Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences *

Yi Wang ${ }^{1}$, Bao-Xuan Zhu ${ }^{2}$
1. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China
2. School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, PR China

Abstract

We develop techniques to deal with monotonicity of sequences $\left\{z_{n+1} / z_{n}\right\}$ and $\left\{\sqrt[n]{z_{n}}\right\}$. A series of conjectures of Zhi-Wei Sun and of Amdeberhan et al. are verified in certain unified approaches.

MSC: 05A20; 05A10; 11B83
Keywords: Sequences; Monotonicity; Log-convexity; Log-concavity

1 Introduction

Let p_{n} denote the nth prime. In 1982, F. Firoozbakht conjectured that the sequence $\left\{\sqrt[n]{p_{n}}\right\}_{n \geq 1}$ is strictly decreasing, which has been confirmed for n up to 4×10^{18}. This conjecture implies the inequality $p_{n+1}-p_{n}<\log ^{2} p_{n}-\log p_{n}$ for large n, which is even stronger than Cramér's conjecture $p_{n+1}-p_{n}=O\left(\log ^{2} p_{n}\right)$. See Sun [17] for details. Motivated by this, Sun [18] posed a series of conjectures about monotonicity of sequences of the form $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$, where $\left\{z_{n}\right\}_{n \geq 0}$ is a familiar number-theoretic or combinatorial sequence. Now partial progress has been made, including Chen et al. [4] for the Bernoulli numbers, Hou et al. [10] for the Fibonacci numbers and derangements numbers, Luca and Stănică [14] for the Bernoulli, Tangent and Euler numbers. The main object of this paper is to develop techniques to deal with monotonicity of $\left\{z_{n+1} / z_{n}\right\}$ and $\left\{\sqrt[n]{z_{n}}\right\}$ in certain unified approaches.

Two concepts closely related to monotonicity are log-convexity and log-concavity. Let $\left\{z_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers. It is called log-convex if $z_{n-1} z_{n+1} \geq z_{n}^{2}$ for all $n \geq 1$ and strictly log-convex if the inequality is strict. The sequence is called logconcave if the inequality changes its direction. Clearly, a sequence $\left\{z_{n}\right\}_{n \geq 0}$ is log-convex

[^0](log-concave, resp.) if and only if the sequence $\left\{z_{n+1} / z_{n}\right\}_{n \geq 0}$ is increasing (decreasing, resp.). The log-convex and log-concave sequences arise often in combinatorics, algebra, geometry, analysis, probability and statistics and have been extensively investigated. We refer the reader to $[16,2,19]$ for \log-concavity and $[13,20]$ for log-convexity.

On the other hand, there are certain natural links between these two sequences $\left\{z_{n+1} / z_{n}\right\}$ and $\left\{\sqrt[n]{z_{n}}\right\}$. For example, it is well known that if the sequence $\left\{z_{n+1} / z_{n}\right\}$ is convergent, then so is the sequence $\left\{\sqrt[n]{z_{n}}\right\}$. There is a similar result for monotonicity: if the sequence $\left\{z_{n+1} / z_{n}\right\}$ is increasing (decreasing), then so is the sequence $\left\{\sqrt[n]{z_{n}}\right\}$ when $z_{0} \leq 1\left(z_{0} \geq 1\right)$. See Theorem 2.1 for the details. Thus we may concentrate our attention on log-convexity and log-concavity of sequences.

In the next section we present our main results about monotonicity of $\left\{z_{n+1} / z_{n}\right\}$ and $\left\{\sqrt[n]{z_{n}}\right\}$. As applications we verify some conjectures of Sun [18] and Amdeberhan et al. [1]. In Section 3 we propose a couple of problems for further work.

2 Theorems and applications

We first show that the monotonicity of $\left\{z_{n+1} / z_{n}\right\}$ implies that of $\left\{\sqrt[n]{z_{n}}\right\}$.
Theorem 2.1. Let $\left\{z_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers.
(i) Assume that $\left\{z_{n}\right\}_{n \geq 0}$ is log-convex. If $z_{0} \leq 1$ (and $z_{1}^{2}<z_{0} z_{2}$), then the sequence $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is (strictly) increasing.
(ii) Assume that $\left\{z_{n}\right\}_{n \geq 0}$ is log-concave and $z_{0} \geq 1$. Then the sequence $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is decreasing. If $z_{0}>1$ or $z_{1}^{2}>z_{0} z_{2}$, then $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is strictly decreasing.
(iii) Assume that $\left\{z_{n}\right\}_{n \geq N}$ is log-convex and $\sqrt[N]{z_{N}}<\sqrt[N+1]{z_{N+1}}$ for some $N \geq 1$. Then $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq N}$ is strictly increasing. The similar result holds for log-concave sequences.

Proof. (i) Let $x_{n}=z_{n} / z_{n-1}$ for $n \geq 1$. Then by the \log-convexity of $\left\{z_{n}\right\}$, the sequence $\left\{x_{n}\right\}$ is increasing:

$$
\begin{equation*}
x_{1} \leq x_{2} \leq \ldots \leq x_{n} \leq x_{n+1} \leq \ldots \tag{2.1}
\end{equation*}
$$

Write

$$
z_{n}=\frac{z_{n}}{z_{n-1}} \frac{z_{n-1}}{z_{n-2}} \ldots \frac{z_{1}}{z_{0}} z_{0}=x_{n} x_{n-1} \ldots x_{1} z_{0} .
$$

Then

$$
\begin{equation*}
\frac{\sqrt[n+1]{z_{n+1}}}{\sqrt[n]{z_{n}}}=\frac{\sqrt[n+1]{x_{n+1} x_{n} x_{n-1} \ldots x_{1} z_{0}}}{\sqrt[n]{x_{n} x_{n-1} \ldots x_{1} z_{0}}}=\frac{\sqrt[n+1]{x_{n+1}}}{\sqrt[n(n+1)]{x_{n} x_{n-1} \ldots x_{1} z_{0}}} \geq \sqrt[n+1]{\frac{x_{n+1}}{x_{n}}} \geq 1 \tag{2.2}
\end{equation*}
$$

since $z_{0} \leq 1$ and (2.1). Thus the sequence $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is increasing. Clearly, if $z_{1}^{2}<z_{0} z_{2}$, i.e., $x_{1}<x_{2}$, then the first inequality in (2.2) is strict, and so the sequence $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is strictly increasing.
(ii) Note that a sequence $\left\{z_{n}\right\}$ is log-concave if and only if the sequence $\left\{1 / z_{n}\right\}$ is log-convex. Hence (ii) can be proved as did in (i).
(iii) Let $y_{n}=z_{N}^{N+1-n} / z_{N+1}^{N-n}$ for $0 \leq n \leq N-1$ and $y_{n}=z_{n}$ for $n \geq N$. Then (iii) follows by applying (i) and (ii) to the sequence $\left\{y_{n}\right\}_{n \geq 0}$ respectively.

Remark 2.2. (A) Although $\{n\}_{n \geq 0}$ is log-concave, $\{\sqrt[n]{n}\}_{n \geq 1}$ is not decreasing since $\sqrt{2}=\sqrt[4]{4}$. However, $\{\sqrt[n]{n}\}_{n \geq 3}$ is decreasing by Theorem 2.1 (iii).
(B) We can replace the condition $\sqrt[N]{z_{N}}<\sqrt[N+1]{z_{N+1}}\left(\sqrt[N]{z_{N}}>\sqrt[N+1]{z_{N+1}}\right.$, resp.) by $z_{N}^{2}<z_{N+1}\left(z_{N}^{2}>z_{N+1}\right.$, resp.) in Theorem 2.1 (iii). In this case we define $y_{n}=1$ for $0 \leq n \leq N-1$ and $y_{n}=z_{n}$ for $n \geq N$.
(C) It is possible that $\left\{\sqrt[n]{z_{n}}\right\}_{n \geq 1}$ is monotonic but $\left\{z_{n+1} / z_{n}\right\}_{n \geq 0}$ is not. For example, let F_{n} be the nth Fibonacci number: $F_{0}=0, F_{1}=1$ and $F_{n+1}=F_{n-1}+F_{n}$. It is showed that $\left\{\sqrt[n]{F_{n}}\right\}_{n \geq 2}$ is strictly increasing [10, Theorem 1.1]. However, $\left\{F_{n}\right\}$ is neither log-concave nor log-convex since $F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}$ for $n \geq 2$.

We next apply Theorem 2.1 to verify some conjectures posed by Sun in [18].
The Bell number $B(n)$ counts the number of partitions of the set $\{1, \ldots, n\}$ into disjoint nonempty subsets. It is known that

$$
\{B(n)\}_{n \geq 0}=\{1,1,2,5,15,52,203,877, \ldots\} . \quad[15, A 000110]
$$

Engel [8] showed that the sequence $\{B(n)\}$ is log-convex. So by Theorem 2.1 we have the following result, which was conjectured by Sun [18, Conjecture 3.2].

Corollary 2.3. The sequence $\{\sqrt[n]{B(n)}\}_{n \geq 1}$ is strictly increasing.

Let $p(n)$ denote the number of partitions of a positive integer n. Then

$$
\{p(n)\}_{n \geq 1}=\{1,2,3,5,7,11,15,22,30, \ldots\} . \quad[15, A 000041]
$$

Janoski [11] showed the sequence $\{p(n)\}_{n \geq 25}$ is log-concave, which was conjectured by Chen [3]. Note that $p(25)=1958$ and $p(26)=2436$. It follows from Theorem 2.1 (iii) that $\{\sqrt[n]{p(n)}\}_{n \geq 25}$ is strictly decreasing. Thus we have the following result (the case for $6 \leq n \leq 24$ may be confirmed directly), which was conjectured by Sun [18, Conjecture 2.14].

Corollary 2.4. The sequence $\{\sqrt[n]{p(n)}\}_{n \geq 6}$ is strictly decreasing.
Many combinatorial sequences satisfy a three-term recurrence. Došlić [7], Liu and Wang [13] gave some sufficient conditions for log-convexity of such sequences. The following result is a variation of Liu and Wang [13, Theorem 3.1].

Proposition 2.5. Let $\left\{z_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers and satisfy

$$
\begin{equation*}
a_{n} z_{n+1}=b_{n} z_{n}+c_{n} z_{n-1}, \tag{2.3}
\end{equation*}
$$

where a_{n}, b_{n}, c_{n} are positive for all $n \geq 1$. Let

$$
\lambda_{n}:=\frac{b_{n}+\sqrt{b_{n}^{2}+4 a_{n} c_{n}}}{2 a_{n}}
$$

be the positive root of $a_{n} \lambda^{2}-b_{n} \lambda-c_{n}=0$. Suppose that $z_{0}, z_{1}, z_{2}, z_{3}$ is log-convex. If there exists a sequence $\left\{\nu_{n}\right\}_{n \geq 1}$ of positive numbers such that $\nu_{n} \leq \lambda_{n}$ and

$$
\begin{equation*}
\Delta_{n}(\nu):=a_{n} \nu_{n-1} \nu_{n+1}-b_{n} \nu_{n-1}-c_{n} \geq 0 \tag{2.4}
\end{equation*}
$$

for $n \geq 2$, then the sequence $\left\{z_{n}\right\}_{n \geq 0}$ is log-convex.
Proof. In Liu and Wang [13, Theorem 3.1], it is shown that if $\Delta(\lambda) \geq 0$, then $\left\{z_{n}\right\}_{n \geq 0}$ is log-convex. So it suffices to show that $\Delta(\nu) \geq 0$ implies $\Delta(\lambda) \geq 0$.

Indeed, if $\Delta(\nu) \geq 0$, then $\left(a_{n} \nu_{n+1}-b_{n}\right) \nu_{n-1} \geq c_{n}$, which implies that $a_{n} \nu_{n+1}-b_{n} \geq 0$. Thus $a_{n} \lambda_{n+1}-b_{n} \geq 0$ and $\left(a_{n} \lambda_{n+1}-b_{n}\right) \lambda_{n-1} \geq\left(a_{n} \nu_{n+1}-b_{n}\right) \nu_{n-1} \geq c_{n}$, and so $\Delta(\lambda) \geq 0$, as required.

The nth trinomial coefficient T_{n} is the coefficient of x^{n} in the expansion $\left(1+x+x^{2}\right)^{n}$. It is known that

$$
\begin{equation*}
(n+1) T_{n+1}=(2 n+1) T_{n}+3 n T_{n-1} \tag{2.5}
\end{equation*}
$$

and

$$
\left\{T_{n}\right\}_{n \geq 0}=\{1,1,3,7,19,51,141,393, \ldots\} . \quad[15, A 002426]
$$

We have the following result, which was conjectured by Sun [18, Conjecture 3.6]
Corollary 2.6. The sequence $\left\{\sqrt[n]{T_{n}}\right\}_{n \geq 1}$ is strictly increasing.
Proof. We first apply Proposition 2.5 to prove the log-convexity of the sequence $\left\{T_{n}\right\}_{n \geq 4}$. It is easy to verify that $T_{4}, T_{5}, T_{6}, T_{7}$ is log-convex. Note that
$\lambda_{n}=\frac{2 n+1+\sqrt{16 n^{2}+16 n+1}}{2(n+1)}=1+\frac{\sqrt{16 n^{2}+16 n+1}-1}{2(n+1)}=1+\frac{8 n}{\sqrt{16 n^{2}+16 n+1}+1}$
and $\sqrt{16 n^{2}+16 n+1} \leq 4 n+2$. Hence

$$
\lambda_{n} \geq 1+\frac{8 n}{4 n+3}=\frac{12 n+3}{4 n+3}
$$

Let $\nu_{n}=(12 n+3) /(4 n+3)$. Then for $n \geq 2$,

$$
\Delta_{n}=(n+1) \frac{(12 n-9)(12 n+15)}{(4 n-1)(4 n+7)}-(2 n+1) \frac{12 n-9}{4 n-1}-3 n=\frac{36(n-2)}{(4 n-1)(4 n+7)} \geq 0
$$

Thus $\left\{T_{n}\right\}_{n \geq 4}$ is log-convex by Proposition 2.5. Now $\sqrt[4]{19}<\sqrt[5]{51}$ since $19^{5}=2476099<$ $51^{4}=6765201$. It follows that $\left\{\sqrt[n]{T_{n}}\right\}_{n \geq 4}$ is strictly increasing by Theorem 2.1 (iii). Clearly, $\left\{\sqrt[n]{T_{n}}\right\}_{1 \leq n \leq 4}$ is strictly increasing, so is the total sequence $\left\{\sqrt[n]{T_{n}}\right\}_{n \geq 1}$.

We refer the reader to [7] for another proof of the log-convexity of $\left\{T_{n}\right\}_{n \geq 4}$.
The derangements number d_{n} counts the number of permutations of n elements with no fixed points. It is known that $d_{n+1}=n d_{n}+n d_{n-1}$ and

$$
\left\{d_{n}\right\}_{n \geq 0}=\{1,0,1,2,9,44,265,1854, \ldots\} . \quad[15, A 000166]
$$

The Motzkin number M_{n} counts the number of lattice paths starting from $(0,0)$ to $(n, 0)$, with steps $(1,0),(1,1)$ and $(1,-1)$, and never falling below the x-axis. It is known that $(n+3) M_{n+1}=(2 n+3) M_{n}+3 n M_{n-1}$ and

$$
\left\{M_{n}\right\}_{n \geq 0}=\{1,1,2,4,9,21,51,127, \ldots\} . \quad[15, A 001006]
$$

The (large) Schröder number S_{n} counts the number of king walks, from $(0,0)$ to (n, n), and never rising above the line $y=x$. It is known that $(n+2) S_{n+1}=3(2 n+1) S_{n}-(n-1) S_{n-1}$ and

$$
\left\{S_{n}\right\}_{n \geq 0}=\{1,2,6,22,90,394,1806, \ldots\} . \quad[15, A 006318]
$$

It is shown [13, §3] by means of recurrence relations that three sequences $\left\{d_{n}\right\}_{n \geq 2},\left\{M_{n}\right\}_{n \geq 0}$ and $\left\{S_{n}\right\}_{n \geq 0}$ are log-convex respectively. So we have the following result, which was conjectured by Sun [18, Conjectures 3.3, 3.7 and 3.11].

Corollary 2.7. Three sequences $\left\{\sqrt[n]{d_{n}}\right\}_{n \geq 2},\left\{\sqrt[n]{M_{n}}\right\}_{n \geq 1}$ and $\left\{\sqrt[n]{S_{n}}\right\}_{n \geq 1}$ are strictly increasing respectively.

Davenport and Pólya [6] showed that the binomial convolution preserves log-convexity: if both $\left\{x_{n}\right\}_{n \geq 0}$ and $\left\{y_{n}\right\}_{n \geq 0}$ are log-convex, then so is the sequence $\left\{z_{n}\right\}_{n \geq 0}$ defined by

$$
z_{n}=\sum_{k=0}^{n}\binom{n}{k} x_{k} y_{n-k}, \quad n=0,1,2, \ldots
$$

Let $\{a(n, k)\}_{0 \leq k \leq n}$ be a triangle of nonnegative numbers. A general problem is in which case the operator $z_{n}=\sum_{k=0}^{n} a(n, k) x_{k} y_{n-k}$ preserves log-convexity. Wang and Yeh [19] developed techniques to deal with such a problem for log-concavity. For example, if the triangle $\{a(n, k)\}$ has the LC-positivity property and $a(n, k)=a(n, n-k)$, then $z_{n}=$ $\sum_{k=0}^{n} a(n, k) x_{k} y_{n-k}$ preserves \log-concavity. There is a similar result for \log-convexity. The following result follows from Liu and Wang [13, Conjecture 5.3], which has been shown by Chen et al. [5]. For the sake of brevity we here omit the details of the proof.

Proposition 2.8. If both $\left\{x_{n}\right\}_{n \geq 0}$ and $\left\{y_{n}\right\}_{n \geq 0}$ are log-convex, then so is the sequence $\left\{z_{n}\right\}_{n \geq 0}$ defined by

$$
z_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2} x_{k} y_{n-k}, \quad n=0,1,2, \ldots
$$

Now we apply Proposition 2.8 to verify some conjectures of Sun. Let $g_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k}$. Then

$$
\left\{g_{n}\right\}_{n \geq 0}=\{1,3,15,93,639,4653,35169, \ldots\} . \quad[15, A 002893]
$$

Let $D(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k}\binom{2(n-k)}{n-k}$ be the Domb numbers. Then

$$
\{D(n)\}_{n \geq 0}=\{1,4,28,256,2716,31504, \ldots\} . \quad[15, A 002895]
$$

Clearly, the center binomial coefficients $\binom{2 k}{k}$ is log-convex in k (see [13] for instance). So the sequences $\left\{g_{n}\right\}_{n \geq 0}$ and $\{D(n)\}_{n \geq 0}$ are log-convex respectively by Proposition 2.8. Thus we have the following result, which was conjectured by Sun [18, Conjectures 3.9 and 3.12].

Corollary 2.9. The sequences $\left\{\sqrt[n]{g_{n}}\right\}_{n \geq 1},\{D(n+1) / D(n)\}_{n \geq 0}$ and $\{\sqrt[n]{D(n)}\}_{n \geq 1}$ are strictly increasing respectively.

Another main result of this paper is the following criterion for log-convexity.
Theorem 2.10. Suppose that

$$
z_{n}=\sum_{k \geq 1} \frac{\alpha_{k}}{\lambda_{k}^{n}} \quad n=0,1,2, \ldots,
$$

where $\left\{\alpha_{k}\right\}_{k \geq 1},\left\{\lambda_{k}\right\}_{k \geq 1}$ are two nonnegative sequences and λ_{k} is not constant. Then the sequence $\left\{z_{n}\right\}_{n \geq 0}$ is log-convex.

Proof. We have

$$
\begin{aligned}
z_{n+1} z_{n-1}-z_{n}^{2} & =\sum_{k \geq 1} \frac{\alpha_{k}}{\lambda_{k}^{n+1}} \sum_{k \geq 1} \frac{\alpha_{k}}{\lambda_{k}^{n-1}}-\sum_{k \geq 1} \frac{\alpha_{k}}{\lambda_{k}^{n}} \sum_{k \geq 1} \frac{\alpha_{k}}{\lambda_{k}^{n}} \\
& =\sum_{j>i \geq 1} \frac{\alpha_{i} \alpha_{j}\left(\lambda_{i}^{2}+\lambda_{j}^{2}-2 \lambda_{i} \lambda_{j}\right)}{\lambda_{i}^{n+1} \lambda_{j}^{n+1}} \\
& =\sum_{j>i \geq 1} \frac{\alpha_{i} \alpha_{j}\left(\lambda_{i}-\lambda_{j}\right)^{2}}{\lambda_{i}^{n+1} \lambda_{j}^{n+1}} .
\end{aligned}
$$

Thus $z_{n+1} z_{n-1}-z_{n}^{2} \geq 0$, and the sequence $\left\{z_{n}\right\}_{n \geq 0}$ is therefore log-convex.
Taking $\lambda_{k}=k$, then z_{n} is precisely the Dirichlet generating function of the sequence $\left\{\alpha_{k}\right\}_{k \geq 1}$. In particular, z_{n} coincides with Riemann zeta function $\zeta(n)$ when $\alpha_{k}=1$ for all k. Thus the sequence $\{\zeta(n)\}_{n \geq 1}$ is strictly log-convex. On the other hand, taking $\lambda_{k}=k^{2}$ and $\alpha_{k}=1$ for all k, then the sequence $\{\zeta(2 n)\}_{n \geq 1}$ is also strictly log-convex. These two results have been obtained by Chen et al. [4] in an analytical approach.

The classical Bernoulli numbers are defined by

$$
B_{0}=1, \quad \sum_{k=0}^{n}\binom{n+1}{k} B_{k}=0, \quad n=1,2, \ldots
$$

It is well known that $B_{2 n+1}=0,(-1)^{n-1} B_{2 n}>0$ for $n \geq 1$ and

$$
(-1)^{n-1} B_{2 n}=\frac{2(2 n)!\zeta(2 n)}{(2 \pi)^{2 n}}
$$

(see $[9,(6.89)]$ for instance). It immediately follows that the sequence $\left\{(-1)^{n-1} B_{2 n}\right\}_{n \geq 1}$ is log-convex, and the sequence $\left\{\sqrt[n]{(-1)^{n-1} B_{2 n}}\right\}_{n \geq 1}$ is therefore strictly increasing, which was conjectured by Sun [18, Conjecture 2.15] and has been verified by Chen et al. [4] and by Luca and Stănică [14] respectively.

Now consider the tangent numbers

$$
\begin{equation*}
\{T(n)\}_{n \geq 0}=\{1,2,16,272,7936,353792, \ldots\} \tag{15,A000182}
\end{equation*}
$$

which are defined by

$$
\tan x=\sum_{n \geq 1} T(n) \frac{x^{2 n-1}}{(2 n-1)!}
$$

and are closely related to the Bernoulli numbers:

$$
T(n)=(-1)^{n-1} B_{2 n} \frac{\left(4^{n}-1\right)}{2 n} 4^{n}
$$

(see $[9,(6.93)]$ for instance). It is not difficult to verify that $\left(4^{n}-1\right) / n$ is \log-convex in n (we leave the details to the reader). On the other hand, the product of log-convex sequences is still log-convex. So the sequence $\{T(n)\}_{n \geq 0}$ is log-convex. Thus we have the following result, which was conjectured by Sun [18, Conjecture 3.5].

Corollary 2.11. Both $\{T(n+1) / T(n)\}_{n \geq 0}$ and $\{\sqrt[n]{T(n)}\}_{n \geq 1}$ are strictly increasing.
Let A_{n} be defined by the recurrence relation

$$
(-1)^{n-1} A_{n}=C_{n}+\sum_{j=1}^{n-1}(-1)^{j}\binom{2 n-1}{2 j-1} A_{j} C_{n-j}
$$

with $A_{1}=1$ and $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ the Catalan number. Let $a_{n}=2 A_{n} / C_{n}$. Lasalle [12] and Amdeberhan et al. [1] showed that both $\left\{A_{n}\right\}_{n \geq 1}$ and $\left\{a_{n}\right\}_{n \geq 2}$ are increasing sequences of positive integers. The latter also obtained the recurrence

$$
2 n a_{n}=\sum_{k=1}^{n-1}\binom{n}{k-1}\binom{n}{k+1} a_{k} a_{n-k}, \quad n=2,3, \ldots
$$

with $a_{1}=1$, and defined another sequence $\left\{b_{n}\right\}_{n \geq 1}$ by the recurrence

$$
b_{n}=\sum_{k=1}^{n-1}\binom{n-1}{k-1}\binom{n-1}{k+1} b_{k} b_{n-k}, \quad n=2,3, \ldots
$$

with $b_{1}=1$. They [1, Conjecture 9.1] conjectured that both $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ are log-convex.

Let $\left\{j_{\mu, k}\right\}_{k \geq 1}$ be the (nonzero) zeros of the Bessel function of the first kind

$$
J_{\mu}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\mu+1)}\left(\frac{x}{2}\right)^{2 m+\mu}
$$

and let

$$
\zeta_{\mu}(s)=\sum_{k=1}^{\infty} \frac{1}{j_{\mu, k}^{s}}
$$

be the Bessel zeta function. Then

$$
\begin{aligned}
A_{n} & =2^{2 n+1}(2 n-1)!\zeta_{1}(2 n) \\
a_{n} & =2^{2 n+1}(n+1)!(n-1)!\zeta_{1}(2 n) \\
b_{n} & =2^{2 n-1}(n-1)!n!\zeta_{0}(2 n)
\end{aligned}
$$

See [1, Corollary 5.3, 5.4 and (7.14)] for details. Now note that both $J_{0}(x)$ and $J_{1}(x)$ have only real zeros. Hence both sequences $\left\{\zeta_{1}(2 n)\right\}_{n \geq 0}$ and $\left\{\zeta_{0}(2 n)\right\}_{n \geq 0}$ are log-convex by Theorem 2.10. This leads to an affirmation answer to [1, Conjecture 9.1].

Corollary 2.12. Three sequences $\left\{A_{n}\right\},\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are log-convex respectively.

3 Further work

Sun [18] also proposed a series of conjectures about monotonicity of sequences of the form $\left\{\sqrt[n+1]{z_{n+1}} / \sqrt[n]{z_{n}}\right\}$. Roughly speaking, he conjectured that $\left\{\sqrt[n+1]{z_{n+1}} / \sqrt[n]{z_{n}}\right\}$ has the reverse monotonicity to $\left\{\sqrt[n]{z_{n}}\right\}$ for certain number-theoretic and combinatorial sequences $\left\{z_{n}\right\}$. Clearly, if $\left\{\sqrt[n+1]{z_{n+1}} / \sqrt[n]{z_{n}}\right\}$ is decreasing (increasing, resp.) with the limit 1 , then $\left\{\sqrt[n]{z_{n}}\right\}$ is increasing (decreasing, resp.). It is a challenging problem to study monotonicity of $\left\{\sqrt[n+1]{z_{n+1}} / \sqrt[n]{z_{n}}\right\}$, which is equivalent to log-concavity and log-convexity of $\left\{\sqrt[n]{z_{n}}\right\}$. A natural problem is to ask in which case the log-convexity (log-concavity, resp.) of z_{n} implies the log-concavity (log-convexity, resp.) of $\sqrt[n]{z_{n}}$.

Acknowledgement

We thank Prof. Z.-W. Sun and Prof. A.L.-B. Yang for bringing our attention to conjectures of Sun and Amdeberhan et al.

References

[1] T. Amdeberhan, V.H. Moll, C. Vignat, A probabilistic interpretation of a sequence related to Narayana polynomials, arXiv:1202.1203.
[2] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math. 178 (1994) 71-89.
[3] W.Y.C. Chen, Recent developments of log-concavity and q-log-concavity of combinatorial polynomials, a talk given at the 22nd Inter. Confer. on Formal Power Series and Algebraic Combin. (San Francisco, 2010).
[4] W.Y.C. Chen, J.J.F. Guo, L.X.W. Wang, Log-behavior of the Bernoulli Numbers, arXiv:1208.5213.
[5] W.Y.C. Chen, R.L. Tang, L.X.W. Wang, A.L.B. Yang, The q-log-convexity of Narayana polynomials of type B, Adv. in Appl. Math. 44 (2010) 85-110.
[6] H. Davenport, G. Pólya, On the product of two power serie, Canad. J. Math. 1 (1949) 1-5.
[7] T. Došlić, Seven (lattice) paths to log-convexity, Acta Appl. Math. 110 (2010) 1373-1392.
[8] K. Engel, On the average rank of an element in a filter of the partition lattice, J. Combin. Theory Ser. A 65 (1994) 67-78.
[9] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd Ed., Addison-Wesley Publishing Company, Reading, MA, 1994.
[10] Q.-H. Hou, Z.-W. Sun, H.-M. Wen, On monotonicity of some combinatorial sequences, arXiv:1208.3903.
[11] J.E. Janoski, A collection of problems in combinatorics, PhD Thesis, Clemson Univ., 2012.
[12] M. Lassalle, Two integer sequences related to Catalan numbers, J. Combin. Theory Ser. A 119 (2012) 923-935.
[13] L.L. Liu, Y. Wang, On the log-convexity of combinatorial sequences, Adv. in. Appl. Math. 39 (2007) 453-476.
[14] F. Luca, P. Stănică, On some conjectures on the monotonicity of some arithematical sequences, J. Combin. Number Theory 4 (2012) 1-10.
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, available at http://oeis.org/.
[16] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989) 500-534.
[17] Z.-W. Sun, On a sequence involving sums of primes, Bull. Aust. Math. Soc., to appear.
[18] Z.-W. Sun, Conjectures involving arithmetical sequences, Numbers Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proc. 6th China-Japan Seminar (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. (arXiv:1208.2683)
[19] Y. Wang and Y.-N. Yeh, Log-concavity and LC-positivity, J. Combin. Theory Ser. A 114 (2007) 195-210.
[20] B.-X. Zhu, Log-convexity and strong q-log-convexity for some triangular arrays, Adv. in. Appl. Math., in press, DOI:10.1016/j.aam.2012.11.003, 2012.

[^0]: *Email addresses: wangyi@dlut.edu.cn (Y. Wang), zhubaoxuan@yahoo.com.cn (B.-X. Zhu)

