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Abstract. Motivated by an evolutionary biology question, we study the following
problem: we consider the hypercube {0, 1}L where each node carries an independent
random variable uniformly distributed on [0, 1], except (1, 1, . . . , 1) which carries the
value 1 and (0, 0, . . . , 0) which carries the value x ∈ [0, 1]. We study the number Θ of
paths from vertex (0, 0, . . . , 0) to the opposite vertex (1, 1, . . . , 1) along which the values
on the nodes form an increasing sequence. We show that if the value on (0, 0, . . . , 0)
is set to x = X/L then Θ/L converges in law as L→∞ to e−X times the product of
two standard independent exponential variables.

As a first step in the analysis we study the same question when the graph is that
of a tree where the root has arity L, each node at level 1 has arity L− 1, . . . , and the
nodes at level L − 1 have only one offspring which are the leaves of the tree (all the
leaves are assigned the value 1, the root the value x ∈ [0, 1]).

1. Introduction and motivation

1.1. The model. We consider the following problem: for L ≥ 1, let (Xσ, σ ∈ {0, 1}L)
be a sequence of i.i.d. random variables with uniform distribution on [0, 1] except for
σ0 = (0, 0, . . . , 0) for which we fix xσ0 = x with x given and σL = (1, 1, . . . , 1) for which
we fix xσL = 1. Viewing {0, 1}L as the L-dimensional hypercube we ask how many
oriented paths are there from σ0 to σL:

σ0 → σ1 → σ2 → · · · → σL,

where each σi+1 is obtained from σi by changing a single 0 into a 1 in the sequence σi,
such that values xσ form an increasing sequences:

xσ0 < xσ1 < · · · < xσL .

Such paths are said to be open or accessible. A variant to this model which we also
consider is when the value xσ0 at the starting point is picked randomly as the other xσ.

1.2. Motivation. This question is motivated by some classical and recent works in
evolutionary biology. Consider the following very simplified model for the evolution of
an organism. The genetic information of the organism is encoded into its genome which,
for our purposes is a chain of L0 sites. With time, the organism accumulates mutations
which are only single site substitutions.

If we suppose that there are only two possible alleles on each site, it makes sense
when looking at the genome to only record whether the allele carried at a given site
is the original one (the “wild type”) or the mutant. We will represent a genetic type
by a sequence of 0’s and 1’s of length L0 where we put a 0 at position i if this site
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carries the original code or a 1 if it carries the mutant. Hence, a genetic type is a point
σ ∈ {0, 1}L0 , the L0-dimensional hypercube. This is a classical way of encoding the
possible evolutionary states of a populations. For instance, in their seminal article [7]
Kauffman and Levin write:

Consider as a concrete example, a space of N peptides constrained to use
two amino acids, say leucine and alanine. Then 1 and 0 can represent
the two amino acids, and each peptide is a binary string, length N of
1 and 0 values. Such strings are easily represented as vertices of an N-
dimensional Boolean hypercube.

As an organism evolves by successive mutations, its genetic type travels along the
edges of the hypercube. Each genetic type σ ∈ {0, 1}L0 is characterized by a certain
fitness value xσ.

Assume that the population is in a regime with a low mutation rate and strong
selection; this means that when a new genetic type (mutant) appears in a resident
population, it must either fixates (i.e. it invades the whole population and becomes the
resident type) if it has better fitness or become extinct (i.e. no one in the population
carries this type after some time) if its fitness is lower. Therefore, in that low mutation
and strong selection regime, the only possible evolutionary paths are such that the fitness
is always increasing. We say that such paths are open. In biology, paths with increasing
fitness values are also referred to as selectively accessible (see [13], [14], [4]). The idea
that the population moves as a whole along the vertices of the hypercube is also classical
and can be found in [7] or in [8]:

One can think of the adaptive process as a continuous time, discrete state
Markov process, in which the entire population is resident at one state
and then jumps with fixed probabilities to each of its 1-step mutant fitter
variants.

Somewhere in the L0-dimensional hypercube, there is a type with the highest fitness.
We call L the distance between that type and the original one; i.e. L is the number of
mutated alleles in the fittest type. A natural question is whether there is an open path
from the original type to the fittest. Such a path has at least L steps but may contain
many more. Because of the low mutation rate, evolution takes time, and we interest
ourselves here only in the shortest open paths leading to the fittest type, that is in the
paths with exactly L steps, for which mutation never goes back: a site can only change
from the original type to the mutant one.

In that setting, it is thus sufficient to consider the L-dimensional hypercube which
contains (as opposing nodes) the original type, noted σ0 = (0, 0, . . . , 0) and the fittest
type σL = (1, 1, 1, . . . , 1). We consider paths through that hypercube along the edges
which always move further away from the origin (i.e. at each step a 0 is changed into a
1 in the sequence) and, out of the L! possible paths, we wish to count the number Θ of
open paths, that is the number of paths such that the fitness values form an increasing
sequence which represent a possible evolutionary history of the organism towards its
optimum fitness.

To count the number of open paths, we need to have a model for the fitness values xσ
of all the nodes. There are many choices as to how to do this. One could for instance
chose xσ to be the number of ones in σ. In that case all direct paths from σ0 to σL are
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accessible. However this corresponds to a very smooth, linear fitness landscape which
does not match observations.

Instead, our choice is to pick the fitness values as independent random variables with
a common distribution. As we are only interested in whether a sequence is increasing or
not, the results will not depend on the specific distribution (as long as it is atom-less).
We therefore choose to give a fitness xσL = 1 to the fittest node and to assign uniform
random numbers between 0 and 1 to each other nodes. This is the so called “House of
Cards” model, which was introduced by Kingman [9], which is also [2] the NK model
studied by [7] in the limit K = N−1. The variant we consider where xσ0 is not randomly
picked but fixed to a given value x has also been considered recently [3, 10].

1.3. A toy model. The correlation structure of the hypercube raises significant tech-
nical challenges. As a first step, we study the following simplified problem: instead of
working on the L-dimensional hypercube we chose to work on a deterministic rooted tree
as in Figure 1 with arity decreasing from L to 1: the root is connected to L first level
nodes, each first level node is connected to L − 1 second level nodes, etc. There are L
levels in the tree and L! directed paths. The number of possible steps at level k is then
L − k, as on the hypercube. Each of the L! leaves of the tree (at level L) are assigned
the value 1. All the other nodes are assigned independent random numbers uniformly
drawn between 0 and 1, except perhaps the root to which we may choose to give a fixed
value x. We are interested in the number Θ of directed paths on the tree going from
the root to one of the leaves where the numbers assigned to the visited nodes form an
increasing sequence. As before, such a path is said to be open.

0

0.59 0.90 0.01 0.83

0.040.180.950.660.480.220.07 0.270.710.100.070.10

0.11 0.26 0.29 0.23 0.84 0.67 0.39 0.22 0.01 0.57 0.32 0.12 0.30 0.49 0.05 0.90 0.82 0.83 0.10 0.72 0.770.83 0.08 0.49

111111111111111111111111

Figure 1. A tree for L = 4 and x = 0. The bold red lines indicate the
directed paths going down from the root (at the top) and which visit an
increasing sequence of numbers. There are Θ = 2 paths going all the way
down to the leaves of the tree.

We mention that other models of paths with increasing fitness values on trees have
also been considered in the literature [16].

2. Main results

We call
Θ = number of open paths on the tree or the hypercube.

We want to describe the law of Θ. Whether we work on the tree or on the hypercube
will always be made clear from the context. The starting position for a path on the tree
is the root of the tree; by abuse of language we call “root of the hypercube” the starting
position σ0 = (0, 0, . . . , 0) of a path on the hypercube. Throughout the paper we use
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the following notations for the probability of an event and for the expectation and the
variance of a number:

Px(·), Ex(·), Varx(·) when the root has value x

P∗(·) =
∫ 1

0
dxPx(·), E∗(·) =

∫ 1

0
dxEx(·), Var∗(·) when the root is uniform in [0, 1]

Note that the size L of the tree or of the hypercube is implicit in the notation. The
notation aL ∼ bL, L→∞ means limL→∞

aL
bL

= 1.

Obtaining the expectation of the number of open paths when the starting value has
the fixed value x is easy: there are L! paths in the tree or the hypercube. Each path
has probability (1 − x)L−1 that the L − 1 intermediate numbers between the root and
the leaf are between x and 1. Furthermore, there is probability 1/(L − 1)! that these
intermediate numbers form an increasing sequence. Hence, the probability that a given
path is open is (1− x)L−1/(L− 1)! and thus

Ex(Θ) = L(1− x)L−1 (2.1)
both for the tree and the hypercube.

Thus, if x = 0 there are on average L open paths, and if x > 0 the number of open
paths goes in probability to zero when L becomes large.

The most biologically relevant variant of the model is when x is also randomly picked
as the other nodes. The expectation of Θ (both on the tree and on the hypercube) is
trivially obtained by integrating (2.1):

E∗(Θ) = 1, (2.2)
but the typical number of paths for L large is not of order 1, as can be seen by looking
on the variance of Θ:

lim
L→∞

Var∗(Θ)
L

= 1 on the tree. (2.3)

(All the variance computations on the tree are carried out in section 5.) In fact, this can
be understood by considering starting values x scaling with the size L of the system as
x = X/L with X fixed:

Proposition 1. In the case of the tree,

lim
L→∞

E
X
L (Θ/L) = e−X , lim

L→∞
Var

X
L (Θ/L) = e−2X . (2.4)

In the case of the hypercube (Hegarty-Martinsson 2012 [6])

lim
L→∞

E
X
L (Θ/L) = e−X , lim

L→∞
Var

X
L (Θ/L) = 3e−2X . (2.5)

(Note that Hegarty-Martinsson consider a different scaling regime, but their proof can
be adapted without any modification to the result above.)

From Proposition 1 for x = X/L and L large, the variance of Θ scales like the square
of the expectation of Θ. This means that when the starting value x is O(1/L), the
number Θ of open paths is O(L), like its expectation. When x is chosen randomly, there
is a probability O(1/L) that x = O(1/L) yielding O(L) open paths. On average we thus
expect O(1) open paths, with a variance O(L), as in (2.3).

This heuristic can be made more precise:
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Theorem 1. On the tree, for a starting value x = X/L, the variable Θ/L converges in
law when L→∞ to e−X multiplied by a standard exponential variable.

Theorem 2. On the hypercube, for a starting value x = X/L, the variable Θ/L con-
verges in law when L→∞ to e−X multiplied by the product of two independent standard
exponential variables.

It will become apparent in the proofs that we get a product of two independent vari-
ables on the hypercube because, locally near both corners (0, 0, . . . , 0) and (1, 1, . . . , 1),
the hypercube graph looks roughly like the tree.

We conclude with the following remark: when the starting value x is picked randomly,
even if the expectation and the variance of Θ is dominated by values of x = O(1/L),
the probability that there exists at least one open path is dominated by starting values
x = lnL/L + O(1/L). This was made clear on the hypercube in [6] and we here state
the tree counterpart.

Theorem 3. On the tree, when the starting value is x = (lnL+X)/L

lim
L→∞

E
ln L+X

L (Θ) = e−X , lim
L→∞

Var
ln L+X

L (Θ) = e−2X + e−X . (2.6)

When the starting value x is chosen at random uniformly in [0, 1], the probability to have
no open path goes to 1 as L→∞ and

P∗(Θ ≥ 1) ∼ lnL
L

as L→∞. (2.7)

The rest of the paper is organized as follows: we start by proving Theorem 3 in
Section 3 as it is the simplest, and then we prove Theorem 1 in Section 4. The proofs rely
on Proposition 1 which is itself proven in Section 5 for the tree. In Section 6, we introduce
the notion of Poisson cascade, which allows to give a probabilistic interpretation of one
of the main object introduced in our proofs. Finally, Theorem 2 (on the hypercube) is
proven in Section 7.

3. Proof of Theorem 3

In (2.6), the result on the expectation is trivial from (2.1), and the result on the
variance is obtained in Section 5. In this section, we prove (2.7).

Let us start with the upper bound. Markov’s inequality with (2.1) leads to

Px(Θ ≥ 1) ≤ min
[
1, L(1− x)L−1]. (3.1)

We split the integral P∗(Θ ≥ 1) =
∫ 1

0 Px(Θ ≥ 1) dx at x0 = 1 − exp[−(lnL)/(L − 1)]
since that is the point such that L(1− x0)L−1 = 1. We end up with

P∗(Θ ≥ 1) ≤ 1− exp
[
− lnL
L− 1

]
+ exp

[
− L

L− 1 lnL
]

= lnL
L

+O
( 1
L

)
. (3.2)

We now turn to the lower bound. Let L 7→ f(L) be a function diverging more slowly
than lnL:

lim
L→∞

f(L) =∞, 0 ≤ f(L) ≤ lnL, lim
L→∞

f(L)
lnL = 0. (3.3)
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It is sufficient to show that

lim
L→∞

P
ln L−f(L)

L (Θ ≥ 1) = 1, (3.4)

because

P∗(Θ ≥ 1) ≥
∫ ln L−f(L)

L

0
Px(Θ ≥ 1) dx ≥ lnL− f(L)

L
P

ln L−f(L)
L (Θ ≥ 1), (3.5)

where we used that x 7→ Px(Θ ≥ 1) is a non-increasing function. Taking L large in (3.5)
assuming (3.4) gives the lower bound.

It now remains to show (3.4). We consider a tree started from x = [lnL − f(L)]/L,
and call m the number of nodes at first level with a value between x and (lnL)/L.
This number m is a binomial of parameters L and f(L)/L. Conditionally on m, the
probability to have no open path in the tree is smaller than the probability to have no
open path through these m specific nodes. Thus by summing over all possible values of
m we get:

P
ln L−f(L)

L (Θ = 0) ≤
L∑

m=0

(
L

m

)(
f(L)
L

)m (
1− f(L)

L

)L−m [
P

ln L
L

;L−1(Θ = 0)
]m

, (3.6)

where we used Px(Θ = 0) ≤ P(lnL)/L(Θ = 0) for x ≤ (lnL)/L. Note the obvious
extension to the notation to mark that the probability on the right hand side is for a
tree of size L− 1 and not L as on the left hand side. Summing (3.6), one gets

P
ln L−f(L)

L (Θ = 0) ≤
[
1− f(L)

L

(
1− P

ln L
L

;L−1(Θ = 0)
)]L

. (3.7)

But from Cauchy-Schwarz (applied to Θ and 1(Θ ≥ 1)) and (2.6), which is proved in
Section 5.3, one has

P
ln L

L (Θ ≥ 1) ≥ E
ln L

L (Θ)2

E
ln L

L (Θ2)
−−−−→
L→∞

1
3 , (3.8)

so that, for L large enough

P
ln L

L
;L−1(Θ ≥ 1) ≥ P

ln(L−1)
L−1 ;L−1(Θ ≥ 1) ≥ 0.33, (3.9)

and thus, for L large enough

P
ln L−f(L)

L (Θ = 0) ≤
[
1− f(L)

L
P

ln L
L

;L−1(Θ ≥ 1)
]L
≤
[
1− 0.33f(L)

L

]L
(3.10)

which goes to zero as L→∞, as required.

4. Proof of Theorem 1

In this section, we consider the case of the tree with a starting value x which scales
as x = X/L, X ≥ 0 being a fixed number. The natural starting point for a proof would
be to introduce G, the generating function of Θ:

G(λ, x, L) = Ex
(
e−λΘ

)
, (4.1)
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with parameter λ ≥ 0, for which it is very easy to show from the tree geometry (each of
the L nodes at first level are the root of an independent tree of size L− 1) that:

G(λ, x, 1) = e−λ, G(λ, x, L) =
[
x+

∫ 1

x
dy G(λ, y, L− 1)

]L
for L > 1. (4.2)

However, extracting the limiting distribution directly from (4.2) seems difficult because
the number of levels and the size of each level increase together and because the fixed
point equation does not give the λ dependence of the result. We shall rather use an
idea which proved to be very generic and powerful in branching processes: the value of a
random variable is decided during the early stages of a branching process; at later stages
the law of large numbers kicks in (see for instance [11]).

Assume that all the information at the first k levels of the tree is known, and call Θk

the expected number of paths given that information:

Θk = E(Θ|Fk), (4.3)

where Fk is the available information up to level k. For instance, consider the tree of
Figure 1 up to level k = 2. There are three paths still open with end values (at level 2)
given by 0.22, 0.66 and 0.95. Therefore from (2.1), Θ2 = 2(1−0.22)+2(1−0.66)+2(1−
0.95) = 2.34. Similarly, Θ1 = 3(1−0.59)2+3(1−0.90)2+3(1−0.01)2+3(1−0.83)2 = 3.56
and Θ3 = Θ4 = Θ = 2. A general expression of Θk for k < L is

Θk =
∑
|σ|=k

1{σ open}(L− k)(1− xσ)L−k−1, (4.4)

where we sum over all nodes σ at level |σ| = k in the tree, xσ is the value of the node
σ and the event {σ open} is the F|σ|-measurable event that the path from the root to
node σ is open.

Heuristically, when k is small, there are few paths open up to level k and the variance
of Θ given Fk is large: Θ has no reason to be close to Θk. When k is large, however,
there are many paths open up to level k which all contribute to the value of Θ. The law
of large numbers leads (on the good scale) to a small variance of Θ given Fk and Θk

becomes a good approximation of Θ. The advantage of this approach is that one can
take the L → ∞ limit for a fixed k (keeping the depth of the tree constant) and then
take the k →∞ limit.

Our proof consists then in two steps:

• first we show that

lim
L→∞

P
X
L

(Θ
L
≤ z

)
= lim

k→∞
lim
L→∞

P
X
L

(Θk

L
≤ z

)
, (4.5)

which means that Θ/L for a starting point X/L and L large has the same dis-
tribution as Θk/L with the same starting point for large L and then for large k;
• then we make use of a generating function similar to (4.1) to show that the
distribution of Θk/L after taking the limits is given by an exponential law.
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4.1. Proof of (4.5). Pick δ > 0. Observe that

P
(Θ
L
≤ z

∣∣∣ Fk) ≤ 1

(Θk

L
≤ z + δ

∣∣∣ Fk)+ P
( |Θ−Θk|

L
≥ δ

∣∣∣ Fk),
P
(Θ
L
≤ z

∣∣∣ Fk) ≥ 1

(Θk

L
≤ z − δ

∣∣∣ Fk)− P
( |Θ−Θk|

L
≥ δ

∣∣∣ Fk). (4.6)

The first inequality follows from the simple remark that it is obviously true when Θk/L ≤
z+δ and that, when Θk/L > z+δ, it is necessary to have (Θk−Θ)/L ≥ δ to get Θ/L ≤ z.
Similarly, the lower bound in the next line is trivial when Θk/L > z−δ and it is sufficient
to have (Θ−Θk)/L < δ when Θk/L ≤ z − δ.

As Θk is the expectation of Θ given Fk, one has from Chebyshev’s inequality:

P
( |Θ−Θk|

L
≥ δ

∣∣∣ Fk) ≤ Var(Θ|Fk)
L2δ2 . (4.7)

We use (4.7) into (4.6) and then take the expectation (over Fk):

P
X
L

(Θk

L
≤ z−δ

)
−
E

X
L
[
Var(Θ|Fk)

]
L2δ2 ≤ P

X
L

(Θ
L
≤ z

)
≤ P

X
L

(Θk

L
≤ z+δ

)
+
E

X
L
[
Var(Θ|Fk)

]
L2δ2 .

Therefore to show (4.5), it is sufficient to have

lim
k→∞

lim sup
L→∞

1
L2E

X
L
[
Var(Θ|Fk)

]
= 0, (4.8)

as well as the existence and continuity of the right hand-side limit of (4.5).

In Section 5.5, we will show by direct analysis of the second moment that

lim
L→∞

1
L2E

X
L
[
Var(Θ|Fk)

]
= e−2X

2k , (4.9)

which yields (4.8). We will now compute the distribution of Θk/L in the double limit
L → ∞ and k → ∞ and, as the result will be a continuous function of z, this will
complete the proof.

4.2. Distribution of Θk. Similarly to (4.1), we define Gk(λ, x, L) the generating func-
tion of Θk for a tree of size L and a value x at the root:

Gk(λ, x, L) = Ex
(
e−λΘk

)
. (4.10)

As Θ0 = Ex(Θ) = L(1− x)L−1 one has

G0(λ, x, L) = exp
[
−λL(1− x)L−1

]
, (4.11)

and the recursion relation

Gk(λ, x, L) =
[
x+

∫ 1

x
dy Gk−1(λ, y, L− 1)

]L
=
[
1−

∫ 1

x
dy
(
1−Gk−1(λ, y, L− 1)

)]L
,

(4.12)
to be compared to (4.2).

This relation is obtained by decomposing on what happen at the first splitting. For a
node σ connected to the root let Θk(σ) be the conditional expectation given Fk of the
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number of open paths going through σ. The {Θk(σ)}|σ|=1 is a collection of L independent
Fk-measurable independent variables, hence:

Gk(λ, x, L) =
[
Ex
(
e−λΘk(σ))]L, (4.13)

where σ is a given node in the first generation.
Let us evaluate Ex

(
e−λΘk(σ)). If xσ < x then Θk(σ) = 0 and since this event has

probability x it contribute xe−λ0 = x to the expectation. With a probability dy for
y ∈ [x, 1] the value at the node is y > x and some paths might go through that node.
The subtree rooted at σ is like the initial tree but of dimension L − 1 and we want to
evaluate the average number of paths in that subtree given the information after k − 1
steps, hence the term in the integral of (4.12).

The strategy is to take the L→∞ limit at fixed k in (4.11) and (4.12) after a proper
rescaling, then to let k →∞. We only consider λ ≥ 0; it is sufficient to characterize the
distribution, and it simplifies the arguments below.
Step 1. We first show that the following limit exists (for µ ≥ 0):

∀a, b, Gk

(
µ

L+ a
,
X

L+ b
, L

)
−−−−→
L→∞

G̃k(µ,X), (4.14)

and that the limit satisfies

G̃k(µ,X) = exp
[
−
∫ ∞
X

[
1− G̃k−1(µ, Y )

]
dY
]
, G̃0(µ,X) = exp

[
− µe−X

]
. (4.15)

From (4.11), it is obvious that (4.14) holds for k = 0 with the limit given in (4.15).
Choosing k > 0, we assume that (4.14) holds for Gk−1. Then, after a change of variable
in (4.12),

Gk

(
µ

L+ a
,
X

L+ b
, L

)
=
[
1− 1

L+ b

∫ L+b

X
dY

(
1−Gk−1

( µ

L+ a
,

Y

L+ b
, L− 1

))]L
.

The Gk−1 on the right hand side has a L→∞ limit. From its definition (4.10), one has

1 ≥ Gk(λ, x, L) ≥ 1− λEx(Θk) = 1− λEx(Θ) = 1− λL(1− x)L−1. (4.16)
Then, assuming µ ≥ 0, for all a and b, one has for L large enough (depending on a and
b):

1 ≥ Gk−1

(
µ

L+ a
,

Y

L+ b
, L− 1

)
≥ 1− 2µe−Y/2. (4.17)

Thus, from the dominated convergence theorem, we have∫ L+b

X
dY

(
1−Gk−1

( µ

L+ a
,

Y

L+ b
, L− 1

))
−−−−→
L→∞

∫ ∞
X

dY
(
1− G̃k−1(µ, Y )

)
, (4.18)

and thus (4.14) holds for Gk with the relation (4.15).
Step 2. The fact that (4.14) holds means that when starting with x = X/L, the random
variable Θk/L has a well defined limit as L goes to infinity, and that the generating
function of that limit is G̃k. We now use the recurrence (4.15) to take the k →∞ limit
which will show that limL→∞Θk/L converges (when k →∞) to an exponential variable.
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This task is greatly simplified by noticing (by a simple recurrence) that one can write
G̃k as a function of one variable only:

G̃k(µ,X) = Fk(µe−X) (4.19)

with

Fk(z) = exp
[
−
∫ z

0

1− Fk−1(z′)
z′

dz′
]
, F0(z) = e−z. (4.20)

We shall show that the solution to (4.20) satisfies

Fk(z) −−−→
k→∞

1
1 + z

for z > −1, (4.21)

which implies that limL→∞Θk/L converges weakly when k → ∞ to an exponential
distribution of expectation e−X . Note that we only need to consider z ≥ 0 and, in
fact, we proved (4.20) only for z ≥ 0, but (4.21) holds for the solution to (4.20) for
z ∈ (−1,∞).

Defining δk(z) for z > −1 and z 6= 0 by

Fk(z) = 1
1 + z

− z2

(1 + z)3
δk(z)

2k , (4.22)

it is easy to see that there exists a constant M such that for all k and all z > −1

0 ≤ δk(z) ≤M. (4.23)

Indeed, for k = 0,

δ0(z) = (1 + z)3

z2

( 1
1 + z

− e−z
)
, (4.24)

δ0(z) ≥ 0 for z > −1 because ez ≥ 1+z by convexity. Furthermore, δ0(z) can be defined
by continuity at z = 0, has a limit in z = +∞ and in z = −1 and reaches therefore a
maximum M on (−1,∞), which initializes (4.23).

Assuming now (4.23) at order k − 1, one has

Fk(z) = 1
1 + z

exp
[
−
∫ z

0

z′

(1 + z′)3
δk−1(z′)

2k−1 dz′
]
, (4.25)

leading to

1
1 + z

≥ Fk(z) ≥
1

1 + z

[
1− M

2k−1

∫ z

0

z′

(1 + z′)3 dz′
]

= 1
1 + z

[
1− M

2k−1
z2

2(1 + z)2

]
,

which gives (4.23) at order k. Hence the limit (4.21) holds. This completes the proof of
Theorem 1.

5. Results on the second moment for the tree

The goal of this section is to prove the second moment results (2.3), (2.4), (2.6) and
(4.9) which were used in the proofs of Theorems 1 and 3.
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5.1. Exact expression of the second moment. The expectation of Θ2 is the sum,
over all the pairs of paths, of the probability that both paths are open. There are L!2
pairs of paths in the system. For a given pair, the probability that they are both open
depends on the number q ∈ {0, 1, 2, . . . , L− 2, L} of bonds shared by the paths. (Nota:
two paths may not have exactly L− 1 bonds in common.) The following facts are clear:

• the number of pairs of paths which coincide all the way (q = L) is L!;
• the probability that “both” paths in such a pair are open is (1− x)L−1/(L− 1)!;
• the number of pairs of paths which coincide for q = 0, 1, . . . L− 2 steps and then
branch is L!(L−q−1)(L−q−1)!; (Remark: 1 1!+2 2!+3 3!+· · ·+(L−1)(L−1)! =
L!− 1, hence one recovers that the total number of pairs of path is L!2.)
• the probability that both paths in such a pair are open is

(1− x)2L−q−2

(2L− q − 2)!

(
2L− 2q − 2
L− q − 1

)
. (5.1)

Indeed, excluding the starting and end points, there are 2L−q−2 total different
nodes in such a pair of paths. All these nodes must be larger than x, hence the
(1 − x)2L−q−2 term. This is however not sufficient because the values on the
nodes must be correctly ordered. Out of the (2L− q− 2)! possible ordering (see
the denominator), the only good ones are those such that the q smallest terms
are well ordered in the shared segment (only one choice), and the 2L − 2q − 2
remaining terms are separated into two well ordered blocks of L − q − 1 terms,
one for each path; the only freedom is to choose which terms go to which path,
hence the binomial coefficient.

This leads to

Ex(Θ2) =
L−2∑
q=0

a(L, q)(1− x)2L−q−2 + L(1− x)L−1, (5.2)

where

a(L, q) = L!(2L− 2q − 2)!
(L− q − 2)!(2L− q − 2)! . (5.3)

The isolated term in (5.2) corresponds to the pairs of identical paths and is equal to
Ex(Θ).

5.2. Estimates and bounds on the a(L, q). Expanding the factorials in a(L, q), one
gets

a(L, q) = L2

2q

(
1− 1

L

) (
1− 2

L

)
· · ·
(
1− q+1

L

)
(
1− q+2

2L

) (
1− q+3

2L

)
· · ·
(
1− 2q+1

2L

) . (5.4)

From this expression, one gets the following equivalent when L→∞ and q �
√
L:

a(L, q) = L2

2q
[
1 +O(q2/L)

]
. (5.5)

For q close to L, one has the values a(L,L− 2) = 2, a(L,L− 3) = 24/L, a(L,L− 4) =
360/[(L+ 1)(L+ 2)], etc.
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We want to find a good upper bound for a(L, q). We first show that q 7→ ln a(L, q) is
a convex function for L ≥ q + 3. Indeed

ln a(L, q)− ln a(L, q − 1) = ln (L− q − 1)(2L− q − 1)
(2L− 2q)(2L− 2q − 1) (5.6)

so that

[ln a(L, q)− ln a(L, q − 1)]− [ln a(L, q − 1)− ln a(L, q − 2)]

= ln (L− q − 1)(2L− q − 1)(2L− 2q + 2)(2L− 2q + 1)
(2L− 2q)(2L− 2q − 1)(L− q)(2L− q) . (5.7)

Since the denominator is clearly positive as soon as L ≥ q + 1 we see that ln a(L, q) is
convex if in (5.7) the numerator is bigger than the denominator. This condition leads to

(L− q)2(2L− 1)− (2L− q − 1)(2L− 2q + 1) ≥ 0, (5.8)
which holds as soon as L− q ≥ 3.

Assume L ≥ 12 so that a(L,L− 3) ≤ 2 and let

q0(L) =
⌈

ln(L2)
ln 2 + 1

⌉
. (5.9)

From (5.4) one has

a(L, q) ≤ L2

2q
1(

1− 2q+1
2L
)q , (5.10)

Applying this to q = q0(L), one easily gets a(L, q0(L)) ≤ 1 for L large enough. (The
term L2/2q0 is smaller than 1/2, and the parenthesis converges to 1.)

By using the convexity of ln a(L, q), one has

ln a(L, q) ≤

ln a(L, 0) + q
q0(L)

[
ln a

(
L, q0(l)

)
− ln a(L, 0)

]
for 0 ≤ q ≤ q0(L),

ln 2 for q0(L) ≤ q ≤ L− 2.

But ln a
(
L, q0(L)

)
≤ 0 so that

a(L, q) ≤

a(L, 0) exp
[
− ln a(L,0)

q0(L) q
]

for 0 ≤ q ≤ q0(L),
2 for q0(L) ≤ q ≤ L− 2.

(5.11)

Remark now that a(L, 0) = L(L− 1) < L2 and ln a(L, 0)/q0(L)→ ln 2 as L→∞. This
implies that, for L large enough, ln a(L, 0)/q0(L) > ln 1.99 and that

a(L, q) ≤
{
L21.99−q for 0 ≤ q ≤ q0(L),
2 for q0(L) ≤ q ≤ L− 2.

(5.12)

5.3. Proofs of the limits (2.3), (2.4) and (2.6) of Var(Θ). The second moment (5.2)
is written as a sum from q = 0 to q = L − 2. To prove the various limits we need, the
strategy is always the same:

(1) Split the sum over q into two parts; one going from 0 to q0(L) and one going
from q0(L) + 1 to L− 2.

(2) In the first sum, replace a(L, q) by its equivalent (5.5); this is justified with the
dominated convergence theorem, using the bound (5.12).
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(3) Show that the second sum do not contribute using the bound (5.12).

Proof of (2.3). Integrating (5.2) over x and using E∗(Θ) = 1, one gets

Var∗(Θ)
L

= E∗(Θ2)− E∗(Θ)2

L
=

L−2∑
q=0

a(L, q)/L
2L− q − 1 =

q0(L)∑
q=0

a(L, q)/L2

2− q+1
L

+
L−2∑

q=q0(L)+1

a(L, q)/L
2L− q − 1 .

In the first sum, the running term is equivalent to 2−q/2 when L is large and is dominated
by 1.99−q for L large enough. Therefore, this first sum converges to 1. In the second
sum, the running term is smaller than 2/L2, implying that the whole second sum is
smaller than 2/L and thus vanishes in the large L limit.

Proof of (2.4). We divide (5.2) by L2, replace x by X/L and split the sum:

E
X
L (Θ2)
L2 =

q0(L)∑
q=0

a(L, q)
L2

(
1−X

L

)2L−q−2
+

L−2∑
q=q0(L)+1

a(L, q)
L2

(
1−X

L

)2L−q−2
+
(
1− X

L

)L−1

L
.

(5.13)
The running term in the first sum is equivalent to 2−qe−2X and is dominated by 1.99−q,
therefore the first term converges to 2e−2X as L→∞. The running term in the second
sum is smaller than 2/L2 implying that the whole second sum is smaller than 2/L and
thus vanishes in the large L limit. The isolated term goes also to zero. Therefore,
the whole expression converges to 2e−2X and one recovers the variance in (2.4) after
subtracting EX/L(Θ/L)2.

Proof of (2.6). We now take x = (lnL+X)/L and split again the sum in (5.2) into two
parts:

Ex(Θ2) =
q0(L)∑
q=0

a(L, q)
L2 × L2(1− x)2L−q−2 +

L−2∑
q=q0(L)+1

a(L, q)(1− x)2L−q−2 + L(1− x)L−1.

(5.14)
Using

lim
L→∞

L2
(
1− lnL+X

L

)2L−q−2
= e−2X , (5.15)

into (5.14), the running term in the first sum is equivalent to 2−qe−2X and is dominated
by 1.99−q(e−2X +1) for L large enough (because L2(1−x)2L−q−2 ≤ L2(1−x)2L−q0(L)−2,
which becomes close to its limit when L gets large). Therefore, the first sum converges
to 2e−2X . We write an upper bound of the second sum of (5.14) using a(L, q) ≤ 2 and
then extending the sum to the interval [0, L− 1]:

L−2∑
q=q0(L)+1

a(L, q)(1− x)2L−q−2 ≤ 2(1− x)2L−2 (1− x)−L − 1
(1− x)−1 − 1 ≤ 2(1− x)L−1

x
∼ 2e

−X

lnL ,

(5.16)
which goes to zero for L large. Finally, the last term in (5.14) converges to e−X ; putting
things together, one finds E(lnL+X)/L(Θ2) → 2e−2X + e−X . Removing the expectation
squared, one recovers (2.6).
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5.4. Exact expression for Ex[Var(Θ|Fk)]. The number Θ of paths given Fk is the sum
over all the nodes at level k of the number of paths through that node. These variables
are independent; therefore

Var(Θ|Fk) =
∑
|σ|=k

1{σ open}v(xσ, L− k) (5.17)

where v(x, L) is the variance of Θ for a tree of size L started at x

v(x, L) := Ex(Θ2)−Ex(Θ)2 = −L(1− x)2L−2 +
L−2∑
q=1

a(L, q)(1− x)2L−q−2 +L(1− x)L−1.

(5.18)
Taking the expectation over Fk, one gets

Ex[Var(Θ|Fk)] = L!
(L− k)!

∫ 1

x
dxσ

(xσ − x)k−1

(k − 1)! v(xσ, L− k), (5.19)

where L!/(L − k)! is the number of terms in the sum and where the fraction in the
integral is the probability that σ is open given the value of xσ > x.

Performing the integration term by term is easy, one finds, after simplification:

Ex[Var(Θ|Fk)] = − a(L, k)
L− k − 1(1− x)2L−k−2 +

L−2∑
q=k+1

a(L, q)(1− x)2L−q−2 + L(1− x)L−1.

(5.20)
Note that apart from the first term, this is exactly the same as the full variance v(x, L)
except that the sum over q begins at k + 1 instead of at 1.

5.5. Proof of (4.9). We now divide (5.20) by L2, set x = X/L and consider L large.
We only need an upper bound, but it is as easy to calculate the exact limit. As in
Section 5.3, we split the sum into two parts; one where the index q runs from k to q0(L)
and one from q0(L) + 1 to L − 2. In the first part, using the dominated convergence
theorem with the bound (5.12):

lim
L→∞

q0(L)∑
q=k+1

a(L, q)
L2

(
1− X

L

)2L−q−2
=

∞∑
q=k+1

1
2q e
−2X = 1

2k e
−2X . (5.21)

Also using the bound (5.12), the second part of the sum goes to zero:

1
L2

L−2∑
q=q0(L)+1

a(L, q)
(
1− X

L

)2L−q−2
≤ 1
L2 × L× 2. (5.22)

It is very easy to check that in (5.20) the two isolated terms (divided by L2, of course)
go also to zero, so that one finally obtains (4.9).

6. A relation with Poisson cascades

Our model is closely related to cascades of Poisson processes. In fact, the arguments
we used in Section 3 can be presented in terms of Poisson cascades. Let us make a brief
description.
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We recall the sequence of functions Fk, k ≥ 0, defined in (4.20):

Fk(z) = exp
[
−
∫ z

0

1− Fk−1(z′)
z′

dz′
]
, F0(z) = e−z. (6.1)

It is clear that F0(z) is the Laplace transform of the Dirac mass at 1, and that F1 is
the Laplace transform of

∑∞
j=1Xj , where (Xj , j ≥ 1) is a Poisson process on (0, 1] with

intensity 1(0, 1](x) dx
x .

We now define a cascade of Poisson processes. At generation k = 0, there is only
one particle at position 1. At generation k = 1, this particle is replaced by the atoms
(X(1)

j , j ≥ 1) of a Poisson process on (0, 1] with intensity 1(0, 1](x) dx
x . At generation

k = 2, for each j, the particle at position X(1)
j is replaced by (X(1)

j X
(2)
j,` , ` ≥ 1), where

(X(2)
j,` , ` ≥ 1) is another Poisson process with intensity 1(0, 1](x) dx

x (all the Poisson
processes are assumed to be independent). Iterating the procedure results in a cascade of
Poisson processes. We readily check, by induction in k, that Fk is the Laplace transform
of Yk, the sum of the positions at the k-th generation of the Poisson cascade.

What was proved in Section 3 can be stated in terms of the cascade of Poisson pro-
cesses. Recall from (4.3) that Θk = E(Θ|Fk).

Theorem 4. (i) For any k ≥ 0 and for x = X/L, Θk
L converges weakly, when L→∞,

to e−XYk.
(ii) When k →∞, Yk converges weakly to the standard exponential law.

7. Proof of Theorem 2

In this section, we adapt the methods used in Section 4 to obtain the distribution of
the number of open paths on the hypercube when L goes to infinity.

In the large L limit, both the width (the number of possible moves at each step) and
the depth (the number of steps) on the hypercube go to infinity, which makes studying
the limit difficult. We worked around that problem on the tree by introducing Θk, the
expected number of paths given the information Fk after k steps, and by sending first
L (now representing only the width of the tree) and then k (the depth) to infinity.

We use the same trick on the hypercube, but with a twist: the hypercube is symmet-
rical when exchanging the starting and end points, and there is no reason to privilege
one or the other. Therefore, we call Θk the expected number of paths in the hypercube
given the information Fk at the first k levels from both extremities of the hypercube.

To write an expression for Θk similar to (4.4), we introduce the following notations:
• The

(L
k

)
nodes k steps away from the starting point are indexed by σ and, as

usual, their values are written xσ.
• Similarly, τ indexes the

(L
k

)
nodes k steps away from the end point and we note

their values 1− yτ .
• nσ ∈ {0, 1, . . . , k!} is the number of open paths from the starting point to node σ.
(Contrary to the tree, there are several paths leading to each node σ.)
• Similarly, mτ is the number of open paths from node τ to the end point.
• 1(σ ↔ τ) indicates whether there is at least one directed path (open or not) from
node σ to node τ .
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Then,
Θk =

∑
|σ|=k

∑
|τ |=L−k

nσmτ1(σ ↔ τ)(L− 2k)(1− yτ − xσ)L−2k−1
1(xσ + yτ ≤ 1), (7.1)

where 1(σ ↔ τ)(L − 2k)(1 − yτ − xσ)L−2k−1
1(xσ + yτ < 1) is the expected number of

open paths from σ to τ given the values xσ and yτ .
Our proof can be decomposed into three steps:
• First, we show that, as in the hypercube, the distribution of Θ/L as L → ∞ is
the same as the distribution of Θk/L as L→∞ and then k →∞.
• Then, we show that the double sum in (7.1) can be modified (without changing
the limit, of course) into a product of two sums. This means that asymptotically
Θk can be written as a contribution from the k first levels (the sum on σ) times
an independent contribution from the k last levels (the sum on τ).
• Finally, we show that each of these two contributions is asymptotically identical
in distribution to what we computed on the tree.

7.1. First step: Θk and Θ have asymptotically the same distribution. We show
in this section that, when the starting point scales with L as x = X/L for X fixed,

lim
L→∞

Θk

L

weakly−−−−−−−→
k→∞

lim
L→∞

Θ
L
. (7.2)

Following the same argument as on the tree, it is sufficient to show that

lim
k→∞

lim sup
L→∞

1
L2E

X
L
[
Var(Θ|Fk)

]
= 0. (7.3)

First remark that
Ex
[
Var(Θ|Fk)

]
= Ex[Θ2]− Ex[Θ2

k] (7.4)
where we used Θk = E[Θ|Fk].

Second moments as in (7.4) can be written as sums over pairs of paths. For a given
path α, we call xαi the value on the node at step i on path α (0 ≤ i ≤ L, with xα0 = x
and xαL = 1) and ξαi,j the indicator function that path α is open from steps i to j:

ξαi,j = 1(xαi ≤ xαi+1 ≤ xαi+2 ≤ · · · ≤ xαj ). (7.5)
Clearly,

Θ =
∑
α

ξα0,L, Θk =
∑
α

E
[
ξα0,L|Fk

]
. (7.6)

We now have the following expression for the second moment:

Ex
[
Θ2] =

∑
α,β

Ex
[
ξα0,Lξ

β
0,L
]

= L!
∑
α

Ex
[
ξα0,Lξ

0
0,L
]

(7.7)

where, by symmetry, we chose one particular arbitrary fixed path which bears the index 0.
Similarly,

Ex[Θ2
k] = L!

∑
α

Ex
[
E
[
ξα0,L|Fk

]
E
[
ξ0

0,L|Fk
]]
. (7.8)

We write now ξα0,L = ξα0,kξ
α
k,L−kξ

α
L−k,L. The first and last terms are Fk-measurable, hence

Ex[Θ2
k] = L!

∑
α

Ex
[
ξα0,kξ

0
0,k E

[
ξαk,L−k|Fk

]
E
[
ξ0
k,L−k|Fk

]
ξαL−k,Lξ

0
L−k,L

]
. (7.9)
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We make the same decomposition on ξα0,L in (7.7). Writing Ex[·] = Ex
[
E[·|Fk]

]
and

pushing out of the inner expectation the Fk-measurable terms, one gets

Ex[Θ2] = L!
∑
α

Ex
[
ξα0,kξ

0
0,k E

[
ξαk,L−kξ

0
k,L−k|Fk

]
ξαL−k,Lξ

0
L−k,L

]
. (7.10)

Using (7.4),

Ex
[
Var(Θ|Fk)

]
= L!×∑

α

Ex
[
ξα0,kξ

0
0,k

(
E
[
ξαk,L−kξ

0
k,L−k|Fk

]
− E

[
ξαk,L−k|Fk

]
E
[
ξ0
k,L−k|Fk

])
ξαL−k,Lξ

0
L−k,L

]
. (7.11)

For a given path α, the central term (in parenthesis) in the last expression is a kind of
covariance. Clearly, if the paths α and 0 do not meet in the interval {k, . . . , L− k}, the
variables ξαk,L−k and ξ0

k,L−k are independent and the covariance is zero. Therefore, we
can restrict the sum over α in (7.11) to the paths which cross at least once the path 0 in
the interval {k, . . . , L−k}. With this modified sum, we can now find an upper bound to
(7.4). Dropping all the negative terms and undoing the decomposition of ξα0,L into three
parts, we get

Ex
[
Var(Θ|Fk)

]
≤ L!

∑
α

′
Ex
[
ξα0,Lξ

0
0,L
]
, (7.12)

where the prime on the sum indicates that α runs only over all the paths that meet
path 0 at least once in {k, . . . , L− k}.

We now bound (7.12). Let Ip,q be the set of all the paths such that
• the p + 1 first nodes (including the origin) are the same as for path 0 (in other
words, the first p steps are the same as in path 0),
• the next L− p− q − 1 nodes are different from those of path 0,
• the next q + 1 nodes (thus including the end point) are the same as for path 0.

By construction, for p < k and q < k, a path in Ip,q do not meet path 0 in {k, . . . , L−k}.
Therefore

Ex
[
Var(Θ|Fk)

]
≤ L!

∑
α

Ex
[
ξα0,Lξ

0
0,L

]
− L!

k−1∑
p=0

k−1∑
q=0

∑
α∈Ip,q

Ex
[
ξα0,Lξ

0
0,L

]
. (7.13)

Notice that the first sum is not primed; it runs over all the L! possible paths α. The
inequality holds because in (7.12) we were summing over all the paths except all of those
not crossing path 0 in {k, L− k}, while in (7.13) we sum over all the paths except some
of those not crossing path 0 in {k, L− k}.

The first term in (7.13) is simply Ex[Θ2], see (7.7). From [6] and (2.5) it has the
following large L limit

lim
L→∞

1
L2E

X
L [Θ2] = lim

L→∞

1
L2L!

∑
α

E
X
L

[
ξα0,Lξ

0
0,L

]
= 4e−2X . (7.14)

We now focus on the second term. For a path α in Ip,q, a direct calculation shows that

Ex
[
ξα0,Lξ

0
0,L

]
= (1− x)2L−p−q−2

(2L− p− q − 2)!

(
2L− 2p− 2q − 2
L− p− q − 1

)
. (7.15)
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Indeed, excluding the starting and ending points, there are 2(L−1)−p−q total different
nodes in the paths α and 0. All these nodes must be larger than x, hence the (1 −
x)2L−p−q−2 term. This is however not sufficient because the values on the nodes must be
correctly ordered. Out of the (2L− p− q− 2)! possible orderings (see the denominator),
the only good ones are those such that the p smallest terms be well ordered in the first
shared segment (only one choice), the q largest terms be well ordered in the second
shared segment (only one choice), and the 2L−2p−2q−2 remaining terms be separated
into two well ordered blocks of L−p−q−1 terms, one for each path; the only freedom is
to choose which terms go to path α and which to path 0, hence the binomial coefficient.

The number of terms in Ip,q is B(L−p−q), where B(n) is the number of permutations
of n elements such that for any m in {1, . . . , n− 1} the image of {1, . . . ,m} through the
permutation is not {1, . . . ,m} (see [12] ; B(1) = 1, B(2) = 1, B(3) = 3, B(4) = 13,
B(5) = 71, . . . ). Hegarty Martinsson [6] call this T (n, 1) and show (Proposition 2.6)
that B(n) ∼ n!. Then

L!
∑
α∈Ip,q

Ex
[
ξα0,Lξ

0
0,L

]
=

L!
(L− p− q − 1)! ×

(2L− 2p− 2q − 2)!
(2L− p− q − 2)! ×

B(L− p− q)
(L− p− q − 1)! × (1− x)2L−p−q−2.

Take x = X/L and L large with p and q fixed. The terms on the right hand side are
respectively equivalent to Lp+q+1, (2L)−p−q, L and e−2X , so that

lim
L→∞

1
L2L!

∑
α∈Ip,q

E
X
L

[
ξα0,Lξ

0
0,L

]
= e−2X

2p+q , (7.16)

and

lim
L→∞

1
L2L!

k−1∑
p=0

k−1∑
q=0

∑
α∈Ip,q

E
X
L

[
ξα0,Lξ

0
0,L

]
= e−2X4(1− 2−k+1 + 4−k). (7.17)

Using (7.14) and (7.17) in (7.13), we finally get

lim sup
L→∞

1
L2E

X
L
[
Var(Θ|Fk)

]
≤ 8e−2X

2k , (7.18)

from which one gets (7.3) and (7.2).

7.2. Second step: separating the start and the end of the hypercube. We go
back to the expression Θk given in (7.1):

Θk =
∑
|σ|=k

∑
|τ |=L−k

nσmτ1(σ ↔ τ)(L− 2k)(1− yτ − xσ)L−2k−1
1(xσ + yτ ≤ 1), (7.19)

and we introduce the following slightly different quantity

Θ̃k =
∑
|σ|=k

∑
|τ |=L−k

nσmτL(1− yτ − xσ + xσyτ )L−2k−1. (7.20)

(Compared to Θk, this one has no 1(σ ↔ τ), no 1(xσ + yτ ≤ 1), a factor L instead of
L− 2k and an extra xσyτ in the power.) Clearly, Θk ≤ Θ̃k. Furthermore, we know that
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Ex[Θk] = Ex[Θ] = L(1− x)L−1 so that

lim
L→∞

E
X
L

[Θk

L

]
= e−X . (7.21)

Let us compute the same expectation for Θ̃k. Using

Ex(nσ|xσ) = k(xσ − x)k−1
1(xσ ≥ x), Ex(mτ |yτ ) = k(yτ )k−1, (7.22)

one gets

Ex
[Θ̃k

L

]
=
(
L

k

)(
L

k

)∫ 1

x
dxσ

∫ 1

0
dyτ k(xσ − x)k−1k(yτ )k−1(1− yτ − xσ + xσyτ )L−2k−1

=
[

L!(L− 2k − 1)!
(L− k)!(L− k − 1)!

]2
(1− x)L−k−1, (7.23)

so that

lim
L→∞

E
X
L

[Θ̃k

L

]
= e−X . (7.24)

Finally, Θ̃k/L − Θk/L is a non-negative random variable with an expectation going to
zero; it thus converges to zero in probability. Therefore, in the L→∞ limit by Slutsky’s
theorem, Θ̃k/L and Θk/L have the same distribution as soon as one of the limits exists.

It now simply remains to notice that

Θ̃k

L
=
( ∑
|σ|=k

nσ(1− xσ)L−2k−1
)( ∑
|τ |=L−k

mτ (1− yτ )L−2k−1
)
, (7.25)

which means that Θ̃k/L can be written has a contribution coming from the k first
steps of the hypercube times an independent contribution coming from the k last steps.
The contribution from the start depends on the value x of the origin. By symmetry, the
contribution from the end has the same law as the contribution from the start with x = 0.

7.3. Third step: the start of the hypercube is like a tree. We now focus on the
first term in (7.25):

φk =
∑
|σ|=k

nσ(1− xσ)L−2k−1. (7.26)

The goal is to show that for a starting point x = X/L, in the large L limit then in the
large k limit, this φk converges weakly to e−X times an exponential distribution. Our
strategy is to compare φk (defined on the first k levels of the hypercube) to the Θk/L of
the tree by showing that in the L→∞ limit the two quantities have the same generating
function.

The difficulty, of course, is that one cannot write directly a recursion on the generating
function of φk as we did on the tree because the paths after the first step are not
independent. To overcome this, we introduce another quantity φ̃k(b) which is (in a
sense) nearly equal to φk:

φ̃k(b) =
∑
|σ|=k

ñσ(b)(1− xσ)L, (7.27)
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where we will shortly explain the meaning of the parameter b and give the definition of
ñσ(b). For now, let us just say that ñσ(b) ≤ nσ; in other words, we discard some open
paths when computing φ̃k(b). It is clear that

φ̃k(b) ≤ φk (7.28)

and we will choose ñσ(b) in such a way that

lim
L→∞

E
X
L
[
φ̃k(b)

]
= lim

L→∞
E

X
L
[
φk
]
. (7.29)

With the same argument as before, (7.28) and (7.29) will be sufficient to conclude that
if limL→∞ φ̃k(b) exists (we will show it is the case), then limL→∞ φk exists as well and
has the same distribution. Then, we will be able to write a recursion for the generating
function of φ̃k(b) and solve it in the L→∞ limit.

Before going further, let us recall the following standard representation of the hyper-
cube: to each node of the hypercube, we associate a different binary word with L bits
(digits) in such a way that the starting point is (0, 0, . . . , 0), the end point is (1, 1, . . . , 1)
and making a step is changing a single zero into a one. A node σ at level k has a label
with exactly k ones.

We can now define b and ñσ(b). The parameter b is a set of forbidden bits. Any path
going through any bit in b is automatically discarded. In other words, ñσ(b) = 0 if σ has
any bit equal to 1 which is in b. The parameter ñσ(b) is 1 or 0, depending on whether
there is an “interesting” path or not to σ. An interesting path is defined recursively in
the following way:

• From the origin, we consider which nodes amongst the L−|b| reachable first level
nodes have a value which is smaller than (lnL)/L; these are the “interesting”
nodes at first level, and only the paths going through these interesting nodes are
deemed interesting and are counted in ñσ.
• Let b′ be the bits corresponding to all the interesting nodes at first level. After
the first step, these b′ bits are now forbidden for all interesting paths.
• Given the forbidden bits, the region of the hypercube reachable from each inter-
esting node at first level is a sub-hypercube of dimension L− |b| − |b′|. All these
hypercubes are non-overlapping. The construction of the interesting paths from
each first level interesting node is now done recursively in the same way on each
corresponding sub-hypercube.

Notice that by construction ñσ(b) = 0 if xσ > (lnL)/L. This is a small price to pay
as we expect that only the xσ of order 1/L contribute. Furthermore, at each step we
exclude O(lnL) bits. For each open paths, at step k, there will therefore be kO(lnL)
forbidden bits. This is very small compared to L and will become negligible in the large
L limit.

The definition of ñσ(b) leads directly to a recursion on φ̃k(b):

φ̃k(b, starting point = x) =
∑
ρ∈b′

1(x ≤ xρ)φ̃(ρ)
k−1(b ∪ b′, starting point = xρ), (7.30)

where b′ is the (random) set of interesting first level nodes, those with a value smaller
than (lnL)/L which avoid the b forbidden bits. Given b′, for each bit ρ ∈ b′, φ̃(ρ)

k−1 is an
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independent copy of the variable defined in (7.27) with a different starting point. The
recursion is initialized by

φ̃0(b) = (1− x)L, (7.31)
which is non-random and independent of b.

Before computing the expectation and the generating function, remark that the dis-
tribution of φ̃k(b) depends only on the number |b| of forbidden bits, not on the bits
themselves. We will abuse this remark and consider from now on that in the expression
Ex[φ̃k(b)], the parameter b is actually the number of forbidden bits.

Let us now compute the expectation of φ̃k(b). The distribution of the number b′ of
interesting nodes is binomial and we call p(b′) its law:

p(b′) =
(
L− b
b′

)( lnL
L

)b′ (
1− lnL

L

)L−b−b′
. (7.32)

Then from (7.30)

Ex
[
φ̃k(b)

]
=

L−b∑
b′=0

p(b′)× b′
∫ ln L

L

x

L dy
lnL Ey

[
φ̃k−1(b+ b′)

]
. (7.33)

We will show by recurrence that the dependence in b can be written as

Ex
[
φ̃k(b)

]
= (L− b)!

(L− b− k)! Lkψk(x, L). (7.34)

It is obvious from (7.31) that this works for k = 0. Assume that it works at level k − 1.
Then

Ex
[
φ̃k(b)

]
= 1
Lk−1

L−b∑
b′=0

p(b′) (L− b− b′)!
(L− b− b′ − k + 1)!b

′
∫ ln L

L

x

L dy
lnL ψk−1(y, L). (7.35)

The sum on b′ decouples from from the integral and can be computed; one finds
L−b∑
b′=0

p(b′) (L− b− b′)!
(L− b− b′ − k + 1)!b

′ = (L− b)!
(L− b− k)!

lnL
L

(
1− lnL

L

)k−1
(7.36)

and one recovers (7.34) with

ψk(x, L) =
(

1− lnL
L

)k−1 ∫ ln L
L

x
Ldy ψk−1(y, L) (7.37)

or
ψk

(
X

L
,L

)
=
(

1− lnL
L

)k−1 ∫ lnL

X
dY ψk−1

(
Y

L
,L

)
. (7.38)

From here and ψ0(x, L) = (1− x)L, it is straightforward to show by recurrence that
ψk(X/L,L) ≤ e−X . (7.39)

Then, with this bound and the dominated convergence theorem, the limit of the integral
in (7.38) is the integral of the limit and one shows by another straightforward recurrence
that limL→∞ ψk(X/L,L) = e−X .

Going back to (7.34), one then gets for any function b(L) such that b(L) = o(L)

E
X
L
[
φ̃k(b)

]
≤ e−X , lim

L→∞
E

X
L
[
φ̃k
(
b(L)

)]
= e−X . (7.40)
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This completes the proof that φ̃k(b) and φk have the same distribution in the L → ∞
limit if that limit exists.

We now compute the distribution of φ̃k(b) by writing a generating function. For µ ≥ 0,
let

Gk(µ, x, L, b) = Ex
[
exp

(
− µφ̃k(b)

)]
. (7.41)

(Here again, we consider that the parameter b of Gk is a number.) From (7.30),

Gk(µ, x, L, b) =
L−b∑
b′=0

p(b′)
[
L

lnL

(
x+

∫ ln L
L

x
dy Gk−1(µ, y, L, b+ b′)

)]b′

=
L−b∑
b′=0

p(b′)
[
1− L

lnL

∫ ln L
L

x
dy
[
1−Gk−1(µ, y, L, b+ b′)

]]b′
. (7.42)

So

Gk

(
µ,
X

L
,L, b

)
=

L−b∑
b′=0

p(b′)
[
1− 1

lnL

∫ lnL

X
dY

[
1−Gk−1

(
µ,
Y

L
,L, b+ b′

)]]b′
. (7.43)

If the Gk−1(. . .) on the right hand side did not depend on b′, one could compute exactly
the sum on b′. We will write bounds on Gk−1 using quantities that do not depend on b′
and compute this sum.

To do this, remark that Gk is an increasing function of b. Indeed, as we forbid more
bits (b increases), we close more open paths, φ̃k(b) decreases (or remains constant) and,
from (7.41), Gk increases.

Therefore, a lower bound is easy: Gk−1(µ, Y/L,L, b+ b′) ≥ Gk−1(µ, Y/L,L, b) and

Gk

(
µ,
X

L
,L, b

)
≥
[
1− 1

L

∫ lnL

X
dY

[
1−Gk−1

(
µ,
Y

L
,L, b

)]]L−b
. (7.44)

To obtain an upper bound, we use the fact that according to p, the probability that
b′ is larger than ln2 L is very small. Then, in (7.43), we cut the sum over b′ into two
contributions. In the first part b′ runs from 0 to bln2 Lc and in the second part it
runs from bln2 Lc + 1 to L − b. In the first part, we write Gk−1(µ, Y/L,L, b + b′) ≤
Gk−1(µ, Y/L,L, b+ bln2 Lc) and extend again the sum to L− b. In the second part we
write that the term multiplying p(b′) is smaller than 1. Hence

Gk

(
µ,
X

L
,L, b

)
≤
[
1− 1

L

∫ lnL

X
dY

[
1−Gk−1

(
µ,
Y

L
,L, b+ bln2 Lc

)]]L−b

+
L−b∑

b′=bln2 Lc+1

p(b′). (7.45)

The remaining sum is of course the probability that b′ is larger than ln2 L, which is
vanishingly small as b′ is binomial of average and of variance smaller than lnL.

We can now show that Gk(µ,X/L,L, b) has a large L limit by recurrence. More
precisely, we will show that for any function b(L) which is a o(L),

G̃k(µ,X) := lim
L→∞

Gk

(
µ,
X

L
,L, b(L)

)
(7.46)
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exists and is independent of b(L).
This is obvious for k = 0 as G0(µ, x, L, b) = exp[−µ(1− x)L], so that

G̃0(µ,X) = exp
[
− µe−X

]
. (7.47)

Suppose that (7.46) holds up to level k − 1. Then for any function b(L) = o(L),
the function b(L) + bln2 Lc is also an o(L). We know from (7.41) and (7.40) that
Gk(µ,X/L,L, b) ≥ 1 − µE

X
L [φ̃k(b)] ≥ 1 − µe−X , so that we can use the dominated

convergence theorem and obtain

lim
L→∞

∫ lnL

X
dY

[
1−Gk−1

(
µ,
Y

L
,L, o(L)

)]
=
∫ ∞
X

dY
[
1− G̃k−1(µ, Y )

]
. (7.48)

It is then straightforward from (7.44) and (7.45) to see that (7.46) holds at level k and
that

G̃k(µ,X) = exp
[
−
∫ ∞
X

dY
[
1− G̃k−1(µ, Y )

]]
. (7.49)

Equations (7.47) and (7.49) are the same as (4.15), which completes the proof.
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