P̄) = W(Q̄) for every pair ofP̄ andQ̄ in one-to-one correspondence. We
thereby have the identity

min
Q̄∈Q̄(t,n)

W(Q̄) = min
P̄∈P̄(t,n)

W(P̄). (26)

For t, n ∈ N0, let us defineQ(t, n) to be the collection of paths onG between the two
vertices (t, t) and (t + 2n, 0). We can then show that the identity (26) still holds even ifwe
replace the support set̄Q(t, n) of the left-hand minimum withQ(t, n),

min
Q∈Q(t,n)

W(Q) = min
P̄∈P̄(t,n)

W(P̄), (27)

for W(E j,0) = W(E j,1) for every j ∈ N0, j ≥ 1. In addition, in that case, the identity (27) also
takes place fort = 0.

Finally, combining theorem 4 and the identity (27), we obtain the following result:

Theorem 5. The solution to the initial value problem of the ultradiscrete Toda molecule (2)
is given by (6) with the tau function

T(t)
n = min

Q∈Q(t,n)
W(Q), t, n ∈ N0, (28)

where the weight function W on the graph G is defined by (25).

The right-hand side of (28) denotes the length of theshortest pathson the graphG
between the two vertices (t, t) and (t + 2n, 0). It should be noted that Nakata [16] constructed
a similar combinatorial expression in terms of shortest paths (calledminimum weight flows
in [16]) of a particular solution to the ultradiscrete Toda molecule on the finite lattice,
n = 0, 1, . . . ,N.

5. Concluding remarks

In this paper, we have investigated the discrete and ultradiscrete Toda molecules from a
combinatorial viewpoint. To the tau function which solves an initial value problem of
the discrete Toda molecule, we have given a combinatorial expression in terms of non-
intersecting paths. Especially, in order to read the tau function in combinatorial words,
we utilized Flajolet’s path interpretation of continued fractions and Gessel–Viennot’s lemma
on determinants and non-intersecting paths. Due to the combinatorial expression, we have
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succeeded to derive a subtraction-free expression of the tau function which is given in a
Hankel determinant.

For an initial value problem of the ultradiscrete Toda molecule, we first obtained an exact
solution by ultradiscretizing the tau function of the discrete Toda molecule. We next rewrote
the tau function to derive a simpler expression in terms of shortest paths. As a result, we have
shown that the tau function which solves the initial value problem of the ultradiscrete Toda
molecule can be evaluated as the length of shortest paths on aspecific graph in which the
length of edges is determined by the initial value.

In this paper, we deduced combinatorial expressions of the tau functions with the help of
a determinant solution to the discrete Toda molecule and thetechnique of ultradiscretization.
For the tau functions (19) and (28) given in terms of combinatorial objects, however, it is
expected to make combinatorial (or bijective) proofs to directly verify that the tau functions
satisfy the bilinear equations (4) and (7). For that purpose, the technique of alternating walks
[17] for Schur symmetric functions would be useful.

The combinatorial idea used in this paper should be applicable to other discrete integrable
systems associated with continued fractions, such as theRI andRII chains withRI- andRII -
fractions [18, 19], the FST chain with the Thiele-type continued fractions [20], and the matrix
qd algorithm with the matrix S-fractions [21]. Those applications will be discussed in future
works.
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