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KRONECKER PRODUCTS, CHARACTERS, PARTITIONS,

AND THE TENSOR SQUARE CONJECTURES

IGOR PAK⋆, GRETA PANOVA⋆, AND ERNESTO VALLEJO†

Abstract. We study the remarkable Saxl conjecture which states that tensor squares of
certain irreducible representations of the symmetric groups Sn contain all irreducibles as
their constituents. Our main result is that they contain representations corresponding to
hooks and two row Young diagrams. For that, we develop a new sufficient condition for
the positivity of Kronecker coefficients in terms of characters, and use combinatorics of rim
hook tableaux combined with known results on unimodality of certain partition functions.
We also present connections and speculations on random characters of Sn.

1. Introduction and main results

Different fields have different goals and different open problems. Most of the time, fields
peacefully coexist enriching each other and the rest of mathematics. But occasionally, a
conjecture from one field arises to present a difficult challenge in another, thus exposing its
technical strengths and weaknesses. The story of this paper is our effort in the face of one
such challenge.

Motivated by John Thompson’s conjecture and Passman’s problem (see §10.9), Heide,
Saxl, Tiep and Zalesski recently proved that with a few known exceptions, every irreducible
character of a simple group of Lie type is a constituent of the tensor square of the Steinberg
character [HSTZ]. They conjecture that for every n ≥ 5, there is an irreducible character
χ of An whose tensor square χ ⊗ χ contains every irreducible character as a constituent.1

Here is the symmetric group analogue of this conjecture:

Conjecture 1.1 (Tensor square conjecture). For every n ≥ 3, n 6= 4, 9, there is a partition
µ ⊢ n, such that tensor square of the irreducible character χµ of Sn contains every irreducible
character as a constituent.

The Kronecker product problem is a problem of computing multiplicities

g(λ, µ, ν) = 〈χλ, χµ ⊗ χν〉
of an irreducible character of Sn in the tensor product of two others. It is often referred as
“classic”, and “one of the last major open problems” in algebraic combinatorics [BWZ, Reg].
Part of the problem is its imprecise statement: we are talking about finding an explicit com-
binatorial interpretation here rather than computational complexity (see Subsection 10.10).

Despite a large body of work on the Kronecker coefficients, both classical and very recent
(see e.g. [BO2, Bla, BOR, Ike, Reg, Rem, RW, Val1, Val2] and references therein), it is
universally agreed that “frustratingly little is known about them” [Bür]. Unfortunately,
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most results are limited to partitions of very specific shape (hooks, two rows, etc.), and the
available tools are much too weak to resolve the tensor square conjecture.

During a talk at UCLA, Jan Saxl made the following conjecture, somewhat refining the
tensor square conjecture.2

Conjecture 1.2 (Saxl conjecture). Denote by ρk = (k, k−1, . . . , 2, 1) ⊢ n, where n =
(k+1

2

)
.

Then for every k ≥ 1, the tensor square χρk⊗χρk contains every irreducible character of Sn

as a constituent.

Andrew Soffer checked the validity of conjecture for k ≤ 8.3 While we believe the conjec-
ture, we also realize that it is beyond the reach of current technology. In Section 4, we briefly
survey the implications of known tools towards the tensor product and Saxl conjectures.
More importantly, we then develop a new tool, aimed specifically at the Saxl conjecture:

Lemma 1.3 (Main Lemma). Let µ = µ′ be a self-conjugate partition of n, and let ν =
(2µ1 − 1, 2µ2 − 3, 2µ3 − 5, . . .) ⊢ n be the partition whose parts are lengths of the principal
hooks of µ. Suppose χλ[ν] 6= 0 for some λ ⊢ n. Then χλ is a constituent of χµ ⊗ χµ.

Curiously, the proof uses representation theory of An and is based on the idea of the proof
of [BB, Thm 3.1] (see Section 9). We use this theorem to obtain the following technical
results (among others).

Theorem 1.4. There is a universal constant L, such that for every k ≥ L, the tensor
square χρk ⊗ χρk contains characters χλ as constituents, for all

λ = (n − ℓ, ℓ), 0 ≤ ℓ ≤ n/2, or λ = (n− r, 1r), 0 ≤ r ≤ n− 1.

Of course, this is only a first step towards proving the Saxl conjecture. While the Main
Lemma is a powerful tool, proving that the characters are nonzero is also rather difficult in
general, due to the alternating signs in the Murnaghan–Nakayama rule. We use a few known
combinatorial interpretations (for small values of ℓ), and rather technical known results on
monotonicity of the number of certain partitions (for larger ℓ), to obtain the above theorem
and a constellation of related results.

The rest of the paper is structured as follows. We begin with a discussion of combinatorics
and asymptotics of the number of integer partitions in Section 2. We then turn to characters
of Sn and basic formulas for their computation in Section 3. There, we introduce two more
shape sequences (chopped square and caret), which will appear throughout the paper. In
the next section (Section 4), we present several known results on the Kronecker product,
and find easy applications to our problem. In the following three sections we present a large
number of increasingly technical calculations evaluating the characters in terms of certain
partition functions, and using Main Lemma and known partition inequalities to derive
the results above. In a short Section 8, we discuss and largely speculate what happens
for random characters. We prove the Main Lemma in Section 9, and conclude with final
remarks.

2UCLA Combinatorics Seminar, Los Angeles, March 20, 2012.
3Personal communication.
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2. Integer partitions

2.1. Basic definitions. Let λ ⊢ n be a partition of n, and let Pn denote the set of partitions
of n. Denote by λ′ the conjugate partition of λ. Partition λ is called self-conjugate if λ = λ′.
Denote by ℓ(λ) = λ′

1 the number of parts in λ.

2.2. Asymptotics. Let π(n) = |Pn| be the number of partitions of n. Then

1 +

∞∑

n=1

π(n)tn =

∞∏

i=1

1

1− ti
,

and

π(n) ∼ ec
√
n

4
√
3n

, where c = π

√
2

3
.

Denote by πk(n) the number of partitions λ ⊢ kn, such that their k-core is empty [Mac],
i.e. there exists a rim hook tableau of shape λ and weight (kn). Note that π1(n) = π(n).
Then by [Sta2, Exc.7.59e]

1 +
∞∑

n=1

πk(n)t
n =

∞∏

i=1

1

(1− ti)k
,

and Lemma 4 in [LP] gives

πk(n) ∼
[

kk+1

23k+53k+1

]1/4
ec

√
kn

n(k+3)/4
, where c = π

√
2

3
.

2.3. Limit shapes. Let λ ⊢ n be a random partition on n, i.e. chosen uniformly at random
from Pn. Scale by 1/

√
n the Young diagram [λ] of a random partition. It is known that for

every ε > 0, the scaled random shape is w.h.p. within ε-distance from the curve

e−cx/2 + e−cy/2 = 1,

where c is as above [DVZ, Ver]. Somewhat loosely, we call such λ the limit shape. Note
that the limit shape is symmetric and has two infinite tails, so the longest part and the
number of parts we have λ1, ℓ(λ) = ω(

√
n). In fact, it is known that for random λ, we have

λ1, ℓ(λ) = c−1√n
(
log n+O(1)

)
w.h.p., as n → ∞ (see [Fri]).

2.4. Partitions into infinite arithmetic progressions. Fix a,m ≥ 1, such that gcd(a,m) =
1. Define integers π′

a,m(n) by

∞∑

n=0

π′
a,m(n)tn =

∞∏

r=0

(
1 + ta+rm

)
.

In other words, π′
a,m(n) is the number of partitions of n into distinct parts in arithmetic

progression R = {a, a +m,a+ 2m, . . .}. It is known [RS] that

π′
a,m(n+ 1) > π′

a,m(n) > 0,

for all n large enough. Below we present a stronger result.
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2.5. Partitions into finite arithmetic progressions. Denote by R = R(a,m, k) =
{a, a + m,a + 2m, . . . , a + km} a finite arithmetic progression, with a,m ≥ 1, such that
gcd(a,m) = 1 as above. Denote by π′

R the coefficients in

N∑

n=0

π′
R(n)t

n =

k∏

r=0

(
1 + ta+rm

)
,

where N = (k + 1)a +
(k+1

2

)
m is the largest degree with a nonzero coefficient. Note that

the sequence {π′
R(n)} is symmetric:

π′
R(n) = π′

R(N − n).

The following special case of a general result by Odlyzko and Richmond [OR] is the key
tool we use throughout the paper.

Theorem 2.1 ([OR]). For every R = R(a,m, k) as above, there exists L = L(a,m) such
that

π′
R(n+ 1) > π′

R(n) > 0, for all L ≤ n < ⌊N/2⌋.
In other words,

π′
R(L) < . . . < π′

R

(
N

2
− 1

)
< π′

R

(
N

2

)
> π′

R

(
N

2
+ 1

)
> . . . > π′

R(N − L)

for even N , and

π′
R(L) < . . . < π′

R

(
N − 1

2

)
= π′

R

(
N + 1

2

)
> . . . > π′

R(N − L)

for odd N . Note that k in the theorem has to be large enough to ensure that L < N/2;
otherwise, the theorem is trivially true (there is no such n).

3. Kronecker products and characters

3.1. Young diagrams. We assume the reader is familiar with the standard results in
combinatorics and representation theory of the symmetric group (see e.g. [Mac, Sag, Sta2]).
Let us review some notations, definitions and basic results.

We use [λ] to denote Young diagram corresponding to partition λ and a hook length by
hij = λi + λ′

j − i− j +1, where (i, j) ∈ [λ]. We denote by d(λ) the Durfee size of λ, i.e. the

size of the main diagonal in [λ]. Define a principal hook partition λ̂ = (h1,1, . . . , hs,s), where

s = d(λ). Observe that λ̂ ⊢ n.

3.2. Rim hook tableaux. We use χλ[ν] to denote the value of an irreducible character
χλ on the conjugacy class of cycle type ν of the symmetric group Sn. For a sequence
a = (a1, . . . , aℓ), ℓ = ℓ(λ), denote by RH(λ,a) the set of rim hook tableaux of shape λ and
weight a , with rim hooks hi of size |hi| = ai. The sign(A) of a tableaux A ∈ RH(λ,a) is

the product of (−1)ℓ(hi)−1 over all rim hooks hi ∈ A. The Murnaghan–Nakayama rule then
says that for every permutation a of ν,

χλ[ν] =
∑

A∈RH(λ,a)

sign(A).

More generally, the result extend verbatim to skew shapes λ/µ (see e.g. [Sta2, §7.17]).
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3.3. The Frobenius and Giambelli formulas. Recall the Frobenius formula for the
character χλ, ℓ(λ) = 2 :

χ(n−ℓ,ℓ) = χ(n−ℓ)◦(ℓ) − χ(n−ℓ+1)◦(ℓ−1).

where λ ◦ µ is a skew partition as in the Figure 1.

=

Figure 1. Partitions λ, µ, and λ ◦ µ, where λ = (5, 3, 3, 1), µ = (5, 4, 1)

Similarly, the Giambelli formula for the character χλ, where d(λ) = 2 :

χ(a1+1,a2+2,2b2 ,1b1−b2−1) = χ(a1+1,1b1 )◦(a2+1,1b2 ) − χ(a1+1,1b2 )◦(a2+1,1b1 ).

where n = a1 + a2+ b1 + b2 +2. The formula is illustrated in Figure 2 (here a1 = 8, a2 = 2,
b1 = 5, and b2 = 3).

=
-

Figure 2. Partitions λ = (9, 4, 23, 1), (9, 15) ◦ (3, 13), and (3, 15) ◦ (9, 13).

3.4. Kronecker products. Let λ, µ ⊢ n. The Kronecker product of characters χλ and χµ

satisfies (χλ ⊗ χµ)[ν] = χλ[ν] · χµ[ν]. Kronecker coefficients are defined as

g(λ, µ, ν) := 〈χλ ⊗ χµ, χν〉 = 〈1, χλ ⊗ χµ ⊗ χν〉,
and thus they are symmetric for all λ, µ, ν ⊢ n.

For a partition λ ⊢ n, denote by Φ(λ) the set of µ ⊢ n such that g(µ, λ, λ) > 0. The
tensor product conjecture says that Φ(λ) = Pn for some λ. The Saxl conjecture says that
Φ(ρk) = Pn. We call ρk the staircase shape of order k.

3.5. Chopped square. Denote ηk = (kk−1, k− 1) ⊢ k2− 1. We call ηk the chopped square
shape of order k. Obviously, d(ηk) = k−1, and the scaled limit shape is a 1/2×1/2 square.

Conjecture 3.1. For all k ≥ 2, we have Φ(ηk) = Pn.

This conjecture was checked by Andrew Soffer for k ≤ 5.
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3.6. Caret shape. Consider

γk = (3k − 1, 3k − 3, . . . , k + 3, k + 1, k, k − 1, k − 1, k − 2, k − 2, . . . , 2, 2, 1, 1),

which we call a caret shape. Note that γ′k = γk, n = |γk| = 3k2, d(γk) = k, and the principal
hook partition γ̂k = (6k − 3, 6k − 9, . . . , 3). After 1/

√
n scaling, the partition has a 4-gon

limit shape as in Figure 3.

Figure 3. Partition γ5 and the limit shape of γk.

Conjecture 3.2. For all k ≥ 2, we have Φ(γk) = Pn.

Remark 3.3. Despite the less elegant shape of γk partitions, there seems to be nearly
as much evidence in favor of Conjecture 3.2 as in favor of the Saxl Conjecture 1.2 (see
corollaries 5.4 and 6.6). See Section 8 for more caret shapes and possibility of other self-
conjugate shapes satisfying the Tensor Product Conjecture.

4. Known results and special cases

4.1. General results. The following results are special cases of known results about Kro-
necker products, applied to our case.

Lemma 4.1. Let ν ⊢ n. Then χµ ⊗ χ(n) = χµ and χµ ⊗ χ(1n) = χµ′
.

Proof. Note that χ(n) is the trivial character and χ(1n) is the sign character. The first
identity is trivial; the second follows from the Murnaghan–Nakayama rule. �

Corollary 4.2. Let µ ⊢ n. Then µ = µ′ if and only if (1n) ∈ Φ(µ).

Proof. By Lemma 4.1

〈χµ ⊗ χµ, χ(1n)〉 = 〈χµ, χµ ⊗ χ(1n)〉 = 〈χµ, χµ′〉.
So, the claim follows. �

Proposition 4.3. Let µ ⊢ n. If µ = µ′, then g(λ, µ, µ) = g(λ′, µ, µ).

Proof. Simply observe that by Lemma 4.1 we have

g(λ, µ, µ) = 〈χλ, χµ′ ⊗ χµ〉 = 〈χλ, χµ ⊗ χ(1n) ⊗ χµ〉
= 〈χλ, χ(1n) ⊗ χµ ⊗ χµ〉 = 〈χλ ⊗ χ(1n) , χµ′ ⊗ χµ〉 = g(λ′, µ, µ),

as desired. �

Theorem 4.4 ([BR]). If d(λ) > 2d(µ)2, then λ /∈ Φ(µ).4

4Thm. 3.26 in [BR] is more general, and applies to all diagonal lengths of constituents in all χλ ⊗ χν .
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Corollary 4.5. If d(µ) < n1/4√
2
, then Φ(µ) 6= Pn.

Therefore, if µ 6= µ′ or 2d(µ)2 <
√
n, then character χµ cannot be used in the tensor

product conjecture.

Theorem 4.6 ([BB]). If λ = λ′, then λ ∈ Φ(λ), i.e. g(λ, λ, λ) > 0.

Remark 4.7. Note that neither of the results in this section disproves the Saxl conjecture,
nor conjectures 3.1 and 3.2. Indeed, all these partitions are self-conjugate and have Durfee
size of the order Θ(

√
n).

4.2. Large µ1. Let ν be a composition and denote by cν(µ) the number of ways to remove
ribbon hook shaped ν from µ such that µ/ν is a Young diagram. The following result is
given in [Val3]. See also [Saxl, Zis].

Theorem 4.8. For λ = (n− r, τ) and τ ⊢ r, denote f(τ, µ) = g(λ, µ, µ). Then:

f(∅) = 1 , f(1, µ) = c1(µ)− 1 , f(12, µ) =
(
c1(µ)− 1

)2
,

f(2, µ) = c2(µ) + c12(µ) + c1(µ)
2 − 2c1(µ) ,

f(3, µ) = c3(µ) + c13(µ) + c21(µ) + c12(µ) +
(
2c1(µ)− 3

)(
c2(µ) + c12(µ)

)

+ c1(µ)
3 − 4c1(µ)

2 + 3c1(µ) ,

f(21, µ) = c21(µ) + c12(µ) +
(
3c1(µ)− 4

)(
c2(µ) + c12(µ)

)

+ 2c1(µ)
3 − 8c1(µ)

2 + 7c1(µ) ,

f(13, µ) = c21(µ) + c12(µ) +
(
c1(µ)− 1

)(
c2(µ) + c12(µ)

)

+ c1(µ)
3 − 4c1(µ)

2 + 4c1(µ)− 1.

Calculating these values explicitly, gives the following result:

Corollary 4.9. Let µ ⊢ n. If µ = µ′ and µ is not a square, we have:

(n), (n− 1, 1), (n − 2, 2), (n− 2, 12), (n − 3, 3), (n− 3, 2, 1), (n− 3, 13) ∈ Φ(µ).

However, (n− 1, 1), (n− 2, 12) /∈ Φ(kk) for n = k2.

In other words, the theorem rules out square partitions in the tensor product conjecture.

Proof. For n = 3 the statement follows from a direct calculation, so we assume n ≥ 4.
Since µ is not a square, c1(µ) ≥ 2. So, we have that (n), (n − 1, 1) and (n − 2, 12) are in
Φ(µ). Let us consider first the case c1(µ) = 2. If µ is not a hook, since µ = µ′, one has
either c2(µ) + c12(µ) ≥ 4 or c2(µ) + c12(µ) = 2 and c21(µ) = 1; so, the remaining partitions
are in Φ(µ). If µ is a hook, since µ = µ′, one has c2(µ) + c12(µ) = 2, which implies that
(n − 2, 2), (n − 3, 2, 1) and (n − 3, 13) are in Φ(µ). For (n − 3, 3), we must have n ≥ 6,
thus c3(µ) + c13(µ) = 2, and we obtain that (n − 3, 3) is in Φ(µ). Finally, if c1(µ) ≥ 3 all
the polynomials in c1 at the end of the summations are nonnegative, and we have either
c2(µ) + c12(µ) ≥ 2 or c21(µ) ≥ 1. So, the claim follows. �

Example 4.10. A direct calculation gives

χ(22) ⊗ χ(22) = χ(4) + χ(22) + χ(14) .

In other words, Φ(22) is missing only (3, 1) and (2, 12).
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4.3. Two rows. There are many results on Kronecker product of characters with at least
one partition with two row (see e.g. [BO1, BO2, BOR, RW, Ros]). Of these, only the result
of Ballantine and Orellana [BO2] extends to general partitions. Its statement is rather
technical, so we instead present a direct corollary from it adapted to our situation.

Theorem 4.11. For every µ ⊢ n, 2 ≤ p ≤ min{ℓ(µ), 1+µ1

2 }, we have (n− p, p) ∈ Φ(µ).

Proof. In the notation of [BO2, Thm. 3.2], let α = (1p) ⊂ µ, and consider tableau T of
shape (µ/1p) filled with numbers i in i-th row. This gives a Kronecker tableaux of type
(µ/1p) counted in the combinatorial interpretation in [BO2]. Thus, for λ = (n − p, p), we
have g(λ, µ, µ) ≥ 1, as desired. �

For example, for µ = ρk, we have ℓ(µ) = µ1 = k, and the result gives positive Kronecker
coefficients k

(
(n−p, p), µ, µ

)
for p ≤ (k+1)/2. Unfortunately, for larger p the result in [BO2]

gives only an upper bound, while we need a lower bound. In Section 6, we improve the
above bound to p ≤ n/2.

4.4. Hooks. Of the extensive literature, Blasiak’s combinatorial interpretation (see [Bla],
Theorem 3.5), is perhaps the most convenient. Again, the statement is rather technical, so
we instead present the following corollary.

Theorem 4.12. Let µ = (µ1, . . . , µℓ) be a partition of n, such that µ1 > . . . > µr for some
r ≤ ℓ. Then:

(n−m, 1m) ∈ Φ(µ) for all m < r.

Proof. In notation of [Bla], consider tableau T of shape µ, filled with numbers i in i-th row.
Now place a bar on the first m integers in the first column. Denote by w the word obtained
by reading unbarred skew shape from right to left, and then barred shape from left to right
(in this case, just the first column from bottom to top). We have:

w = 1µ1−12µ2−1 . . . mµm−1(m+ 1)µm+1 . . . ℓµℓm(m− 1) . . . 21

Now observe the inequalities in the statement imply that word w is a ballot sequence. In
the language of [Bla], this implies that the reverse of w is a Yamanouchi word of content µ.

Now consider tableau C(T ) obtained when T is converted into natural order. Note
that C(T ) will have its lower left corner (ℓ, 1) unbarred, because in the ℓ-th row, tableau T
has only numbers ℓ which are unbarred and larger than all barred numbers, and thus do not
move during conversion. Therefore, tableau T gives the desired tableau in the combinatorial
interpretation of g(λ, µ, µ). �

4.5. Large Durfee size. The following result is well known and easy to prove.

Lemma 4.13. We have χµ
[
µ̂
]
= ±1, for all µ ⊢ n. Moreover, if µ = µ′, then

χµ
[
µ̂
]
= (−1)(n−d(µ))/2.

Proof. The principal hook condition implies that there is a unique rim hook condition in
the Murnaghan–Nakayama rule. The second part follows by taking the product of signs of
all hooks. �

Proposition 4.14. We have: |Φ(ρk)| > 3⌈k/2⌉−1 and |Φ(γk)| > 5k−1.
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Proof. There are two sequences of principal hook partitions for ρk: For k = 2m + 1 odd
the sequence is (4m+ 1, 4m − 3, . . . , 5, 1). For k = 2m even the sequence is (4m− 1, 4m −
5, . . . , 7, 3). In each case the proof is by induction on m. We show the even case. The
odd one is similar. For each λ ∈ {(3), (2, 1), (13)} there is exactly one rim hook tableau of
shape λ and weight (3). So that, by the Murnaghan–Nakayama rule and the Main Lemma,
|Φ(ρ2)| = 3 > 1. We assume, by induction hypothesis, that there are 3m partitions λ
such that for each of them there is exactly one rim hook tableau of shape λ and weight
(3, . . . , 4m− 1), and that the rim hook of size 4m − 1 intersects the first row and the first
column of [λ]. For each such λ we construct three partitions as follows: Let H be the rim
hook in λ of size 4m− 1 with end boxes (1, a) and (b, 1). Define

H̃ = {(x+ 1, y + 1) | (x, y) ∈ H} ∪ {(1, a + 1), (b + 1, 1)}.
Then |H̃| = 4m+ 1. Define partitions of size (4m+ 3) + (4m− 1) + · · · by

[λ(1)] = [λ] ∪ H̃ ∪ {(1, a + 2), (1, a + 3)};
[λ(2)] = [λ] ∪ H̃ ∪ {(1, a + 2), (b + 2, 1)};
[λ(3)] = [λ] ∪ H̃ ∪ {(b+ 2, 1), (b + 3, 1)}.

We claim that for each i = 1, 2, 3, λ(i) has exactly one rim hook tableau of shape λ(i)
and weight (3, 7, . . . , 4m + 3). The southeast border of [λ(i)] is exactly a rim hook H(i)
of size 4m + 3. It intersects the first row and the first column of [λ(i)]. By construction
[λ(i)] \ H(i) = [λ]. But, by induction hypothesis, there is only one rim hook tableau of
shape λ and weight (3, 7, . . . , 4m− 1). So, there is only one rim hook tableau of shape λ(i)
and weight (3, 7, . . . , 4m+ 3). So, by the Main Lemma, λ(i) ∈ Φ(ρ2m+2).

It remains to show that the 3m+1 partitions just constructed are all different. This follows
also by induction and the fact that the construction of λ(i) from λ is reversible, since λ(i)
has exactly 3− i parts of size 1. Thus, |Φ(ρ2m+2)| ≥ 3m+1 > 3m.

For the caret shapes there is only one sequence of principal hook partitions γ̂k = (6k −
3, 6k − 9, . . . , 3). Since d(γk) = k, a similar argument now proves the second claim. �

In other words, in both cases the number of irreducible constituents is weakly exponential
expΘ(

√
n). Indeed, the corollary gives the lower bound and the asymptotics for π(n) gives

the upper bound. Note also that the lemma gives nothing for the chopped square shape ηk.

4.6. Large principal hooks. The following result is a trivial consequence of the classical
Murnaghan–Nakayama rule.

Lemma 4.15. Suppose λ, µ ⊢ n and λ̂1 < µ̂1. Then χλ[µ̂] = 0.

From here we conclude the following counterpart of Proposition 4.14.

Proposition 4.16. There are at least 3⌈k/2⌉−3 partitions λ of n = k(k + 1)/2 such that
χλ[ρ̂k] = 0. Similarly, there are at least 5k−3 partitions λ of n = 3k2 such that χλ[γ̂k] = 0.

Proof. Follow the construction as in the proof of Proposition 4.14, to construct 3⌈k/2⌉−3

partitions λ with principal hooks of size

(4m− 1, 4m− 3, 4m − 7, 4m − 11, . . . , 5, 3) for k = 2m+ 1, and

(4m− 3, 4m − 5, 4m− 9, 4m− 13, . . . , 7, 5) for k = 2m.

Here 32 possibilities are lost when counting placements of the outer and the inner rim hooks.
By the lemma above, all such characters χλ[ρ̂k] = 0. The second part follows verbatim. �
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The proposition implies that there is a weakly exponential number of partitions for which
the Saxl conjecture and Conjecture 3.2 cannot be proved. Curiously, this approach does
not apply to ηk. In Subsection 8.1 we prove a much stronger result about the number of
partitions λ such that χλ[γ̂k] = 0.

Example 4.17. Of course, just because χλ[µ̂] = 0 it does not mean that λ /∈ Φ(µ). For

example χ(5,1) ∈ Φ(ρ3), even though

χ(5,1)[ρ̂3] = χ(5,1)[5, 1] = 0.

5. Hooks in tensor squares

5.1. Chopped square shape. Let n = k2 − 1, so that ηk = (kk−1, k− 1) ⊢ n. Recall that
η̂k = (2k − 1, 2k − 3, . . . , 7, 5, 3).

Lemma 5.1. There exists a constant L, s.t. (n− ℓ, 1ℓ) ∈ Φ(ηk), for all L ≤ ℓ < n/2.

Proof of Lemma 5.1. By the Main Lemma (Lemma 1.3), it suffices to show that

χ(n−ℓ,1ℓ)[η̂k] > 0 for ℓ large enough.

We claim that the above character is equal to

(∗) π′
R(ℓ)− π′

R(ℓ− 1) + π′
R(ℓ− 2)

where R = {5, 7, . . . , 2k − 1} (see §2.4 for notations). By Theorem 2.1,

π′
R(ℓ) > π′

R(ℓ− 1) > π′
R(ℓ− 2) > 0

for ℓ ≤ n/2 large enough, this would prove the theorem.
For (∗), by the Murnaghan–Nakayama rule, the character is equal to the sum over all rim

hook tableaux of shape (n−l, 1ℓ) and weight η̂k of the sign of the tableaux. For convenience,
order the parts of η̂k in increasing order. Note that the sign of every rim hook which fits
inside in either leg or arm of the hook is positive. There are 3 ways to place a 3-hook, with
the foot of size ℓ, ℓ− 1 and ℓ− 2, respectively. Therefore, the number of rim hook tableaux
is equal to the number of partitions into distinct parts in R, as in (∗). �

Figure 4. Three ways to place a 3-hook into a hook diagram.

Example 5.2. Although we made no attempt to find constant L in the lemma, we know
that it is rather large even for k → ∞. For example,

π′
5,2(21) − π′

5,2(20) + π′
5,2(19) = 0,

which implies χ(n−21,121)[η̂k] = 0 for all n ≥ 21, k ≥ 11. Note also that function π′
5,2(n)

continues to be non-monotone for larger n, i.e. π′
5,2(41) = 15 and π′

5,2(42) = 14.
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5.2. Caret shape. Let n = 3k2, so that γk ⊢ n. Recall that γ̂k = (6k− 3, 6k− 9, . . . , 9, 3).
The following is the analogue of Lemma 5.1 for the caret shape.

Lemma 5.3. There exists a constant L, such that (n− ℓ, 1ℓ) ∈ Φ(γk), for all L ≤ ℓ ≤ n/2.

Combined with Theorem 4.12 as above, we obtain:

Corollary 5.4. For k large enough, we have (n− ℓ, 1ℓ) ∈ Φ(γk), for all 1 ≤ ℓ ≤ n− 1.

Proof of Corollary 5.4. Let k > L. Theorem 4.12 proves the case ℓ ≤ k − 1 and the lemma
gives L ≤ ℓ ≤ n/2. In total, these cover all 0 ≤ ℓ ≤ n/2. Now Proposition 4.3 prove the
remaining cases n/2 < ℓ ≤ n− 1. �

Proof of Lemma 5.3. The proof follows the argument in the proof of Lemma 5.1. The
difference is that the removed 3-rim hook can be removed only one way, as the other two
values are not zero mod 3. This simplifies the character evaluation and gives

∣∣χ(n−ℓ,1ℓ)[γ̂k]
∣∣ = π′

R

(
⌊ℓ/3⌋

)
,

where R = {3, 5, . . . , 2k − 1} is obtained from γ̂k by removing the smallest part and then
dividing by 3. Thus, the above character is nonzero, and the Main Lemma implies the
result. �

5.3. Staircase shape. Let n =
(k+1

2

)
, so that ρk ⊢ n. The following result is the analogue

of Lemma 5.1 for the staircase shape. Note that ρ̂k = (2k − 1, 2k − 5, 2k − 9, . . .). There
are two different cases: odd k and even k, which correspond to the smallest principal hooks
(. . . , 9, 5, 1) and (. . . , 11, 7, 3), respectively.

Lemma 5.5. There exists a constant L, such that (n− ℓ, 1ℓ) ∈ Φ(ρk), for all L ≤ ℓ < n/2.

Combined with Theorem 4.12 and Proposition 4.3, we obtain:

Corollary 5.6. For k large enough, we have (n − ℓ, 1ℓ) ∈ Φ(ρk), for all 1 ≤ ℓ ≤ n− 1.

The proof of the corollary follows verbatim the proof of Corollary 5.4.

Proof of Lemma 5.5. Let λ = (n− ℓ, 1ℓ) as above. Treat the even k case in the same way as
the of Lemma 5.1 above. Again, there are three ways to remove 3-rim hook and Theorem 2.1
implies that the character is nonzero. The Main Lemma now implies the result.

The odd k case is even easier: hook 1 can be placed in [λ] in a unique way, after which we
get χλ[ρ̂k] is the number of partitions π′

R(ℓ) into distinct parts R = {5, 9, 13, . . . , 2k−1}. �

6. Two row shapes in tensor squares

6.1. Chopped square shape. Let ηk = (kk−1, k − 1) ⊢ n, n = k2 − 1, be as above.

Lemma 6.1. There exists a constant L, such that (n− ℓ, ℓ) ∈ Φ(ηk), for all L ≤ ℓ ≤ n/2.

This immediately gives:

Corollary 6.2. For k large enough, we have (n − ℓ, ℓ) ∈ Φ(ηk), for all 0 ≤ ℓ ≤ n/2.

Proof of Corollary 6.2. By Lemma 4.1 and the symmetry of Kronecker coefficients, we have
ℓ = 0 case. By Theorem 4.11, we have the result for ℓ ≤ k/2. Finally, the lemma gives
L ≤ ℓ ≤ n/2 case. Taking k ≥ 2L, completes the proof. �
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Proof of Lemma 6.1. Recall the Frobenius formula

χ(n−ℓ,ℓ) = χ(n−ℓ)◦(ℓ) − χ(n−ℓ+1)◦(ℓ−1).

By the Murnaghan–Nakayama rule for skew shapes, we have:

χ(n−m)◦(m)[η̂k] = π′
R(m),

where R = {3, 5, . . . , 2k − 1}. Therefore, for L ≤ ℓ ≤ n/2, by Theorem 2.1 we have

χn−ℓ,ℓ[η̂k] = π′
R(ℓ) − π′

R(ℓ− 1) > 0.

Now the Main Lemma implies the result. �

6.2. Staircase shape. Let ρk = (k, k − 1, . . . , 1) ⊢ n, n = k(k + 1)/2, be as above.

Lemma 6.3. There exists a constant L, such that for all L < ℓ ≤ n/2 we have (n− ℓ, ℓ) ∈
Φ(ρk).

There are two cases to consider: even k and odd k. Each case follows verbatim the proof
of Lemma 6.1. We omit the details. Combined with Theorem 4.11, this immediately gives:

Corollary 6.4. For k large enough, we have (n − ℓ, ℓ) ∈ Φ(ρk), for all 0 ≤ ℓ ≤ n/2.

6.3. Caret shape. Let γk = (3k − 1, 3k − 3 . . . , 22, 12) ⊢ n, n = 3k2, be the caret shape
defined above.

Lemma 6.5. There exists a constant L, such that (n− ℓ, ℓ) ∈ Φ(γk), for all ℓ = 0, 1 mod 3,
L ≤ ℓ ≤ n/2.

Again, combined with Theorem 4.11, this immediately gives:

Corollary 6.6. For k large enough, we have (n − ℓ, ℓ) ∈ Φ(γk), for all 0 ≤ ℓ ≤ n/2,
ℓ = 0, 1 mod 3.

Proof of Lemma 6.5. Recall the Frobenius formula

χ(n−ℓ,ℓ) = χ(n−ℓ)◦(ℓ) − χ(n−ℓ+1)◦(ℓ−1).

By the Murnaghan–Nakayama rule for skew shapes, each of the characters on the right is
equal to the number of partitions π′

R(ℓ)−π′
R(ℓ−1) into distinct parts in R = {3, 9, . . . , 6k−

3}. Since only one of {ℓ, ℓ − 1} is divisible by 3, we conclude that χn−ℓ,ℓ[γk] is equal to
either π′

R(ℓ) or −π′
R(ℓ− 1). Therefore,

χn−ℓ,ℓ[γk] = ±π′
S

(⌊
ℓ− 1

3

⌋)
, where S = {1, 3, . . . , 2k − 1}.

Now Theorem 2.1 and the Main Lemma imply the result. �
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7. Variations on the theme

7.1. Near–hooks. Let λ = (n−ℓ−m,m, 1ℓ), which we call the near–hook, for small m ≥ 2.
We summarize the results in the following theorem.

Theorem 7.1 (Near–hooks in staircase shapes). There is a constant L > 0, such that for
all ℓ, k ≥ L, ℓ < n/2− 5, n = k(k + 1)/2, we have:

(n− ℓ− 2, 2, 1ℓ), . . . , (n− ℓ− 10, 10, 1ℓ) ∈ Φ(ρk)

Sketch of proof. For λ = (n− ℓ− 2, 2, 1ℓ), use Giambelli’s formula to obtain

χ(n−ℓ−2,2,1ℓ) = χ(n−ℓ−2,1ℓ+1)◦(1) − χ(n−ℓ−2)◦(1ℓ+2) .

In the odd case, when the first summand of the right side of the equation is evaluated at [ρ̂k]
using the Murnaghan–Nakayama rule, part (1) is placed uniquely, and there are 5 choices
for the 5-rim hook. Thus, the first character evaluated at ρ̂k, is equal to

π′
R(ℓ+ 1)− π′

R(ℓ) + π′
R(ℓ− 1)− π′

R(ℓ− 2) + π′
R(ℓ− 3),

where R = {9, 13, . . . , 2k − 1}. Similarly, the second character evaluated at ρ̂k, is equal to

π′
R(ℓ+ 2) + π′

R(ℓ+ 1) + π′
R(ℓ− 3) + π′

R(ℓ− 4),

depending on the placement of parts (1) and (5). For the difference, we have

− π′
R(ℓ+ 2)− π′

R(ℓ) + π′
R(ℓ− 1)− π′

R(ℓ− 2)− π′
R(ℓ− 4)

= −
[
π′
R(ℓ)− π′

R(ℓ− 1)
]
−

[
π′
R(ℓ+ 2) + π′

R(ℓ− 2) + π′
R(ℓ− 4)

]
< 0,

for L ≤ ℓ ≤ n/2− 1, by Theorem 2.1. Now the Main Lemma implies the odd k case. In the
even k case, there is no part (1) and the first character is zero; by Theorem 2.1 the second
is positive for ℓ as above, and the proof follows.

For λ = (n− ℓ− 3, 3, 1ℓ), use Giambelli’s formula to obtain

χ(n−ℓ−3,3,1ℓ) = χ(n−ℓ−3,1ℓ+1)◦(2) − χ(n−ℓ−3)◦(2,1ℓ+1) .

Since there no part of size (2), the first character evaluated at ρ̂k, is equal to zero. For the
second character, in the odd k case, there is a unique way to place 1-hook in the upper left
corner of (n− ℓ− 3), and then 5-hook in (2, 1ℓ+1), which gives

χ(n−ℓ−3)◦(2,1ℓ+1) = −π′
R(ℓ− 2), where R = {9, 13, . . .}.

Similarly, in the even k case, there is a unique way to remove 3-hook which gives

χ(n−ℓ−3)◦(2,1ℓ+1) = −π′
R(ℓ), where R = {7, 11, . . .}.

The rest of the proof follows verbatim.
For λ = (n − ℓ − 4, 4, 1ℓ), there is no part (3) in the odd k, and the role of odd/even k

are interchanged. The details are straightforward. Other results are similar as well. �

Remark 7.2. This sequence of results can be continued for a while, with computations of
multiplicities of λ = (n − ℓ − m,m, 1ℓ) becoming more complicated as m grows. Beyond
some point, the naive estimates as above no longer apply and we need stronger estimates
on the numbers of partitions. Finally, the characters in cases of chopped square and the
caret shapes can be analyzed in a similar way. We omit them for brevity.
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7.2. Near two rows. Let λ = (n− ℓ−m, ℓ,m), which we call the near two rows, for small
m ≥ 1. We summarize the results in the following theorem.

Theorem 7.3 (Near two rows in staircase shapes). There is a constant L > 0, such that
for all ℓ ≥ L, n = k(k + 1)/2, we have (n − ℓ−m, ℓ,m) ∈ Φ(ρk)
1) for m = 1, 5, 7, 8, 9,
2) for m = 2, 4, and k even,
3) for m = 3, and k odd.

Sketch of proof. For λ = (n− ℓ− 1, ℓ, 1), use Giambelli’s formula to obtain

χ(n−ℓ−1,ℓ,1) = χ(n−ℓ−1,12)◦(ℓ−1) − χ(ℓ−1,12)◦(n−ℓ−1) .

Again, use skew Murnaghan–Nakayama rule to evaluate the characters at ρ̂k, where the
parts are ordered in decreasing order. Note that each skew partition is a composition of a
hook and a row. For odd k, part 1 is placed uniquely, into a single row, and regardless how
the rim hook fits the foot of the hook, it will have positive sign.

We conclude that the difference of character values is equal to

π′
R(ℓ− 2) − π′

R(ℓ+ 1), where R = {5, 9, . . . , 2k − 1}, k − odd,

π′
R(ℓ− 1) − π′

R(ℓ+ 1), where R = {3, 7, . . . , 2k − 1}, k − even.

Thus, by Theorem 2.1 , in both cases we have the difference < 0 for ℓ as above. Use the
Main Lemma to obtain m = 1 case.

The m = 2 case is similar, with a global change of sign as one of the hooks has even
height. We omit the easy details.

For λ = (n− ℓ− 3, ℓ, 3), use Frobenius formula5 for 3 rows [Sag, Sta2]:

χ(n−ℓ−3,ℓ,3) = χ(n−ℓ−3)◦(ℓ)◦(3) − χ(n−ℓ−2)◦(ℓ−1)◦(3)

− χ(n−ℓ−3)◦(ℓ+1)◦(2) + χ(n−ℓ−1)◦(ℓ−1)◦(2)

+ χ(n−ℓ−2)◦(ℓ+1)◦(1) − χ(n−ℓ−1)◦(ℓ)◦(1) .

Let k be odd. Evaluated at ρk, only the last difference is nonzero, giving π′
R(ℓ+1)−π′

R(ℓ),
R = {5, 9, . . .}, which is positive for large enough ℓ. Similarly, for even k, only the first
difference is nonzero, giving π′

R(ℓ)− π′
R(ℓ− 1) which is positive for large enough ℓ. Other

cases m ≤ 9 re similar. We omit the details. �

Remark 7.4. In the theorem we omit three cases (odd m = 2, 4 and even m = 3), since the
are no skew rim hook tableaux in that case. This implies that the corresponding character
is zero, and the Main Lemma tells us nothing. Of course, one can increase m and/or the
number of rows. Both the Frobenius and the Giambelli formulas become more involved
and it becomes more difficult to compute the characters in terms of partitions into distinct
parts in arithmetic progressions.

5In the context of Schur functions, Frobenius formula is often called the Jacobi-Trudi identity [Mac].
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8. Random characters

8.1. Caret shape. We start with the following curious result.

Proposition 8.1. Let n = 3k2 and λ ∈ Pn be a random partition. Then χλ[γ̂k] = 0 w.h.p.,
as n → ∞.

Proof. Since all parts of γ̂k are divisible by 3, we have χλ[γ̂k] = 0 unless λ has an empty
3-core. By the asymptotics given in §2.2, the probability of that is

π3(n)

π(3n)
= O

(
1√
n

)
,

as desired. �

Remark 8.2. The proposition states that almost all character values are zero in this case.
This suggests that either Conjecture 3.2 is false for large k, or the Main Lemma is too weak
when it comes to this conjecture even for a constant fraction of the partitions.

8.2. Staircase shape. Keeping in mind Proposition 4.14 and Proposition 4.16, we conjec-
ture that almost all characters are not equal to zero:

Conjecture 8.3. Let n = k(k + 1)/2 and λ ∈ Pn be a random partition. Then χλ[ρ̂k] 6= 0
w.h.p., as n → ∞.

8.3. Random shapes. Note that the random partitions λ ⊢ n are (approximately) self-
conjugate and by the limit shape results (see §2.3), have Durfee size

d(λ) ∼ (ln 2)
√
6n

π
≈ 0.54

√
n.

This raises the question that perhaps random self-conjugate partitions satisfy the tensor
product conjecture.

Open Problem 8.4. Let µ ⊢ n be a random self-conjugate partition of n. Prove or
disprove: Φ(µ) = Pn w.h.p., as n → ∞.

The following result is a partial evidence in support of the positive solution of the problem.

Theorem 8.5. Let µ ⊢ n be a random self-conjugate partition of n. Then Φ(µ) contains
all hooks (n − ℓ, 1ℓ), 0 ≤ ℓ < n, w.h.p., as n → ∞.

Sketch of proof. We follow the proof of Lemma 5.1. First, recall that self-conjugate parti-
tions are in natural bijection with partitions into distinct odd parts: µ ↔ µ̂ (see e.g. [Pak]).
This implies that ℓ(µ̂) = Ω(

√
n) and the smallest part s = µ̂d = O(1) w.h.p., where

d = d(µ). Now observe that the gcd(µ1, . . . , µs) = 1 w.h.p. Then, by [OR], there ex-
ists an integer L such that π′

R(r) are positive and monotone for L < r < n − L, where
R = {µ1, . . . , µs}. Now, the Murnaghan–Nakayama rule implies that for L < ℓn− L, there
are s = s(µ) ways to remove the smallest part, giving

χ(n−ℓ,1ℓ)[µ̂] = π′
R(ℓ)− π′

R(ℓ− 1) + π′
R(ℓ− 2)− . . .+ π′

R(ℓ− s) > 0.

Now the Main Lemma gives the result for ℓ as above, and for small ℓ = O(
√
n), the result

follows from Theorem 4.12. �

In case Open Problem 8.4 is too strong, here is a weaker, asymptotic version of this claim.
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Open Problem 8.6. Let µ ⊢ n be a uniformly random self-conjugate partition of n. Prove
or disprove: ∣∣Φ(µ)

∣∣
∣∣Pn

∣∣ → 1 as n → ∞.

8.4. Random characters. We believe the following claim closely related to open problems
above.

Conjecture 8.7. Let λ ⊢ n be a random partitions of n, and let µ be a random self-conjugate
partition of n. Then χλ[µ̂] = 0 w.h.p., as n → ∞.

Heuristically, the first principal hook µ̂1 is greater than λ̂1 with probability 1/2, and by

Lemma 4.13 the above character is zero. If µ̂1 ≤ λ̂1, with good probability the µ̂1-rim hook
can be removed in a unique way, after which the process is repeated for smaller principal
hooks, in a manner similar to Proposition 4.14. This gives that the probability there exists
no rim hook tableaux → 0 as n → ∞.

Now, the above argument is heuristic and may be hard to formalize, since the “good
probability” is rather hard to estimate and in principle it might be close to 0 and lead to
many rim hook tableaux. However, sharp bound on the distribution of the largest part
of the random partitions (cf. §2.3) combined with the first step of the argument can be
formalize to prove the following result.6

Proposition 8.8. Let λ, µ ⊢ n be as in the Conjecture above. Then there exists ε > 0 such
that χλ[µ̂] = 0 with probability < 1− ε, as n → ∞.

This implies our Main Lemma is too weak to establish even the weaker Open Problem 8.6,
since a constant fraction of characters are zero.

8.5. Character table of the symmetric group. Now, Conjecture 8.7 raises a more
simple and natural question about random entries of the character table of Sn.

Conjecture 8.9. Let λ, µ ⊢ n be random partitions of n. Then χλ[µ] 6= 0 w.h.p. as n → ∞.

Andrew Soffer’s calculations show gradual decrease of the probability p(n) of zeroes in
the character table of Sn, for n > 20, from p(20) ≈ 0.394 to p(39) ≈ 0.359. Furthermore, for
large partitions the probability that the character values are small seems to be rapidly de-
creasing. For example, q(20) ≈ 0.06275 and q(37) ≈ 0.020375, where q(n) is the probability
that the character is equal to 1.

Open Problem 8.10. Let λ, µ ⊢ n be random partitions of n. Find the asymptotic behavior
of pn := P

(
χλ[µ] = 1

)
.

The data we have suggests that the probability in the open problem decreases mildly
exponentially: pn < exp[−nα], for some α > 0.

6The proof will appear elsewhere.
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9. Proof of the Main Lemma

Let us first restate the lemma using our notation.

Lemma 1.3 (Main Lemma) Let λ, µ ⊢ n, such that µ = µ′ and χλ[µ̂] 6= 0. Then λ ∈ Φ(µ).

Proof. Recall Lemma 4.13, and let

εµ = χµ[µ̂] = (−1)(n−d(µ))/2 .

Recall also that the Sn conjugacy class of cycle type ζ, when ζ is a partition into distinct
odd parts, splits into two conjugacy classes in the alternating group An, which we denote
by ζ1 and ζ2. There are two kinds of irreducible characters of An. For each partition ν of
n such that ν = ν ′ there are two irreducible characters associated to ν, which we denote
by αν+ and αν−; and for each partition ν of n such that ν 6= ν ′ there is an irreducible
character associated to the pair ν, ν ′, which we denote by αν . These characters are related
to irreducible characters of Sn as indicated below. We will need the following standard
results (see e.g. [JK, Section 2.5]).

1. If ν 6= ν ′, then

Res
Sn
An

(χν) = Res
Sn
An

(χν′) = αν ,

is an irreducible character of An.

2. If ν = ν ′, then
Res

Sn
An

(χν) = αν+ + αν− ,

is the sum of two different irreducible characters of An. Moreover, both characters are
conjugate, that is, for any σ ∈ An we have

αν+
[
(12)σ(12)

]
= αν−[σ].

3. The characters αν , ν 6= ν ′ and αν+, αν−, where ν = ν ′ are all different and form a
complete set of irreducible characters of An.

4. If ν = ν ′, and γ is a conjugacy class of An different from ν̂1 or ν̂2, then

αν+[γ] = αν−[γ] =
1

2
χν [γ].

We also have

αν+
[
ν̂1
]
= αν−[ν̂2

]
=

1

2


εν +

√
εν

∏

i

ν̂i


 ,

αν+
[
ν̂2
]
= αν−[ν̂1

]
=

1

2


εν −

√
εν

∏

i

ν̂i


 .

In other words, for any self-conjugate partition ν, the only irreducible characters of An that
differ on the classes ν̂1 and ν̂2 are precisely αν±.

There are two cases to consider with respect to whether λ is self-conjugate or not.
First, assume that λ 6= λ′. Then αλ is an irreducible character of An. Since

αλ[µ̂1] = αλ[µ̂2] = χλ[µ̂],

we obtain:
(
αµ+ ⊗ αλ

)
[µ̂1]−

(
αµ+ ⊗ αλ

)
[µ̂2] =

(
αµ+[µ̂1]− αµ+[µ̂2]

)
· χλ[µ̂]
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=



√

εµ
∏

i

µ̂i


 · χλ(µ̂) 6= 0.

Therefore, either αµ+ or αµ− is a component of αµ+ ⊗ αλ. In other words,

either 〈αµ+ ⊗ αλ, αµ+〉 6= 0 or 〈αµ+ ⊗ αλ, αµ−〉 6= 0.

We claim that the terms in these product can be interchanged. Formally, we claim that:

(⋆) either 〈αµ+ ⊗ αµ+, αλ〉 6= 0 or 〈αµ+ ⊗ αµ−, αλ〉 6= 0.

There are two cases. If εµ = 1, then both αµ+ and αµ− take real values. Thus

〈αµ+ ⊗ αµ±, αλ〉 = 〈αµ+ ⊗ αλ, αµ±〉 6= 0,

which implies (⋆) in this case.
If εµ = −1, then

Im
(
αµ+[µ̂1]

)
= −Im

(
αµ−[µ̂1]

)
and Im

(
αµ+[µ̂2]

)
= −Im

(
αµ−[µ̂2]

)
.

Therefore, αµ+ = αµ−, since all other character values are real. Thus,

〈αµ+ ⊗ αµ±, αλ〉 = 〈αµ+ ⊗ αλ, αµ∓〉 6= 0,

which implies (⋆) in this case.

In summary, we have both cases in (⋆) imply that αλ is a component of ResSn
An

(χµ ⊗ χµ).

Therefore, either χλ or χλ′
is a component of χµ ⊗ χµ. Since µ = µ′, we have, by Proposi-

tion 4.3, that χλ and χλ′
are components of χµ ⊗ χµ, as desired. This completes the proof

of the λ 6= λ′ case.

Now, suppose λ = λ′. The case λ = µ is given by Theorem 4.6. If λ 6= µ, then

αλ±[µ̂1] = αλ±[µ̂2] =
1

2
χλ(µ̂) 6= 0.

By a similar argument as above applied to λ+ and λ− in place of λ, we have the following
analogue of (⋆) :

either 〈αµ+ ⊗ αµ+, αλ+〉 = 〈αµ+ ⊗ αµ+, αλ−〉 6= 0,

or 〈αµ+ ⊗ αµ−, αλ+〉 = 〈αµ+ ⊗ αµ−, αλ−〉 6= 0.

This implies that αλ+and αλ− are components of Res
Sn
An

(χµ ⊗ χµ). Therefore, χλ is a

component of χµ⊗χµ, as desired. This completes the proof of the λ = λ′ case, and finishes
the proof of the lemma. �

10. Conclusions and final remarks

10.1. For the staircase shapes ρk, the number |Φ(ρk)| of irreducible constituents is ex-
ponential by Proposition 4.14. From this point of view, theorems 1.4, 7.1 and 7.3 barely
make a dent: they add O(k2) additional constituents. On the other hand, for the chopped
square shape ηk there is no obvious weakly exponential lower bound. Although we believe
that finding such bound should not be difficult by an ad hoc construction, Ω(k2) is the best
bound we currently have.
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10.2. In [PP], we obtain an advance extension of Theorem 4.12, based again on a combi-
natorial interpretation given in [Bla]. Among other things, we prove that Φ(ρk) contain all
hooks for all k, not just k large enough. We should mention that this was independently
proved by Blasiak.7

10.3. There is a curious characterization of positivity Littlewood–Richardson coefficients
of the staircase shape. Namely, Berenstein and Zelevinsky proved in [BZ2] the former
Kostant Conjecture, which states that LR(ρk, ρk, λ) > 0 if and only if K(2ρk, λ) > 0. For
the proof, they defined BZ-triangles, which proved crucial in [KT].

10.4. A natural question would be to ask whether the dimensions of ρk, γk and ηk are
large enough to contain all irreducible representations of Sn. Same question for the limit
shape defined in §2.3 discussed also in Open Problem 8.4. The answer is yes in all cases,
as can be seen by a direct application of the hook-length and Stirling formulas. Given that
all these shapes are far from the Kerov–Vershik shape which has the maximal (and most
likely) dimension [VK], this might seem puzzling. The explanation is that the dimensions
are asymptotically greater than the number of partitions π(n) = expΘ(

√
n).

More precisely, it is well known and easy to see that the sum of all dimensions is equal
to an = #{σ ∈ Sn | σ2 = 1}. The sequence {an} is A000085 in [OEIS], and is equal to
exp

[
1
2n log n], up to an expO(n) factor (see [Rob]). Thus, the squares of dimensions of

random irreducible representations of Sn are much larger than an. This also suggests a
positive answer to Open Problem 8.4. More relevant to the Tensor Square Conjecture, the
dimensions of ρk, γk and ηk are also equal to exp

[
1
2n log n], up to an expO(n) factor, which

supports the Saxl Conjecture and conjectures 3.1, 3.2.

10.5. Although there are very strong results on the monotonicity of the partition function
(see e.g. [BE]), for partitions into distinct parts much less is known (see [OR, RS]). Curi-
ously, some results follow from Dynkin’s result in Lie Theory. For example, the unimodality
of π′

R(n) for R = {1, 2, . . . , k}, i.e. the unimodality of the coefficients in

k∏

i=1

(1 + ti),

is called Hughes theorem and corresponds to root system Ck. We refer to [Bre, Sta1] for
more on this approach and general surveys on unimodality.

10.6. Constants L in theorems 7.1 and 7.3 should be possible to estimate explicitly, in the
same manner as was done in [OR], to reprove the Hughes theorem (see above). However,
because of Example 5.2, there is no unimodality for small values of ℓ, so without advances in
the study of Kronecker coefficients it is unlikely that the gap can be bridged by an explicit
computation.

10.7. The reason conjectures 8.7 and 8.9 are not in direct contradiction has to do with a
difference between limit shapes of random partitions µ and random partitions into distinct
odd part µ̂ (see [Ver]). Using the asymptotics for the number of the latter, Conjecture 8.7
implies that at least expΘ(n1/4) many columns of the character table Mn, most entries
are zero. In a different direction, the Main Lemma can be reversed to show that at least
expΘ(n1/4) many rows have most entries zero, by taking partitions with Durfee squares

O(n1/4). We omit the details.

7Personal communication.
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10.8. Curiously, and quite coincidentally, the plane can be tiled with copies of parallel
translations and rotations of γk shapes, and the same is true also for ρk and ηk (see Figure 5).

Figure 5. Tiling of the plane with chopped square, staircase and caret shapes.

10.9. John Thompson’s conjecture states that every finite simple group G has a conjugacy
class whose square is the whole G. For An, this is a well known result [Ber]. We refer to [Sha]
for a survey of recent progress towards Thompson’s conjecture, and related results.

Passman’s problem is concerned with the conjugation action on conjugacy classes of
general simple groups. For An, it was positively resolved by Heide and Zalesski in [HZ].

Theorem 10.1 ([HZ]). For every n ≥ 5 there is a conjugacy class Cλ of An, such that
the action of An on Cλ by conjugation as a permutation module, contains every irreducible
character as a constituent.

10.10. It is known that the problem Kron of computing g(λ, µ, ν) is #P-hard (see [BI]).
However, the same also holds for the Kostka numbers Kλ,µ and the Littlewood–Richardson
coefficients LR(λ, µ, ν), so this is not the main obstacle [Nar]. The difference is, for the
latter there exists several combinatorial interpretations in the form of counting certain
Young tableaux, which are (relatively) easy to work with (see e.g. [KT, KTW, PV, Sta2]).
Of course, it is not known whether Kron is in #P, as this would imply a combinatorial
interpretation for the Kronecker coefficients, but it was shown in [BI] that Kron∈GapP.

Recall that by the Knutson–Tao theorem [KT] (formerly the saturation conjecture [Zel]),
the problem whether LR(λ, µ, ν) = 0 is equivalent to the problem whether the corresponding
LR-polytope is nonempty, and thus can be solved in polynomial time by linear program-
ming [MNS]. Similarly, by the Knutson–Tao–Woodward theorem [KTW] (formerly Fulton’s
conjecture), the problem whether LR(λ, µ, ν) = 1 is equivalent to the problem whether the
corresponding LR-polytope consists of exactly one point, and thus also can be solved in
polynomial time (cf. [BZ1]). Finally, Narayanan showed that the corresponding problems
for Kostka numbers reduce to LR-coefficients [Nar]. Together these results imply that all
four decision problems can be solved in polynomial time.

On the other hand, it is not known whether the corresponding decision problems for
Kronecker coefficients are in P [Mul]. In the words of Peter Bürgisser [Bür], “deciding
positivity of Kronecker coefficients [...] is a major obstacle for proceeding with geometric
complexity theory” of Mulmuley and Sohoni [MS]. Special cases of the problem are resolved
in [PP]. We refer to [Mul] for the detailed overview of the role Kronecker coefficients play
in this approach (see also [BOR, Ike]).

Let us mention that when n is in unary, computing individual character values χλ[µ] can
be done in Probabilistic Polynomial time [Hep]. This gives an expO(

√
n) time algorithm for

computing Kronecker coefficients, via the scalar product of characters. On the other hand,
the Main Lemma now can be viewed as a “polynomial witness” for positivity of Kronecker
coefficients, which, if Conjecture 8.3 holds, works for most partitions.



TENSOR SQUARE CONJECTURES 21

Acknowledgements. We are very grateful to Jan Saxl for telling us about his conjecture,

and to Jonah Blasiak, Matt Boylan, Bob Guralnick, Stephen DeSalvo, Christian Ikenmeyer, Hari
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