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COMBINATORIAL RESULTS FOR CERTAIN SEMIGROUPS

OF ORDER-PRESERVING FULL CONTRACTION

MAPPINGS OF A FINITE CHAIN

A. D. Adeshola and A. Umar

Abstract

Let Tn be the full symmetric semigroup on Xn = {1, 2, . . . , n}
and let OCT n and ORCT n be its subsemigroups of order-preserving
and order-preserving or order-reversing full contraction mappings of
Xn, respectively. In this paper we investigate the cardinalities of
some equivalences on OCT n and ORCT n which lead naturally to
obtaining the orders of these subsemigroups. 1 2

MSC2010 : 20M18, 20M20, 05A10, 05A15.

1 Introduction and Preliminaries

Let Xn = {1, 2, . . . , n}. A (partial) transformation α : Domα ⊆ Xn →
Imα ⊆ Xn is said to be full or total if Domα = Xn; otherwise it is called
strictly partial. The set of of full transformations ofXn, denoted by Tn, more
commonly known as the full transformation semigroup is also known as the
full symmetric semigroup or monoid with composition of mappings as the
semigroup operation. We shall write xα for the image of x under α instead
of α(x). The height of α is denoted and defined by h(α) =| Imα |, the right
[left] waist of α is denoted and defined by w+(α) = max(Imα) [w−(α) =
min(Imα)], the fix of α is denoted and defined by f(α) =| F (α) | where

F (α) = {x ∈ Domα : xα = x}.

It is also well-known that a partial transformation ǫ is idempotent (ǫ2 =
ǫ) if and only if Im ǫ = F (ǫ). It is worth noting that to define the left (right)
waist of a transformation the base set Xn must be totally ordered.
A transformation α ∈ Tn is said to be order-preserving (order-reversing)
if (∀x, y ∈ Domα) x ≤ y =⇒ xα ≤ yα (xα ≥ yα) and, a contraction
mapping (or simply a contraction) if (∀x, y ∈ Domα) | x− y |≥| xα− yα |.
We shall denote by OCT n and ORCT n, the semigroups of order-preserving
full contractions and of order-preserving or order-reversing full contractions
of an n−chain, respectively.

Recently, Zhao and Yang [21] initiated the algebraic study of semigroups
of order-preserving partial contractions of an n-chain, where they referred

1Key Words : height, right (left) waist and fix of a transformation, idempotents and
nilpotents.

2This work was begun when the first named author was visiting Sultan Qaboos Uni-
versity for a 3-month research visit in Fall 2012.
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to our contractions as compressions. This paper investigates the combina-
torial properties of OCT n, ORCT n and ODCT n, and of their subsets of
idempotents.

In this section we introduce basic terminologies and prove some prelimi-
nary results. In Section 2 we obtain the cardinalities of various equivalence
classes defined on OCT n and in Sections 3 and 4 we obtain the analogues of
the results in Section 2 for ORCT n and ODCT n, respectively. These car-
dinalities lead to formulae for the orders of OCT n, ORCT n and ODCT n as
well as new triangles of numbers that as a result of this work were recently
recorded in [16].

For standard concepts in semigroup and transformation semigroup the-
ory, see for example [8, 4]. Let

ORn = {α ∈ Tn : (∀x, y ∈ Xn) x ≤ y =⇒ xα ≤ yα or xα ≥ yα}(1)

be the subsemigroup of Tn consisting of all order-preserving or order-reversing
full transformations of Xn, and let

On = {α ∈ Tn : (∀x, y ∈ Xn)x ≤ y =⇒ xα ≤ yα}(2)

be the subsemigroup of Tn consisting of all order-preserving full transfor-
mations of Xn. Also let

CT n = {α ∈ Tn : (∀x, y ∈ Xn) | x− y |≥| xα − yα |}(3)

be the subsemigroup of Tn consisting of all full contractions of Xn, and let

Dn = {α ∈ Tn : (∀x ∈ Xn) xα ≤ x}(4)

be the subsemigroup of Tn consisting of all order-decreasing full transfor-
mations of Xn.
We have the following results

Lemma 1.1 Let α ∈ CT n be such that f(α) = m. Then F (α) = {i, i +
1, . . . , i+m− 1}. Equivalently, F (α) is convex.

Proof. Observe that it is sufficient to show that any point between two
fixed points (of α ∈ CT n) must also be a fixed point. Let x, y ∈ F (α). Then
xα = x and yα = y. Suppose also without loss of generality x < x′ < y for
some x′ ∈ Xn. Note that if x′ = x′α, there is nothing to prove. Thus we
consider two cases: (i) x′ > x′α; (ii) x′ < x′α. In the former, we have

| y − x′ |=| yα− x′ |= yα− x′ < yα− x′α =| yα− x′α |

which implies that α is not a contraction. Hence we get a contradiction. In
the latter, we have

| x′ − x |=| x′ − xα |= x′ − xα < x′α− xα =| x′α− xα |

which implies that α is not a contraction. Hence we get a contradiction.
Thus, the proof is complete. ✷
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Lemma 1.2 Let α ∈ CT n be such that h(α) = p. Then Imα = {i, i +
1, . . . , i+ p− 1}. Equivalently, Imα is convex.

Proof. (By contradiction) Suppose that Imα is not convex. Then there exist
x, z ∈ Imα with x < y < z for some y ∈ Xn \ Imα. Let (y − 1] and [y + 1)
be the lower and upper saturations of y − 1 and y + 1, respectively. Notice
that x ∈ (y−1] and z ∈ [y+1). Moreover, (y−1]α−1 6= Xn 6= [y+1)α−1 but
(y−1]α−1∪[y+1)α−1 = Xn. If (y−1]α−1 is convex then since (y−1]α−1 6= Xn

there exist either (i) t ∈ (y−1]α−1 and t+1 ∈ [y+1)α−1; or (ii) t ∈ (y−1]α−1

and t− 1 ∈ [y + 1)α−1.
Case (i): it is clear that tα ≤ y − 1 and (t+ 1)α ≥ y + 1 so that

2 ≤ (t+ 1)α− tα =| (t+ 1)α− tα |≤| (t + 1)− t |= 1,

which is a contradiction.
Case (ii): it is clear that tα ≤ y − 1 and (t− 1)α ≥ y + 1 so that

2 ≤ (t− 1)α− tα =| (t− 1)α− tα |≤| (t− 1)− t |= 1,

which is another contradiction.
On the other hand if (y − 1]α−1 is not convex then there exists t ∈

(y−1]α−1 and either t+1 ∈ [y+1)α−1 or t−1 ∈ [y+1)α−1. In the former,
we see that tα ≤ y − 1 and (t + 1)α ≥ y + 1. Thus,

2 ≤ (t+ 1)α− tα =| (t+ 1)α− tα |≤| (t + 1)− t |= 1,

which is a contradiction. In the latter, we see that tα ≤ y−1 and (t−1)α ≥
y + 1. Thus,

2 ≤ (t− 1)α− tα =| (t− 1)α− tα |≤| (t− 1)− t |= 1,

which is another contradiction. Hence, the proof is complete. ✷

Next we state two important identities that will be needed later.

Lemma 1.3 (Vandemonde’s Convolution Identity, [15, (3a), p.8]). For all
natural numbers m, n and p we have

n
∑

k=0

(

n

m− k

)(

p

k

)

=

(

n+ p

m

)

.

Lemma 1.4 [12, Lemma 1.3] For all natural numbers j and a we have

j−a
∑

i=0

(

j − i

a

)

=

(

j + 1

a+ 1

)

.

Lemma 1.5 ([15, (3b), p.8]). For all natural numbers m, n and p we have

n
∑

k=0

(

n− k

n−m

)(

p+ k − 1

k

)

=

(

n+ p

m

)

.
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2 Order-preserving Full Contractions

Enumerative problems of an essentially combinatorial nature arise naturally
in the study of semigroups of transformations. Many numbers and triangle
of numbers regarded as combinatorial gems like the Stirling numbers [7, pp.
42 & 96], the factorial [17], the Fibonacci number [6], Catalan numbers [4],
Lah numbers [4], etc., have all featured in these enumeration problems. For
a nice survey article concerning combinatorial problems in the partial trans-
formation semigroup and some of its subsemigroups we refer the reader to
Umar [19]. These enumeration problems lead to many numbers in Sloane’s
encyclopaedia of integer sequences [16] but there are also others that are
not yet or have just been recorded in [16].
Now recall the definitions of height, (right) waist and fix of α ∈ Tn stated
earlier. From Umar [19], we quote this result.

Lemma 2.1 Let Xn = {1, 2, . . . , n} and P = {p,m, k}, where for a given
α ∈ Tn, we set p = h(α), m = f(α) and k = w+(α). Then we have the
following:

1. n ≥ k ≥ p ≥ m ≥ 1;

2. k = 1 =⇒ p = 1 =⇒ m ≤ 1.

As in Umar [19] let S be a set full transformations on Xn and consider
the combinatorial functions:

F (n; p,m, k) =| {α ∈ S : ∧(h(α) = p, f(α) = m,w+(α) = k)} |,

F (n; p,m) =| {α ∈ S : ∧(h(α) = p, f(α) = m} |,

F (n; p, k) =| {α ∈ S : ∧(h(α) = p, w+(α) = k)} |,

F (n;m, k) =| {α ∈ S : ∧(f(α) = m,w+(α) = k)} |,

F (n; p) =| {α ∈ S : h(α) = p} |,

F (n;m) =| {α ∈ S : f(α) = m} |,

F (n; k) =| {α ∈ S : w+(α) = k} | .

Observe that

F (n; a1, a2) =
∑

a3

F (n; a1, a2, a3), F (n; a1) =
∑

a2

F (n; a1, a2),

and

|S| =
∑

a1

F (n; a1)

where {a1, a2, a3} = {p,m, k}.
The following lemma is crucial to our investigation.
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Lemma 2.2 Let

an,p = | {α ∈ OCT n : (F (α) = {1}) ∧ (h(α) = p)} |

= | {α ∈ OCT n : (F (α) = {n}) ∧ (h(α) = p)} | .

Then an,p =
(

n−2

p−1

)

.

Proof. Let α ∈ OCT n be such that F (α) = {1} and h(α) = p. First
observe that Imα = {1, 2, . . . , p}, by Lemma 1.2. Next, recall that the
blocks (yα−1 for y ∈ Imα) are convex by order-preservedness and so the
number of partitions of Xn into p convex blocks is the number of ways of
inserting p − 1 bars between the n − 1 spaces (between the points of the
n-chain). However, notice that in this case the space between 1 and 2 is
not available so that 2 does not become a fixed point since F (α) = {1}.
Thus, we have n − 2 available places to insert p − 1 bars, which can be
done in

(

n−2

p−1

)

ways, without new points being introduced. The result when

F (α) = {n}, follows by symmetry. ✷

The main result in this paper can now be stated.

Proposition 2.3 Let S = OCT n = On ∩ CT n. Then F (n; p,m, k) =
(

n−m−1

n−p−1

)

.

Proof. Let α ∈ OCT n be such that h(α) = p, f(α) = m and w+(α) = k.
Then by Lemmas 1.1 & 1.2 we see that

F (α) = {i, i+ 1 . . . , i+m− 1} ⊆ {k − p+ 1, k − p+ 2 . . . , k} = Imα,
where k− p+1 ≤ i ≤ k−m+1. Next, observe that by order-preservedness
we may decompose α into β = α|{1,2,...,i}, id{i+1,i+2,...,i+m−2} and β ′ =
α|{i+m−1,i+m,...,n}, where F (β) = {i}, Im β = {k − p + 1, . . . , i}, F (β ′) =
{i+m−1}, and Im β ′ = {i+m−1, . . . , k}. Now it is not difficult to see that
for β there are ai,i−k+p possible maps, and for β ′ there are an−i−m+2,k−i−m+2

possible maps. Thus, multiplying the two numbers and taking the sum of
the product over i from k− p+1 to k−m+1 and using Lemmas 1.5 & 2.2
gives

F (n; p, k,m) =
k−m+1
∑

i=k−p+1

ai,i−k+pan−i−m+2,k−i−m+2

=
k−m+1
∑

i=k−p+1

(

i− 2

i− k + p− 1

)(

n− i−m

k − i−m+ 1

)

=
k−m+1
∑

i=k−p+1

(

i− 2

i− k + p− 1

)(

n− i−m

n− k − 1

)

=

(

n−m− 1

p−m

)

=

(

n−m− 1

n− p− 1

)

,

using the substitution i− k + p− 1 = j, for the last step. ✷
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Corollary 2.4 Let S = OCT n. Then F (n; p,m) = (n− p+1)
(

n−m−1

n−p−1

)

, for
p ≥ m ≥ 1.

Corollary 2.5 Let S = OCT n. Then F (n; p, k) =
(

n−1

p−1

)

, for k ≥ p ≥ 1.

Proof. It follows directly from Proposition 2.3 and Lemma 1.4. ✷

Corollary 2.6 S = OCT n. Then F (n;m, k) =
∑k

p=m

(

n−m−1

n−p−1

)

, for k ≥
m ≥ 1.

Proof. It follows directly from Proposition 2.3 and Lemma 1.4. ✷

Corollary 2.7 Let S = OCT n. Then F (n; p) = (n−p+1)
(

n−1

p−1

)

, for p ≥ 1.

Proof. It follows from either of the Corollaries 2.4 & 2.5. ✷

Corollary 2.8 Let S = OCT n. Then F (n; k) =
∑k

p=1

(

n−1

p−1

)

, for k ≥ 1.

Proof. It follows from either of the Corollaries 2.5 & 2.6. ✷

For 0 ≤ i ≤ n, let

F (n;mi) =| {α ∈ S : f(α) = i} | .

Corollary 2.9 Let S = OCT n. Then F (n;mn) = 1 and F (n;m) =
(n−m+ 3)2n−m−2, for n ≥ 2 and n > m ≥ 1.

Proof. It follows from either of the Corollaries 2.4 & 2.6. ✷

Corollary 2.10 Let S = OCT n. Then | S |=| OCT n |= (n + 1)2n−2, for
n ≥ 1.

Proof. It follows from any one of the Corollaries 2.7, 2.8 & 2.9. ✷

Corollary 2.11 Let S = E(OCT n). Then F (n; p, k) = F (n;m, k) = 1, for
k ≥ p = m ≥ 1.

Proof. Since F (α) = Imα for idempotents, it follows that p = m. Hence
the result follows from Proposition 2.3. ✷

Corollary 2.12 Let S = E(OCT n). Then F (n; p) = F (n;m) = n−p+1 =
n−m+ 1, for p = m ≥ 1.

Corollary 2.13 Let S = E(OCT n). Then F (n; k) = k, for k ≥ 1.

Corollary 2.14 | E(OCT n) |= n(n+ 1)/2 =
(

n+1

2

)

, for n ≥ 1.

Remark 2.15 The triangle of numbers F (n;m) has as a result of this work
been recorded in [16]. However, F (n; p), F (n; k), F (n;m1) and | OCT n |
were recorded (in [16]) as A104698, A008949, A045623 and A001792, re-
spectively.

6



3 Order-preserving or Order-reversing Full

Contractions

Remark 3.1 For h(α) = p = 1 the concepts of order-preserving and order-
reversing coincide but distinct otherwise. However, the map α 7−→ αh,
where xh = n−x+1, for all x in Xn is a bijection between the two sets for
p ≥ 2, see [3, page 2, last paragraph].

Remark 3.2 Every idempotent is necessarily order-preserving. Thus, there
are no additional idempotents from reversing the order.

The main result of this section is

Proposition 3.3 Let S = ORCT n = ORn ∩ CT n. Then

F (n; p, k) =

{

2
(

n−1

p−1

)

, p > 1;

1, otherwise.

Proof. It follows from Corollary 2.5 and Remark 3.1. ✷

Corollary 3.4 Let S = ORCT n. Then

F (n; p) =

{

2(n− p+ 1)
(

n−1

p−1

)

, p > 1;

n, otherwise.

Proof. It follows from Proposition 3.3 and the fact that p ≤ k ≤ n. ✷

Corollary 3.5 Let S = ORCT n. Then F (n; k) = 2
∑k

p=1

(

n−1

p−1

)

− 1, for
k ≥ 1.

Proof. It follows from Proposition 3.3 and the fact that 1 ≤ p ≤ k. ✷

Corollary 3.6 Let S = ORCT n. Then | S |=| ORCT n |= (n+1)2n−1−n,
for n ≥ 1.

Proof. It follows from either of the Corollaries 3.4 & 3.5. ✷

Let us denote the set of all order-reversing full contraction of Xn by
ORCT ∗

n and let

b(n, p) =| {α ∈ ORCT ∗
n : h(α) = p and f(α) = 1} |,

be the number of order-reversing full contractions of height p and with
exactly one fixed point. Then we have

Lemma 3.7 For n ≥ p ≥ 1, we have b(n, p) = (n− p+ 1)
∑

i≥1

(

n−2i

p−2i

)

.

Lemma 3.8 For n ≥ p ≥ 2, we have
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(a) b(n, p) = (n− p+ 1)
(

n−2

p−1

)

+ b(n− 2, p− 2), b(n, 1) = n, b(2, 2) = 0,

(b) (n− p)b(n, p) = (n− p)b(n− 1, p− 1) + (n− p+ 1)b(n− 2, p− 2),
b(2r + 1, 2r + 1) = 1, b(2r, 2r) = 0.

Define a sequence {an} by

nan = (n + 2)an−1 + 2(n+ 1)an−2, a1 = 1, a2 = 2.

Then we have

Lemma 3.9 Let S = ORCT ∗
n. Then

(a) F (n;m0) = an−1, n ≥ 2;

(b) F (n,m1) = an, n ≥ 1;

(c) F (n;m) = 0, m ≥ 2.

Lemma 3.10 Let S = ORCT n. Then F (1;m0) = 0, F (n;mn) = 1 and

(a) F (n;m0) = an−1, n ≥ 2;

(b) F (n,m1) = an + (n + 2)2n−3 − n, n ≥ 1;

(c) F (n;m) = (n−m+ 3)2n−m−2, n > m ≥ 2.

Remark 3.11 The triangles of numbers F (n; p), F (n; k) and F (n;m); and
the sequences F (n;m0), F (n;m1) and | ORCT n | have as a result of this
work just been recorded in [16].

4 Order-preserving and Order-decreasing Full

Contractions

The main result of this section is

Proposition 4.1 Let S = ODCT n = Dn ∩ OCT n. Then

F (n; p, k,m) =

{

(

n−m−1

p−m

)

, p = k;

0, otherwise.

Proof. Let α ∈ ODCT n be such that h(α) = p, f(α) = m and w+(α) = k.
Then by Lemmas 1.1 & 1.2 we see that

F (α) = {1, 2 . . . , m} ⊆ {1, 2 . . . , p} = Imα.
Moreover, p = k. Next, observe that by order-preservedness we may de-
compose α into id{1,2,...,m−1} and β ′ = α|{m,m+1,...,n}, where F (β ′) = {m},
and Im β ′ = {m,m + 1 . . . , p}. Now it is not difficult to see that there are
an−m+1,p−m+1 possible β ′s, by Lemma 2.2. Thus,

F (n; p, k,m) =

{

(

n−m−1

p−m

)

, p = k;

0, otherwise.
✷
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Corollary 4.2 Let S = ODCT n. Then F (n; p,m) =
(

n−m−1

p−m

)

, for p ≥
m ≥ 1.

Corollary 4.3 S = ODCT n. Then F (n;m, k) =
(

n−m−1

k−m

)

, for k ≥ m ≥ 1.

Corollary 4.4 Let S = ODCT n. Then F (n; p) =
(

n−1

p−1

)

, for p ≥ 1.

Corollary 4.5 Let S = ODCT n. Then F (n; k) =
(

n−1

k−1

)

, for k ≥ 1.

Corollary 4.6 Let S = ODCT n. Then F (n;mn) = 1 and F (n;m) =
2n−m−1, for n > m ≥ 1.

Corollary 4.7 Let S = ODCT n. Then | S |=| ODCT n |= 2n−1, for n ≥ 1.

Corollary 4.8 Let S = E(ODCT n). Then

F (n; p,m) =

{

1, p = m;
0, otherwise.

Proof. Since F (α) = Imα for idempotents, it follows that p = m. Hence
the result follows from Proposition 2.3. ✷

Corollary 4.9 Let S = E(ODCT n). Then F (n; p) = F (n;m) = F (n; k) =
1, for p, k,m ≥ 1.

Corollary 4.10 | E(ODCT n) |= n, for n ≥ 1.

Acknowledgements. The first named author would like to thank Kwara
State University, Malete and TET Fund for financial support, and Sultan
Qaboos University for hospitality.
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